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A B S T R A C T   

Accurate segmentation is crucial in diagnosing and analyzing skin lesions. However, automatic 
segmentation of skin lesions is extremely challenging because of their variable sizes, uneven color 
distributions, irregular shapes, hair occlusions, and blurred boundaries. Owing to the limited 
range of convolutional networks receptive fields, shallow convolution cannot extract the global 
features of images and thus has limited segmentation performance. Because medical image 
datasets are small in scale, the use of excessively deep networks could cause overfitting and in-
crease computational complexity. Although transformer networks can focus on extracting global 
information, they cannot extract sufficient local information and accurately segment detailed 
lesion features. In this study, we designed a dual-branch encoder that combines a convolution 
neural network (CNN) and a transformer. The CNN branch of the encoder comprises four layers, 
which learn the local features of images through layer-wise downsampling. The transformer 
branch also comprises four layers, enabling the learning of global image information through 
attention mechanisms. The feature fusion module in the network integrates local features and 
global information, emphasizes important channel features through the channel attention 
mechanism, and filters irrelevant feature expressions. The information exchange between the 
decoder and encoder is finally achieved through skip connections to supplement the information 
lost during the sampling process, thereby enhancing segmentation accuracy. The data used in this 
paper are from four public datasets, including images of melanoma, basal cell tumor, fibroma, 
and benign nevus. Because of the limited size of the image data, we enhanced them using methods 
such as random horizontal flipping, random vertical flipping, random brightness enhancement, 
random contrast enhancement, and rotation. The segmentation accuracy is evaluated through 
intersection over union and duration, integrity, commitment, and effort indicators, reaching 87.7 
% and 93.21 %, 82.05 % and 89.19 %, 86.81 % and 92.72 %, and 92.79 % and 96.21 %, 
respectively, on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets, respectively (code: 
https://github.com/hyjane/CCT-Net).   

1. Introduction 

Melanoma, which has a high mortality rate, is the most malignant skin lesion. Annually, 2–3 million people worldwide are 
diagnosed with skin cancer [1]. Computer-aided diagnosis can reduce the cost and stress of skin cancer screening [2]. Accurate 
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segmentation of skin lesions is extremely important [3,4] for their precise classification. However, typically, dermatologists manually 
outline the lesion area; this process is tedious, error-prone, and time-consuming. Automatic lesion separating is challenging [5] 
because of the indistinct borders of the lesions, low contrast of the lesions, and the presence of body hairs and shadows in the lesions. 
Traditional methods for manually designing features, such as gray [6–8], texture [9–11], morphology [12], region [13] and color 
features [14], include threshold [15,16], boundary [17,18], and region-based methods [19]. Deep learning methods have great po-
tential in segmentation tasks. Past studies have proved that a symmetric encoding–decoding structure can extract rich features 
[20–22]. Convolution neural network (CNN)-based methods can provide an increased number of dermoscopic lesion image features to 
facilitate lesion segmentation without specific features and thresholds. Hong et al. [23] embedded a boundary-preserving structure in 
the U-Net, which could extract key boundary points of a skin lesion to preserve its boundary features. However, that method could not 
be used to extract global context information. Yun Jiang et al. [24] proposed a segmentation network based on the U-Net model that 
fused location information and context information of the skin lesion. Xu Q et al. [25] designed a deep and compact network, which 
effectively solved the problem of gradient disappearance with the increase in the number of layers and captured global context in-
formation. However, that method could cause severe overfitting by increasing the model depth. Generally, global features require a 
large convolution kernel or a deep network, which increases the computational complexity and loses certain shallow features 
important for segmentation. 

Transformer is different from the method involving the expansion of the receptive field to capture contextual information, 
involving a multi-head attention mechanism to effectively capture long-distance dependencies of the sequences [26]. Vision Trans-
former (ViT) [27,28] exhibits better performance in computer vision tasks than CNN but requires a large number of data to support it. 
Inspired by the ViT, many scholars have combined a CNN and transformer for segmentation. Wu H et al. [29] designed a two-branch 
network to capture both local and global information of a skin lesion. However, the transformer they used was too deep for small 
datasets and for information interaction between the CNN and transformer branches. Lin H et al. [30] proposed a new cross-attention 
mechanism to capture the internal details of image patches and focus attention on the areas among the patches, which focuses on the 
information communication of the whole picture but increases computational complexity. 

To address the shortcomings of the methods mentioned above, a network, which combines CNNs and transformers, named CCT- 
Net, was designed in this study. In designing the network, the classic encoder-decoder structure was adopted for the network, 
using a cross-dual-branch structure. For enhanced integration of local and global features, we designed a feature fusion module that 
would interact with the decoder layer to achieve accurate segmentation. 

2. Methods 

An overview of our proposed CCT-Net is illustrated in Fig. 1. CCT-Net comprises mainly three main modules: an across-fused 
feature encoder to capture features; a fusion module (FM) to weigh the channel features; and a decoder with skip connections that 
fuse encoder features to achieve segmentation. Because detailed and global features are equally important for splitting, we introduced 
a fusion module to merge features, and used the skip connection structure as a supplement during upsampling, to obtain segmentation 
results that closely represented the lesion area. 

2.1. Cross-fused transformer and CNNs 

Both global and local information are important to improve the accuracy. Thus, the fusion of the two types of information can 

Fig. 1. CCT-Net network framework, containing a cross-dual-branch encoder for extracting global and local features. The FM can merge important 
features extracted from different channels by calculating channel attention distribution, while the skip connection forwards the encoded features to 
the decoder as supplementary inputs. 
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improve skin lesion prediction results. Because of blurred boundaries, low contrast, and irregular shape variations, skin lesion seg-
mentation is complex. Thus, we proposed a cross-dual-branch encoder to capture the local and global features, as shown in Fig. 1. In 
our study, we adopted a parallel cross-fusion structure, which was in contrast to other networks that integrate CNN and Transformer by 
stacking them or simply using the Transformer to replace certain parts of CNN. Our network was more concise and achieved better 
results than the other networks. We employedResNet34 [31] as the backbone network of CNN branch for extracting local features, and 
designated the feature maps captured at each layer as Ci, i = {1,2, 3,4} where Ci represents the feature map output of the ith layer. 

2.2. Transformer encoder 

We introduced a Transformer branch, which could learn the global features of an image in the encoder in parallel to its CNN branch. 
To compensate for the lost spatial information of the image, we added the positional embedding to Xi, and the resulting embedding 
Xj ∈ RN×C0 is the input to the Transformer Layer. Typically, the core components of the Transformer layer are multi-head attention 
(MHA) and multilayer perceptron (MLP), as shown in Fig. 1. The MHA module updates the state of each embedding image patch over 
the input image sequence by capturing the global information in every layer. For every sequence Xj or the result from the previous 
encoder layer Xl− 1, the MHA module has to calculate three sequence vectors: query (q), key (k), and value (v), as shown in equation (1). 
The correlation between q and k is first calculated using a scoring function and then column normalized through the softmax function 
to ensure that all values are in the range of 0–1 and their sum is equal to 1. The result is finally multiplied by the v vector, as follows 
equation (2) 

q=WqXl− 1, k = WkXl− 1, v = WvXl− 1 (1)  

att(Xl− 1)= softmax
(

Q • K
̅̅̅̅̅̅
Dk

√

)

v (2)  

where Wq ∈ RDk×C0 ,Wk ∈ RDk×C0 , and Wv ∈ RDk×C0 are the parameter matrices of linear mapping respectively, and Dk is the dimension 
of the query vector. The MHA module can capture different interaction information in multiple projection spaces based on the 
attention mechanism with the output MHA(Xl− 1) expressed as equation (3). 

MA(Xl− 1)= [att1; att2; att3;…; attm] (3)  

where m implies that the self-attention mechanism has to be applied in m projection spaces. The output result obtained using an MLP, 
which consists of two linear layers and an activation function can be expressed as equation (4). 

Xl =MLP(MA(Xl− 1)) + MA(Xl− 1) (4)  

Finally, the encoder sequence result can be obtained through residual connection using the following equation (5). 

Xout =Norm(MHA(Xl− 1)) + Xl (5) 

The Transformer branch has the same number of layers as the convolution branch and consists of four encoder layers (each layer 
contains only two encoders). The feature map of each layer can be expressed as Ti, i = {1,2,3, 4} where Ti represents the feature output 
by the ith layer. 

2.3. Feature fusion module 

Through the cross-dual-branch encoder, we collected the local details and global context information. To improve semantic seg-
mentation results, we applied a concatenate operation at every layer, and doubled the number of channels. Not all channel features 
were equally important, and with the increase in the number of features, computation complexity also increased. As shown in Fig. 2, 
we introduced an FM to make full use of the channel features which can learn the dependencies between channels, further improving 
the segmentation accuracy and reducing the computational complexity. FM has channel-wise operation and can excite channels 

Fig. 2. Feature fusion module structure diagram.  
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containing important information and suppress channels containing unimportant information. For each channel, the FM first uses a 
global average pool operation. Each channel gets the result Fn = Concatention(Ci,Ti) where Fn represents the feature after concate-
nation and n is the number of channels. The weight Wn is then calculated for each channel through the Full Connection layer (FC)- 
ReLU, activation layer-FC, and a sigmoid function. Finally, the weight Wn is multiplied by the corresponding channel feature Fn to 
obtain the new feature Fń. In the downsampling stage, the features extracted from the encoder stage are fused at each layer through the 
FM to make up for the information lost during sampling and combined with the upsampling layer using a skip connection. The four 
upsampling layers are implemented using deconvolution. The feature map of each layer can be expressed as Di, i = {1,2, 3,4} whereDi 
represents the feature map of the ith layer. The output of the last layer of downsampling is used as the input of the first upsampling 
layer, expressed as DLayer1 = F4́. The feature map of the corresponding downsampling layer is integrated with the second layer and 
expressed as DLayeri = Fj́ + Dk, i = {2,3, 4}, j = {3,2, 1}, k = {1,2,3} where DLayeri represents the input feature vector sampled on 

the ith layer and Fj́ represents the fusion feature of the jth layer. The result of the last layer is D4, which passes through a prediction 
head with a sigmoid function and a convolution kernel of size 1 to provide the final segmentation result. 

3. Loss function 

For training our model for skin disease segmentation, we used two cost functions. To narrow the gap between the actual and 
predicted values, we used the dice loss function, which can be expressed as equation (6). 

Loss1= 1 −
2 ∗ (pred ∩ true)

pred ∪ true
(6)  

where pred is the prediction, result set and the true is the actual label set. Loss2 is a binary cross-entropy loss function, which can be 
written as equation (7). 

Loss2= −
∑

i
[(1 − pi)log(1 − qi)+ pi log (qi)] (7)  

where pi is the actual label value and qi is the predicted value. The total loss function of the model, Loss, will depend on the two loss 
functions Loss1 and Loss2 as expressed equation (8). 

Loss=ω1Loss1 + ω2Loss2 (8)  

Through experiments, ω1 and ω2 were found to be 0.8 and 0.2, respectively. 

4. Experiments and results 

4.1. Datasets 

To evaluate the effectiveness of our model, we conducted experiments on the three public datasets ISIC 2016 [32], ISIC 2017 [33], 
and ISIC 2018 [34,35], which were collected from different treatment centers andarchived by the International Skin Imaging 
Collaboration. The fourth dataset was PH2 [36], which was provided and described in detail by Mendonca et al. The details of the four 
datasets are as follows: 

ISIC 2016: This dataset contains 1279 skin lesion images, with the test set 379 images and the training set containing 900 images. 
ISIC 2017: This dataset contains 2750 images of melanoma, seborrheic keratosis, and other diseases. Its training, validation, and 

test sets contain 2,000, 150, and 600 images, respectively. ISIC 2018: This dataset contains a total of 2594 images, randomly divided 
into 1915 training, 259 validation, and 520 test. 

PH2: This dataset contains 200 images of lesions caused by melanocyte cancer, including 80 images of common moles, 80 images of 
atypical moles, and 40 images of melanomas. 

4.2. Implementation details 

Our model used the Pytorch framework and was deployed on the 12G NVIDIA 3060. A large number of experiments proved that 
(448, 448) was the best image resolution. We uniformly resized the dataset to (224,224) when it passes into the Transformer layer. We 
employed Deit [37] and ResNet34 [31] as the prtrained model. The Deit was obtained by feeding the ImageNet dataset into Deit for 
training. We employed a cosine annealing decay function to dynamically regulate the learning rate. The corresponding mathematical 
expression is equation (9). 

lrnew = lrmin +0.5 ∗ (lr0 − lrmin) ×

(

1+ cos
(

EC

Ei
π
))

(9)  

where lrnew is the updated learning rate, lrmin is the minimum learning rate, lr0 is the initial learning rate equal to 0.0001, EC is the 
number of epochs currently executed, and Ei is the maximum value of the epoch equal to 200. 
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We determined the accuracy of the proposed model through two metrics: Intersection over Union (IoU) and Dice coefficient (Dice). 
The corresponding mathematical expression is equations (10) and (11). 

IoU=
TP

TP + FP + FN
(10)  

Dice=
2 ∗ TP

2 ∗ TP + FP + FN
(11)  

where the TP is the number of pixels, classified as the skin lesion area, FP is the number of background pixels wrongly labeled as lesion 
pixels, and FN is the number of pixels of the lesion region wrongly labeled as background skin. 

4.3. Ablation study 

As Table 1 shows, through ablation studies we demonstrated the requirement for two elements in the CCT-Net: the cross-dual- 
branch encoder and the feature fusion module, which contained a SE block to capture channel dependencies. We conducted experi-
ments to compare prediction maps using a single encoder that included CNN or Transformer. The results are shown in Table 2, which 
indicates that the cross-dual-branch encoder is effective in combining the local details and global dependencies of the skin images for 
implementing segmentation detection, the feature fusion module can adaptively recalibrate channel-wise features, and the skip- 
connection architecture can replenish missing information. A comparison of the results of the ablation experiments are shown in 
Fig. 3, in which the green part is the actual disease labeling area, while the red area is the segmentation result of the corresponding 
network. From Table 2 and Fig. 3 show that the segmentation results are not accurate and that they lacked details owing to insufficient 
semantic information available when using the single CNN encoder branch. 

The overall segmentation contour is close to the ground truth, but the boundary still has deviations owing to lack of local features 
coming from the single Transformer encoder branch. The results of M3 indicate that the results obtained using dual-branch encoding 
and by combining features at the last layer are more accurate than the two single-branch results in terms of visual effects. Table 2 shows 
that the two indicators are significantly better than M1-3, indicating the acceptability of our method. Because local features and global 
context information are equally important, the feature fusion module performs at every layer. Some information will be lost during 
encoding, and the encoder is connected to the decoder through skip connections to supplement each other. The analysis of the results 
on ISIC 2017 dataset obtained for the two indicators IoU and Dice reveal that their values obtained using M4 were higher by 7.25 % and 
5.79 %, 8.68 % and 6.99 %, and 6.34 % and 4.98 %, respectively, than those obtained using M1, M2, and M3, respectively. In summary, 
the segmentation method proposed in our study was effective. In the proposed method, feature fusion was performed at each layer 
because local features and global context information carried equal importance. The information lost during sampling was recovered 
through skip connections. 

4.4. Results 

To validate our pryoposed method, we conducted extensive experiments on four public datasets and compared the proposed 
method with five state-of-the-art segmentation methods, namely U-Net [20], U-Net++ [22], BAT [38], MultiResUNet [39], FAT [29], 
and Mpvit-tiny [40]. We used the metrics listed in Table 3 for evaluating the proposed method. The evaluation results indicated that 
the cross-fused dual-branch encoder was essential for combining local and global context features that the FM excites useful channel 
features and that it effectively reduces the computation complexity. In Tables 3 and 4, the values obtained for the IoU and Dice co-
efficient using our proposed method were 87.7 % and 93.21 %, 82.05 % and 89.19 %, 86.81 % and 92.72 % and 96.21 %, respectively, 
on the ISIC 2016, ISIC 2017, ISIC 2018, PH2 datasets, respectively. Moreover, visual comparisons and our subjective judgment indicate 
that our method generally outperforms other representative methods on all four datasets, as shown in Figs. 4–7, where the green was 
are the actual disease areas, and the red areas are the segmentation results of the corresponding networks. Because of the large errors 
associated with certain segmentation results, the red areas completely cover the green areas, and the color difference is unclear; thus, 
the uncolored originally labeled image was used in the comparisons. For example, the FAT and Ground Truth have different shapes in 
the first row in Fig. 3. U-Net, MultiResUnet, and U-Net++ are the networks that have CNN as the baselines and are more accurate in 
areas with clear textures than in other areas, but segmentation errors are still present with low-contrast images and blurred image 
boundaries. BAT incorporates a boundary-preserving structure into the Transformer, which can segment the disease areas with clear 
boundaries; however, it is still less accurate for areas with poorly defined edges. FAT uses dual-branch CNN and Transformer as the 
encoder and is better than the other methods. For an unbiased comparison, all comparison models were tested in the same 

Table 1 
Modules used in the ablation study.  

Method name Transformer encoder CNNs encoder Feature fusion module 

M1  ✓  
M2 ✓   
M3 ✓ ✓  
M4 (CCT) ✓ ✓ ✓  
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Table 2 
Ablation experiment results.  

Method ISIC 2017 

IoU (%) Dice (%) 

M1 74.80 83.40 
M2 73.37 82.20 
M3 75.71 84.21 
M4 (CCT) 82.05 89.19  

Fig. 3. Segmentation results of the ablation study.  

Table 3 
Statistics of the experimental results.  

Method ISIC2016 ISIC2017 ISIC2018 

IoU (%) Dice(%) IoU (%) Dice (%) IoU (%) Dice (%) 

U-Net [20] 80.00 88.00 67.40 77.00 82.60 89.00 
MultiResUnet [39] 81.39 88.56 79.35 82.89 80.35 87.71 
U-Net++ [22] 82.76 89.59 70.36 79.70 84.19 90.79 
BAT [38] 76.40 85.30 77.16 85.00 85.98 92.23 
FAT [29] 85.00 91.50 75.40 84.00 82.00 89.00 
Mpvit-tiny [40] 84.07 90.44 74.36 83.15 76.12 84.04 
Ours (CCT) 87.70 93.21 82.05 89.19 86.81 92.72  

Table 4 
Statistics of the experimental results.  

Method PH2 

IoU (%) Dice (%) 

U-Net [20] 78.20 85.80 
MultiResUnet [39] 81.35 88.57 
U-Net++ [22] 79.08 86.73 
BAT [38] 90.00 94.80 
FAT [29] 91.00 95.00 
Mpvit-tiny [40] 88.14 93.47 
Ours (CCT) 92.79 96.21  
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experimental environment. Due to device limitations, the batch size used in FAT was smaller than that used originally, although the 
evaluation index was lower than its original value only by 0.09 %. 

5. Conclusion 

In this study, we proposed a novel network, named CCT-Net, based on cross-fusion CNN and Transformer, which could effectively 
capture both global and local features. Extensive experiments on different datasets were conducted to confirm the effectiveness of the 

Fig. 4. Intuitive evaluation of the segmentation results of the ISIC 2016 dataset.  

Fig. 5. Intuitive evaluation of the segmentation results of the ISIC 2017 dataset.  

Fig. 6. Intuitive evaluation of the segmentation results of the ISIC 2018 dataset.  
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proposed method. Compared with pure convolutional coding, the method proposed by us could capture global context features of a 
skin lesion image more efficiently by using Transformer to significantly increase the receptive fields. We also employed a feature fusion 
block at each layer to excite channels containing important information and suppress other channels. Finally, the fusion features were 
supplemented by the upsampling layer, which effectively compensated for the information lost in the encoder layer. Through objective 
index evaluation and subjective visual comparison, our method could improve the accuracy of skin lesion segmentation, confirming 
the validation of our model. Due to the particularity of the dataset used, the types of skin diseases that the proposed network can learn 
are limited, limiting its practical applications. The proposed method solves only the segmentation problem and does not address the 
classification task. Thus, the proposed method still has limitations, which would be addressed through our future studies. 
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