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A B S T R A C T   

Electroencephalography (EEG) is arising as a valuable method to investigate neurocognitive functions shortly 
after birth. However, obtaining high-quality EEG data from human newborn recordings is challenging. Compared 
to adults and older infants, datasets are typically much shorter due to newborns’ limited attentional span and 
much noisier due to non-stereotyped artifacts mainly caused by uncontrollable movements. We propose Newborn 
EEG Artifact Removal (NEAR), a pipeline for EEG artifact removal designed explicitly for human newborns. 
NEAR is based on two key steps: 1) A novel bad channel detection tool based on the Local Outlier Factor (LOF), a 
robust outlier detection algorithm; 2) A parameter calibration procedure for adapting to newborn EEG data the 
algorithm Artifacts Subspace Reconstruction (ASR), developed for artifact removal in mobile adult EEG. Tests on 
simulated data showed that NEAR outperforms existing methods in removing representative newborn non- 
stereotypical artifacts. NEAR was validated on two developmental populations (newborns and 9-month-old in
fants) recorded with two different experimental designs (frequency-tagging and ERP). Results show that NEAR 
artifact removal successfully reproduces established EEG responses from noisy datasets, with a higher statistical 
significance than the one obtained by existing artifact removal methods. The EEGLAB-based NEAR pipeline is 
freely available at https://github.com/vpKumaravel/NEAR.   

1. Introduction 

Studying human newborns in the first days of life provides key in
sights on the neurocognitive predispositions that humans are endowed 
with before interacting with the outside world. While most of the 
research in this field is behavioural, the recent availability of high- 
quality Electroencephalography (EEG) systems suitable for newborns 
opened the way to an increasing number of investigations on the neural 
bases of such predispositions with EEG (Beauchemin et al., 2011; Buiatti 
et al., 2019; Fifer et al., 2010; Ronga et al., 2021). 

However, analyzing newborn EEG data is a challenging task, espe
cially in the case of visual stimulation, because of two main factors: 1) 
Due to newborns’ limited attentional span, the data segments during 
which newborns effectively attend to the stimuli are very short; 2) Since 
newborns are unconstrained, the most frequent artifacts are caused by a 
variety of movements (head, arms, frowning, sucking) which generate 
non-stereotyped artifacts that constantly vary in topography and tem
poral dynamics. Because of these factors, artifact removal for newborn 
EEG data is an arbitrary and time-consuming task. Since most artifacts 
are non-stereotyped, ICA-based methods that are successful with adults 

(Mognon et al., 2011; Pion-Tonachini et al., 2019) or older infants 
(Leach et al., 2020) might not be equally efficient in this case because 
ICA captures only stereotyped artifacts (Onton et al., 2006). 

One promising tool for correcting non-stereotyped artifacts is Arti
fact Subspace Reconstruction (ASR), an algorithm specifically designed 
to remove transient or large-amplitude artifacts of any nature (Kothe 
and Jung, 2016). However, ASR performance depends on some 
user-defined parameters that have not been established for develop
mental data. Moreover, both ASR and ICA require a preliminary bad 
channel detection step and, as we show in this paper, the ones proposed 
by several state-of-the-art methods are too strict for analyzing newborn 
EEG data, especially with frequency-tagging paradigms that are less 
affected by artifacts than ERP designs. 

Here we propose NEAR (Newborn EEG Artifact Removal), a method 
for efficient artifact removal from raw newborn EEG data. Compared to 
existing methods for artifact removal, NEAR introduces two innovative 
features: First, a novel bad channel detection tool relying on the Local 
Outlier Factor (LOF), a robust, density-based local outlier detection al
gorithm (Breunig et al., 2000); Second, a standard procedure for cali
brating the two user-defined key parameters of ASR to newborn EEG 
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data: ASR parameter k and ASR processing mode, which can be either 
correction or removal of the detected bad segments. 

In this paper, we start by illustrating each processing step of NEAR 
within a full pre-processing pipeline transforming the raw data to 
artifact-free data ready to be analyzed. This pipeline includes a pro
cedure for calibrating both the bad channel detection and the bad 
segment correction/removal parameters. 

We then describe the three steps used to test NEAR performance:  

1) As a proof-of-concept, by using the simulation toolbox SEREEGA 
(Krol et al., 2018), we tested NEAR on simulated, neurophysiologi
cally plausible EEG data, including transient, high-amplitude arti
facts predominantly found in EEG data of newborns and young 
infants;  

2) We tested NEAR performance on newborn EEG data based on a 
frequency-tagging paradigm (Buiatti et al., 2019), an experimental 
design consisting of a periodic temporal stimulation and measuring 
the stimulus-related response with the EEG oscillations at the stim
ulation frequency. This design is increasingly used with infants (de 
Heering and Rossion, 2015; Kabdebon et al., 2015) and newborns 
(Buiatti et al., 2019) as it generally achieves a higher signal-to-noise 
ratio than Event-Related Potential (ERP) designs (Norcia et al., 
2015).  

3) To test NEAR performance on an older population with an event- 
related design and with data recorded in another lab, we also eval
uated NEAR on infant EEG data recorded on 9-months-old infants 
with an ERP paradigm (Parise and Csibra, 2012). 

We calibrated NEAR parameters on a training dataset for the tests on 
real data and validated NEAR on an independent dataset. 

Validation also included comparison with state-of-the-art methods: 
EEGLAB’s clean_rawdata function (for bad channel detection only) and 
two automated artifact removal pipelines designed for developmental 
research, HAPPE (Gabard-Durnam et al., 2018) and MADE (Debnath 
et al., 2020). 

NEAR scripts are made freely available for the users, along with an 
anonymized example dataset. A user-friendly step-by-step tutorial of the 
entire pipeline for the use of NEAR is provided in the Appendix. 

2. Materials and methods 

2.1. Training and Test datasets 

2.1.1. Newborn datasets 
Newborn Training and Test datasets belong to two studies performed 

at the Neonatal Neuroimaging Unit (CIMeC, University of Trento) 
installed in the maternity ward of Rovereto Hospital “Santa Maria del 
Carmine” (Rovereto, Italy). Both studies were approved by the local 
ethical committee for clinical research (Comitato Etico per le Sper
imentazioni Cliniche, Azienda Provinciale Servizi Sanitari, Province of 
Trento, Italy); parents were informed about the content and goal of the 
study and gave their written informed consent. 

Both datasets were recorded by an EGI EEG system (GES400, Elec
trical Geodesic, Inc, Eugene, OR, USA) with 125 channels. Scalp voltages 
were referenced to the vertex, amplified and digitized at 250 Hz. Elec
trode impedances were kept below 100 kΩ. Newborns were tested in a 
calm, dimly illuminated space in the maternity ward, seated on the lap 
of a trained researcher in front of a 60 cm × 33.8 cm LCD screen (dis
tance eyes-screen: about 30 cm) while wearing the EEG cap. Video 
recording from a hidden camera on the top of the screen provided online 
monitoring of the infant. The newborn’s parents, when present, were off 
the sight of the infant (separated by a curtain) and instructed to keep 
silent during the recordings. For both datasets, visual stimuli were 
presented dynamically with sinusoidal contrast modulation (the visi
bility of each stimulus gradually rises with respect to the gray back
ground from 0% at the beginning of the cycle to 100% at mid-cycle, then 

gradually decreases to 0% towards the end of the cycle, see Fig. 1 in 
(Buiatti et al., 2019), at a rate of 0.8 Hz (frequency-tagging paradigm). 
We used sinusoidal contrast modulation instead of squared on–off dy
namics, both to minimize nonlinear effects in the brain frequency 
response (Norcia et al., 2015) and to make the stimulation more pleasant 
to the babies (de Heering and Rossion, 2015). The slow presentation rate 
(0.8 Hz) was chosen to ensure that newborns fully perceived the stim
ulus at each cycle of the periodic, peekaboo-like presentation. 

The Training Dataset is part of an ongoing study investigating the 
neural bases of number perception in newborns (Buiatti et al., in prep
aration). Visual stimuli consisted in a set of 4 or 12 coloured simple 
geometrical shapes, presented in blocks of 50 s or until the subject 
stopped attending them; shape, number and spatial arrangement were 
constant within each block and randomly changed between blocks. For 
the whole duration of the study, an auditory stimulation consisting of 
sequences of syllables was simultaneously presented (the response to the 
auditory stimulation will not be considered here). For the purpose of this 
paper, the Training Dataset includes all the subjects that attended at 
least 15 s of visual stimulation, independently whether they attended 
one or both number conditions (11 newborns, six males; mean age 
40 ± 16 h; all were healthy [APGAR(1 min) ≥ 8, APGAR(5 min) = 10 
for all subjects] and born full-term (gestation age, 39.9 ± 0.9 wk). 

The Test Dataset belongs to a study investigating the cortical bases of 
facelike pattern processing (Buiatti et al., 2019). Visual stimuli consisted 
of a white head-shaped form containing three black squares and differed 
only in the spatial configuration of the three squares to form the three 
stimuli (upright face, inverted face, and scrambled face). Stimuli were 
presented in blocks of 50 s or until the subject stopped attending them. 
Subjects were 10 healthy newborns (six males; mean age 60 ± 22 h). All 
were healthy [APGAR(1 min) ≥ 8, APGAR(5 min) = 10 for all subjects] 
and born full-term (gestation age, 39.7 ± 1.5 wk). Further details in 
(Buiatti et al., 2019). 

2.1.2. Infant datasets 
Infant Training and Test datasets belong to a study investigating 

semantic understanding of common nouns in preverbal infants, per
formed at the Cognitive Development Center (CDC, Central European 
University) and whose results are published in (Parise and Csibra, 2012). 
Ethical approvals were obtained from the ethics committee of the Cen
tral European University, Budapest; parents were informed about the 
content and goal of the study and gave their written informed consent. 
All infants were born full term (gestational age: 37–41 weeks) in the 
normal weight range (> 2500 g). 

Both the Training and the Test dataset included 14 healthy infants 
(Training: 6 females; mean age = 278 days, range = 266–285 days. Test: 
5 females; mean age = 277 days, range = 269–286 days). Both datasets 
were acquired using an EGI amplifier (GES 300, Electrical Geodesic, Inc, 
Eugene, OR, USA) at a sampling rate of 500 Hz with a low-pass filter at 
200 Hz. Continuous EEG was recorded by 125-channel Geodesic Sensor 
Nets referenced to the vertex. Infants were tested in a calm, dimly illu
minated room in the CDC BabyLab, sitting on a high chair 70 cm in front 
of a 9-inch, 800 × 600, 100 Hz CRT monitor. The infants were video- 
recorded throughout the session from a hidden camera placed below 
the presentation monitor. The infant’s mother and an experimenter sat 
on chairs at either side of the infant. 

For both datasets, each trial started with a live auditory stimulus 
delivered either by the experimenter (Training dataset) or by the in
fant’s mother (Test dataset) while a dynamic fixation stimulus (a 
colorful rectangle 343 ×363 pixels) was presented on top of an occluder. 
After the live auditory stimulus ended, the fixation stimulus stopped 
moving, and the display remained frozen for 600–800 ms. Then the 
fixation stimulus disappeared, and the occluder started to fall forward (a 
90◦ rotation on the basis-hinge) revealing an object behind it (see Fig. 1 
in Parise and Csibra, 2012). The object, laying on a black background, 
was fully visible for 1000 ms before the occluder began to rise, hiding 
the object again. This was followed by an intertrial interval lasting 1100 
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to 1300 ms. The pictures of 15 different objects were used; their average 
size was 302.5 × 321.6 pixels. Trials were presented as long as the in
fants were attentive. The minimum inclusion criterion for the infants 
was at least 10 artifact-free trials in each of two experimental conditions. 
Further details in (Parise and Csibra, 2012). 

2.2. NEAR 

NEAR preprocessing pipeline consists of a set of custom MATLAB 
scripts that can be executed as a fully automated EEG preprocessing 
within the EEGLAB (Delorme and Makeig, 2004) framework. The core, 
innovative parts of the pipeline integrating EEGLAB scripts with original 
custom scripts consist in the artifact removal processing block: pre
liminary calibration of the bad channel detection threshold (LOF) and of 
the ASR cut-off parameter, bad channel detection using LOF algorithm 
and correction/removal of bad segments using ASR, both endowed with 
original visualization of the outcomes. In addition, we provided the 
scripts (based on EEGLAB functions) for a fully automated EEG pro
cessing from raw to clean data: importing and filtering raw data, 
interpolation of removed channels and re-referencing. Depending on the 
application requirements, these auxiliary steps can easily be modified. 
Fig. 1 shows the steps involved in the NEAR preprocessing pipeline. In 
the following sections, we describe each step in detail. A step-by-step 
tutorial including figures illustrating the main steps of NEAR artifact 
removal is presented in the Appendix of this manuscript. 

2.2.1. Import raw data 
NEAR supports import functionality of four main formats: .mff, .raw, 

.set and .edf. We considered these formats because most developmental 
EEG raw data fall into one of these categories. For other formats, users 
can import the data with EEGLAB importing tools and use NEAR with 
the resulting EEGLAB format .set. 

2.2.2. Band-pass filtering 
The principle underlying band-pass filtering is that it is convenient 

for all the subsequent analyses to keep the frequency range of the signal 
that we want to analyze and discard the higher and lower frequencies, 

especially those that likely contain artifacts. At the higher end, it is 
beneficial to use a low-pass filter with a cut-off frequency below the 
power line (50 Hz or 60 Hz) to avoid line noise. At the lower end, i.e. 
below 1 Hz, the EEG signal typically contains eye movement, respiration 
and heart-beat artifacts. We, therefore, recommend using the highest 
high-pass filter cut-off frequency that preserves the signal of interest, 
paying attention to the width of the filter roll-off and, in the case of ERP 
designs, to the risk of introducing spurious effects (Acunzo et al., 2012). 

For the newborn data, we applied a low-pass FIR filter with a cut-off 
frequency at 40 Hz (by using EEGLAB’s default filter). Since for the 
analysis considered in this paper, we need to preserve the frequency 
components down to 0.5 Hz (see Section Neural measure: FTR), we used 
a non-causal high pass filter between 0.15 and 0.3 Hz and a stop-band 
attenuation of 80 dB. 

The infant data were band-pass filtered between 0.3 and 30 Hz by 
using the default EEGLAB filter. 

2.2.3. Data segmentation 
For studies involving a stimulation paradigm, a key pre-processing 

step for identifying the relevant data in newborn/infant EEG re
cordings is to restrict data analysis to the intervals during which new
borns/infants were effectively attending to the stimuli. We, therefore, 
recommend segmenting the data related to stimulation (i.e. segmenting 
stimulation periods for continuous stimulation or segmenting event- 
related epochs in case of event-related designs). Furthermore, for vi
sual stimulations, we strongly recommend recording newborns/infants 
with a camera or an eye-tracker and light conditions guaranteeing clear 
monitoring of eye movements, and devoting careful attention to the 
identification of the effective looking times. This pre-processing step is 
crucial because not only it minimizes noise in the data, but it also 
removes data segments associated with unattended intervals that are 
usually very artifacted, potentially causing biases in the subsequent 
artifact analysis. For this reason, this step is performed before detecting 
bad channels and segments. 

For resting-state EEG studies as well, our scripts can be adapted to 
retain good segments (or remove bad segments) of data known apriori. 
See Appendix, Step 4 for details. 

Fig. 1. Schematic representation of NEAR pipeline. Green boxes indicate the artifact removal part. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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2.2.4. Bad channel detection 
Bad channel detection in newborn/infant EEG data is a challenging 

step because, due to typically short preparation time devoted to 
lowering electrode impedance and frequent movement artifacts, elec
trode contact and stability is generally much lower than in adult data. In 
particular, after some preliminary tests on our data, we realized that the 
existing methods of bad channel detection are generally too strict for 
newborn EEG data. To overcome this issue, we implemented an algo
rithm in which the core step is a novel bad channel detection method 
based on LOF, a robust, data-driven outlier detector. The three steps of 
the algorithm are as follows: 

2.2.4.1. Flat signals. Because of defective contact with the scalp or 
disconnection from the recording device, sometimes electrodes record a 
flat signal. To remove these channels, we adopted the function clean_
flatlines from the EEGLAB clean_rawdata plugin (https://github.com/ 
sccn/clean_rawdata). A channel is marked as flat by default if it re
cords a flat signal for more than 5 consecutive seconds. 

2.2.4.2. Local Outlier Factor (LOF). Traditional outlier detection 
methods based on statistical measures such as mean, median, IQR or 
mean absolute deviation are too sensitive to outliers in the context of 
newborn EEG. To tackle this challenge, we introduce (to the authors’ 
knowledge, for the first time in the context of EEG data analysis) a robust 
unsupervised method called Local Outlier Factor (LOF), a density-based 
data-driven approach (Breunig et al., 2000) to detect and remove bad 
channels. This technique operates in a multidimensional channel space 
where the “distance” between channels is computed as a robust distance 
estimation (Squared Euclidean distance (‘seuclidean’ in MATLAB)) be
tween the activity vectors associated to each channel (i.e., the time se
ries of each EEG signal) (not to be confused with the physical distance 
between the channels). Precisely, it assigns each channel a degree of 
“local outlierness” depending on how isolated the channel is with 
respect to its k neighbor channels (Fix and Hodges, 1989). 

To demonstrate the efficiency of the LOF algorithm, we show Fig. 2 
that contains sample data clusters for illustration purposes. Suppose C1 
and C2 are two main clusters and two additional objects o1 and o2. As 
shown in Fig. 2, both objects o1 and o2 are outliers for the respective 
clusters C1 and C2. While most statistical-based and distance-based al
gorithms would correctly capture the o1 as an outlier, LOF being a local 
density-based approach is capable of identifying objects like o2 as well. 

LOF algorithm is implemented as follows:   

1) For each channel p, LOF algorithm identifies k nearest neighbors 
based on a distance metric (by default, Squared Euclidean in NEAR 
pipeline).   

2) A reachability distance is computed between a channel p and each 
neighbor. For example, let us consider channel o that falls within the 
k neighbors of channel p. Then, the reachability distance between p 
and o is computed as follows: 

reachability dist(p, o) = max{k-distance(o), d(p, o) }

where d(p,o) is the actual distance between two channel vectors. 
Intuitively, if channel p is far away from o, then the reachability 

distance is simply their actual distance. Instead, if they are “suffi
ciently” close, the actual distance is replaced by the k-distance of 
channel o.   

3) Once, the reachability distances of each channel with respect to its 
neighbors is computed, the local reachability density (LRD) is 
determined as follows: 

LRDk(p) =
1

⎛

⎜
⎝

∑

o∈Nk (p)
reachability distk(p,o)

|Nk(p) |

⎞

⎟
⎠

To put it in words, LRD of the channel p is the inverse of the 
average reachability distance based on the k-nearest neighbors of p. 
Intuitively, channel p will have a lower LRD if it were an outlier (i.e., 
bad) channel because it is not easily reachable by its neighbors.   

4) Then, the local outlier factor (LOF) is computed as follows: 

LOFk(p) =

∑

o∈Nk(p)

LRDk(o)
LRDk(p)

|Nk(p) |

LOF of channel p is the average of the ratio of the LRD of p and 
those of p’s k-nearest neighbors. The lower p’s LRD is, and the higher 
the LRD of p’s k-nearest neighbors are, the higher is the LOF value of 
p (and therefore possibly an outlier). In other words, an outlier 
channel would display a lower LRD (therefore, larger in distance) 
compared to its neighbours (on average). 

As it can be noted, k is the hyperparameter in the computations of 
LOF. In this work, we used the Natural Neighbors algorithm (Zhu et al., 
2016) to compute a data-driven k value. We adapted the MATLAB-based 
implementation of the LOF algorithm (Density-based Outlier Detection 
Algorithms, https://github.com/BlueBirdHouse/DDoutlier. Retrieved 
June 3, 2021.) in order to make it compatible with the EEGLAB data 
structure. Further, following a systematic study of the application of LOF 
to EEG data (Kumaravel et al., 2021), we found the Standardized 
Euclidean distance metric (defined as ‘seuclidean’ in MATLAB) out
performing the default Euclidean metric to compute the k-distance 
(knnsearch function, MATLAB). 

Once LOF is computed for all the channels in a given dataset, it is 
important to set a threshold to separate the inlier channels from the 
outlier ones. In the original theory, if a channel exhibits an LOF of more 
than 1.5 (section 7.3 in Breunig et al., 2000), it shall be considered as an 
outlier. For the application to EEG data that we are considering in this 
work, we proposed an adaptive approach by estimating the optimal 
threshold value for LOF from a Training Dataset on the basis of a stan
dard scoring of the bad channels (See Section 3.2.1). 

2.2.4.3. Periodogram Analysis. To detect channels that predominantly Fig. 2. A sample dataset that contains two clusters of data (C1 and C2) and two 
outlier objects (o1 and o2). 
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recorded motion-related artifacts that manifest as an increase in power 
in Beta range, and a decrease in power in Delta and Alpha ranges 
(Georgieva et al., 2020), we implemented a bad channel detection 
method based on a spectral measure (periodogram function, MATLAB). 
For the datasets analyzed in this paper, we noted that while this method 
captures the most significant bad channels, they were already detected 
by at least one of the previous two steps. Therefore, we kept this method 
as optional in NEAR’s bad channel detection plugin (see Fig. A1 in 
Appendix). 

2.2.5. Artifact removal using Artifact Subspace Reconstruction (ASR) 
ASR is an automated artifact removal technique to detect/remove 

transient high-amplitude artifacts in continuous EEG data (Kothe and 
Jung, 2016). It is available as an open-source EEGLAB plug-in function 
clean_rawdata. ASR has been tested extensively both on simulated data 
and on real EEG acquired using mobile setup from adult participants 
(Kumaravel et al., 2021; Mullen et al., 2015). Thanks to its efficient 
artifact removal, ASR is now considered as one of the default pre
processing algorithms within the EEGLAB framework. However, ASR 
has only been evaluated on adult EEG data thus far (Blum et al., 2019; 
Chang et al., 2020; Mullen et al., 2015). For the first time, in this work, 
we evaluate ASR on noisier developmental EEG data and propose it as 
one of the core blocks in our pipeline. In addition, we propose a cali
bration procedure for adapting ASR algorithm to developmental data. 
ASR processes artifacts in three steps that are briefly described as follows 
(for more detailed technical documentation, please refer to Kothe and 
Jung, 2016, and Chang et al., 2020). 

2.2.5.1. ASR algorithm.  

1) First, ASR identifies cleaner data portions according to a predefined 
robust statistical distribution of EEG-like data.   

2) Then, ASR performs Principal Component Analysis (PCA) on the 
obtained cleaner segments of data to extract a rejection threshold, 
defined as follows: 

Ti = μi + k ∗ σi  

where i is the Principal Component (PC) index, μ and σ are the cor
responding mean and variance and k is the user-defined multiplica
tive SD factor (also known as ASR cut-off parameter).   

3) With the extracted threshold T, ASR identifies the artifacts subspace 
on the original data and reconstructs them based on the statistics 
obtained using the cleaner portions of the data. 

To calibrate ASR to newborn/infant EEG data, we analyzed two 
crucial user-defined parameters of ASR: 

2.2.5.2. ASR cut-off parameter (k). ASR defines an upper-bound 
threshold for a PC representing EEG-like components based on the 
mean and variance of PCs extracted from the cleaner portion of the data. 
Therefore, the components exceeding this threshold are most likely 
artifactual. The threshold is computed as defined in step 2) of the pre
vious subsection. It can be observed that a lower k implies a lower 
threshold and therefore a strict artifact detection (i.e. more artifacts are 
detected); a higher k implies a looser cleaning of the data (i.e. less ar
tifacts are detected). For adult EEG, the optimal k values lie in the range 
between 20 and 30 (Chang et al., 2020). As mentioned before, to the best 
of our knowledge, the ASR parameter k has never been evaluated on 
developmental data. 

2.2.5.3. Processing mode. Using the clean_rawdata plugin, ASR can be 
operated in two distinct modes: ASR Correction (hereafter, indicated as 
ASRC throughout this manuscript) in which the bad portions of the data 

are corrected to ‘EEG-like’ data, and ASR Removal (indicated as ASRR) 
in which the detected bad portions are removed from the data. 

To calibrate these two parameters to newborn EEG data, a grid- 
search was performed on the Training Dataset (see Results). 

2.2.6. Bad channel interpolation 
The removed channels are interpolated from neighbouring channels 

by using EEGLAB’s function pop_interp. As suggested by EEGLAB de
velopers, we recommend using spherical interpolation. However, using 
the NEAR pipeline, it is possible to use other supported techniques such 
as v4. 

2.2.7. Re-referencing 
For re-referencing, NEAR provides options for both average re- 

referencing (recommended and most commonly used in develop
mental EEG studies) and re-referencing to a particular channel (e.g., Cz). 
For this task, NEAR uses EEGLAB’s pop_reref function. 

2.2.8. Calibration of artifact removal parameters 
A key feature of NEAR is the preliminary calibration of its artifact 

removal parameters (LOF bad channel threshold, ASR parameter k and 
ASR processing mode). We provide scripts for this calibration and we 
highly recommend NEAR users to perform it on previously analyzed 
datasets from the same setup and experimental design as these param
eters impact the quality of preprocessing (see Section 3.2.1 NEAR 
parameter calibration). 

2.2.9. Other functionalities of NEAR 
NEAR supports both single-subject processing and batch-processing 

(in case of multiple subjects). The relevant scripts for these functional
ities can be found in the repository. 

Finally, NEAR supports saving functionality and provides a 
comprehensive report that summarizes the preprocessing done on each 
of the input EEG files. This report might be useful to review the effects of 
preprocessing done on the raw input EEG. 

2.3. Validation tools 

2.3.1. Simulated data 
Simulated data were generated with SEREEGA (Krol et al., 2018), a 

Matlab-based toolbox that simulates EEG datasets consisting in neuro
physiologically realistic continuous and/or event-related brain activity. 
We generated two datasets simulating newborn EEG data with a 
frequency-tagging stimulation as in (Buiatti et al., 2019), and with an 
event-related stimulation similar to the one in (Parise and Csibra, 2012), 
respectively. More specifically, we generated a 64-channels EEG dataset 
with the following components: 

2.3.1.1. Component 1. A stimulus response, in the form of a sinusoidal 
Steady-State Visual Evoked Potential (SSVEP) (stimulation frequency =
0.8 Hz) for the frequency-tagging stimulation, and in the form of an 
event-related potential (latency=300 ms) for the event-related stimu
lation. Both responses were localized in two bilateral sources in the early 
visual cortex (MNI coordinates: [-8-76 10] and [8-76 10]). 

2.3.1.2. Component 2. Event-unrelated ongoing EEG activity origi
nating in 62 randomly selected cortical sources, plus in the 2 sources of 
the first component located in the early visual cortex. Such activity is 
generated as Brown noise (power spectrum increasing as 1/f2 for f→0), 
mimicking the one observed in newborns (Fransson et al., 2013). 
Importantly, the signal-to-noise ratio between component 1 and 
component 2 was of the same order of magnitude as the one measured 
on real, artifact-free newborn EEG data. The first two components 
represent the ground truth. 
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2.3.1.3. Component 3. Artifacts in (5 randomly chosen) single channels 
consisting in intermittent potential shifts and flat signals mimicking 
electrical discontinuities, and low-frequency fluctuations (0–10 Hz) 
mimicking local bad contacts and movement artifacts;. 

2.3.1.4. Component 4. Transient high-amplitude artifacts involving all 
the channels in the form of intermittent abrupt potential shifts or 
smoother Gaussian-like fluctuations, where both the amplitude at each 
channel and the duration varies randomly for each transient artifact 
(mean duration=1.6 s). Durations and amplitudes are of the same order 
of magnitude as those observed in real newborn data. This component 
mimics motion artifacts, which are very frequent in newborns. 

Fig. 3 shows that this simulation well represents the main features of 
newborn EEG ongoing activity and artifacts. The scripts generating the 
simulation datasets are available at https://github.com/vpKumar 
avel/NEAR and the simulated datasets described in the Results are 
available here: https://osf.io/79mzg/. 

2.3.2. Standard semi-automatic expert artifact removal procedure 
As a reference for a standard semi-automatic artifact processing 

performed by experts (hereafter abbreviated as standard), we report the 
original procedures of artifact rejection performed in the original papers 
from which the newborn and infant datasets are taken (Buiatti et al., 
2019; Parise and Csibra, 2012). Their bad channel scoring will be taken 
as the reference standard scoring both for the calibration and the vali
dation of NEAR’s bad channel detection algorithm. 

2.3.2.1. Newborns. Bad channels were detected on both datasets after 
band-pass-filtering and segmentation. Channels were marked as bad if 
they 1) had a standard deviation (computed on the whole data length by 
using the TrimOutlier toolbox: https://sccn.ucsd.edu/wiki/TrimOutlier 
) higher than 150 μV (to detect channels with high-amplitude artifacts) 
or lower than 1 μV (to detect flat or weakly responsive channels); 2) 
showed artifactual patterns after accurate visual inspection of the time 
course and power spectrum plots of suspicious channels and comparison 
with their neighbours. 

Once bad channels were removed, identification of bad data seg
ments was based on 1) the detection of amplitude jumps exceeding 
± 200 μV; 2) the presence of paroxysmal artifacts after accurate visual 

inspection of the time course and topography of the EEG data. 

2.3.2.2. Infants. Both infant datasets were automatically and manually 
edited. Automatic data rejection for body and eyes movements was 
performed whenever the average amplitude of a 80 ms sliding window 
exceeded ± 200 μV at any channel. A bad channel score was obtained by 
considering as bad the channels that were marked as rejected for at least 
40% of the epochs. Bad channels were automatically interpolated in 
epochs in which ≤ 10% of the channels contained artifacts; epochs in 
which > 10% of the channels contained artifacts were automatically 
rejected. Data was then manually edited by visual inspection of each 
individual epoch. 

2.3.3. Other bad channel detection methods 
To validate the performance of NEAR’s channel rejection tool against 

existing methods, we considered the following three state-of-the-art bad 
channel removal methods:  

1) The default EEGLAB function clean_rawdata (CRD, https://github. 
com/sccn/clean_rawdata) detects flat-line channels, channels 
contaminated with high-frequency noise and channels uncorrelated 
with its neighbors.  

2) HAPPE (Gabard-Durnam et al., 2018) uses EEGLAB pop_rejchan 
function to detect bad channels based on amplitude and spectral 
thresholding (z-score threshold=3 instead of EEGLAB default 5), 
running it twice to avoid residual bad channels.  

3) FASTER (Nolan et al., 2010) detects bad channels by computing the 
temporal correlation between channels, their variance, and a score 
based on the Hurst exponent. 

2.3.4. Other automated pipelines for artifact removal in developmental EEG 

2.3.4.1. MADE. The Maryland Analysis for Developmental EEG 
(MADE) is an automated standardized pre-processing pipeline specif
ically developed for developmental populations (Debnath et al., 2020). 
MADE uses FASTER (Nolan et al., 2010) to remove bad channels and ICA 
to correct data from artifacts. Bad ICs are classified automatically using 
Adjusted-ADJUST (Leach et al., 2020), a modified version of ADJUST 
(Mognon et al., 2011) developed specifically for infant data. Residual 

Fig. 3. Top Panel: Newborn EEG data from (Buiatti et al., 2019). Bottom Panel: Simulated EEG data (ground truth plus artifacts). Data are shown in butterfly mode 
(all electrode signals overlapped). 
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epochs contaminated by ocular artifacts are removed by employing a 
predefined amplitude threshold. MADE has been validated on infants 
starting from 1 year of age to childhood (3–6 years old) and late 
adolescence (16 years old). 

2.3.4.2. HAPPE. The Harvard Automated Processing Pipeline for EEG 
(HAPPE) is a standardized automated pipeline for developmental EEG 
that contains high degree of artifact contamination and often short 
recording lengths (Gabard-Durnam et al., 2018). HAPPE pipeline con
sists of 9 steps including bad channel rejection using pop_rejchan.m 
(Delorme et al., 2015) and a wavelet-integrated ICA decomposition to 
recover artifactual segments. Bad ICs are classified automatically using 
MARA (Winkler et al., 2014). HAPPE has been validated on resting-state 
developmental EEG data (age between 3 and 36 months). As HAPPE is 
not suitable for event-related designs (Gabard-Durnam et al., 2018), we 
will compare it with NEAR on the continuous datasets only. 

2.3.5. Neural measures for calibration and validation 

2.3.5.1. Frequency-tagging designs: FTR. To compute a signal-to-noise 
ratio of the stimulus-related EEG response for both ASR parameter 
calibration and overall NEAR validation, we used the same measure 
defined in (Buiatti et al., 2019). EEG data were segmented in partially 
overlapping epochs of 10 s (overlap varied between one-half and 
three-fourths of epoch length to adjust to the variable length of clean 
data segments). For each electrode, the Fourier transform F(f) of each 
epoch was calculated using a fast Fourier transform algorithm (MATLAB 
function FFT). To avoid rejecting data segments shorter than 10 s but 
still potentially containing relevant neural signals, zero-padding to 10 s 
was applied before FFT for data segments between 5 s and 10 s. Data 
segments shorter than 5 s were discarded. The power spectrum was 
calculated from these Fourier coefficients as the average over epochs of 
the single-epoch power spectrum: 

PS(f ) = 〈F(f ) × F∗(f )〉ep 

The Frequency-Tagged Response (FTR) at the tag frequency (0.8 Hz) 
was calculated as the ratio between the power spectrum at the tagged 
frequency and the background power, i.e. the value at 0.8 Hz of the 
power-law fit of the power spectrum estimated from the six neighboring 
frequency bins ( ± 0.3 Hz), where the power-law fit was computed by 
fitting a line to the logarithm of the power at the six neighboring fre
quency bins (MATLAB function Polyfit). 

2.3.5.2. Event-related potential designs: SNR(ERP). As a signal-to-noise 
ratio (SNR) of the ERP for ASR parameter calibration, we computed 
the one based on the Standardized Measurement Error (SME) recently 
proposed by (Luck et al., 2021). The SME is an estimate of the noise in 
the measure of an ERP score (computed on a time window and a set of 
electrodes) based on its trial-by-trial variability: 

SME =
SD(ERPtr)

̅̅̅̅
N

√

where SD(ERPtr) denotes the standard deviation (across trials) of the 
single-trial ERP averaged over a time window and a set of electrodes, 
and N is the number of epochs. For each subject, the SNR(ERP) is the 
ratio between the ERP (averaged over trials) and the SME. 

3. Results 

3.1. Validation of NEAR on simulated data 

We first validated NEAR on two synthetic EEG datasets simulating 
EEG signals that contain a SSVEP at 0.8 Hz like in (Buiatti et al., 2019) 
(frequency-tagging dataset) and an ERP response similar to the one 
recorded in (Parise and Csibra, 2012) (ERP dataset), respectively. Both 

datasets also include three key components of newborn/infant EEG data: 
Brown-noise-like background EEG, artifacts in single channels 
mimicking bad or unstable electrode contacts, transient high-amplitude 
fluctuations across most of the channels mimicking motion artifacts. 
Signal-to-noise ratios, data duration and proportion of artifacts are 
similar to the ones of real data (Buiatti et al., 2019; Parise and Csibra, 
2012). Since it is difficult to incorporate enough variability to generate 
realistically different training and test datasets within the simulation 
framework, we set NEAR parameters to predefined values: LOF thresh
old= 2 and ASR parameter k = 20. 

3.1.1. Frequency-tagging dataset 
The ground truth data (SSVEP plus Brown-noise-like background 

EEG) shows a clear peak in the power spectrum at the stimulation fre
quency (0.8 Hz) that stands out of the background EEG power spectrum 
(blue line in Fig. 4). The topography of the associated FTR at 0.8 Hz 
shows a neat posterior medial activation (Fig. 4, bottom panel) fully 
compatible with the early visual cortex sources generated in the simu
lation (for details, see Section 2.3.1). Artifacts cause a massive positive 
shift of the power spectrum at low frequencies, almost completely 
masking the SSVEP response peak (red line in Fig. 4). Consequently, the 
topography of the FTR at 0.8 Hz does not show any clear posterior 
activation (Fig. 4, bottom panel). 

NEAR bad channel detection algorithm efficiently captured the 
simulated 5 bad channels (and no additional channels). ASRR was very 
efficient in removing all the transient artifacted segments from the data: 
the resulting peak at the stimulation frequency in the power spectrum 
almost overlaps with the one of the ground truth data (yellow line in 
Fig. 4), and the topography of the FTR at 0.8 Hz is very similar to the one 
of the ground truth (Fig. 4, bottom panel). ASRC performance was 
slightly inferior: while the power spectrum peak was recovered, its 
amplitude was lower than the ground truth, and the overall power 
spectrum at low frequencies was shifted to lower values (magenta line in 
Fig. 4). This could depend on the fact that while all transient artifacts 
were correctly detected and removed by ASR, the correction also sup
pressed part of the SSVEP and of the background EEG. Nevertheless, the 
FTR topography was very similar to the ground truth one, even if with a 
slightly lower amplitude (Fig. 4, bottom panel). 

For comparison with state-of-the-art methods for artifact removal, 
we also tested the ICA-based artifact removal pipelines of MADE (Deb
nath et al., 2020) and HAPPE (Gabard-Durnam et al., 2018). MADE was 
not able to correct or remove almost any of the transient artifacts, as 
shown by its power spectrum (green line in Fig. 4) and its FTR topog
raphy at 0.8 Hz (Fig. 4, bottom panel), that are both very similar to the 
ones of the contaminated data. HAPPE was more successful: it corrected 
most of the low-frequency artifacts (cyan line in Fig. 4) and FTR 
topography shows a posterior activation similar to that of the ground 
truth, although with a much lower amplitude than the ground truth and 
NEAR processing with ASR in both modalities (Fig. 4, bottom panel). 
The rationale behind this reduction in overall amplitude might be due to 
the wavelet-based ICA thresholding, as also highlighted by the authors 
(Gabard-Durnam et al., 2018). 

3.1.2. ERP dataset 
Results on the ERP dataset were very similar to the ones of the 

frequency-tagging dataset. The ground truth ERP mildly fluctuates 
around zero until 200 ms, then rises at 300 ms (the peak latency) and 
decreases again afterwards (blue line, top panel of Fig. 5). Its topography 
at the peak latency is neatly posterior (bottom panel, Fig. 5). Artifacts 
cause the ERP to spuriously rise even before the stimulus onset, and 
although the ERP peak is visible in the posterior electrodes (red line, top 
panel of Fig. 5), the topography at the peak latency is very noisy (bottom 
panel, Fig. 5). 

NEAR bad channel detection algorithm efficiently captured the 
simulated 5 bad channels (and no additional channels). ASRR was very 
efficient also in this case in removing all the transient artifacted 
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segments from the data: the ERP peak at 300 ms almost overlaps with 
the one of the ground truth, even if the ERP profile is a bit noisier at 
higher latencies (yellow line, top panel of Fig. 5), possibly an effect of 
the lower number of trials. The topography at 300 ms is very similar to 
the one of the ground truth (Fig. 5, bottom panel). ASRC ERP peak has a 
lower amplitude than the ground truth but the ERP profile outside the 
peak is very clean with low fluctuations around zero (magenta line in 
Fig. 5). The ERP topography at 300 ms is as neat as the one of the ground 
truth (Fig. 5, bottom panel). 

In comparison, also in this case, MADE could not remove the artifacts 
on the electrodes showing the posterior activation (green line, top panel 
of Fig. 5). However, its topography at 300 ms shows moderate success in 
removing artifacts from other electrodes, though much less successfully 
than NEAR (Fig. 5, bottom panel). 

3.2. Validation of NEAR on newborn data 

3.2.1. NEAR parameter calibration 
We first calibrated the parameters of bad channel detection and ASR 

on the Training Dataset. 

3.2.1.1. Calibration of LOF bad channel detection. NEAR’s bad channel 
detection algorithm (Flat lines + LOF) was tested by comparing it to the 
standard bad channel detection score implemented in the original paper 
((Buiatti et al., 2019), see Section 2.3.2 for details) with the quality 
metric F1 Score defined as 

F1 Score =
2 ∗ TP

2 ∗ TP + FP + FN  

where TP, FP and FN indicate the number of True Positives, False Pos
itives and False Negatives respectively (Dalianis, 2018). 

By changing the LOF threshold from 1 to 10 in steps of 0.1, we found 

Fig. 4. Top panel: Power spectrum of the simulated frequency-tagging dataset between 0.5 and 1.1 Hz, averaged over the electrodes showing the largest FTR 
amplitude in the ground truth data (PO3, POz, PO4). Bottom panel: Topography of the FTR (defined in Section 2.3.5) at 0.8 Hz (the stimulation frequency). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Top panel: ERP of the simulated ERP dataset around the onset of the simulated stimulus, averaged over the electrodes showing the largest ERP amplitude in 
the ground truth data (PO3, POz, PO4). Bottom panel: Topography of the ERP averaged between 275 and 325 ms. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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that the maximal F1 Score was achieved with a threshold of 2.5 (Fig. 6). 
We therefore selected this value for performing bad channel detection 
on the newborn Test Dataset. 

3.2.1.2. Calibration of ASR. To identify the optimal ASR parameter k 
and processing mode, we applied ASR on the newborn Training Dataset 
while systematically varying ASR parameter k between 1 and 100 for 
both modes of processing (bad segment removal (ASRR) and correction 
(ASRC)). As a validation measure, after a preliminary bad segment 
removal by visual inspection, we identified a broad occipital cluster of 
electrodes showing a visual response (Fig. 7, top inset); we then 
computed the average visual response FTR (see Materials and Methods) 
in this predefined occipital cluster for each k and processing mode. 
Results show that both processing modes achieve a similar maximum 
value of FTR by (t(10) = − 0.28, P = 0.78), but for different k values: 
k = 24 for removal mode, k = 13 for correction mode. One possible 
explanation of this difference is that while for k between 20 and 30 the 
correction is not very effective, for k < 15 the removal mode rejects too 
many segments, providing too few samples for a robust computation of 
FTR. Since the two processing modes provide equivalent results for their 
optimal k, we will test both modes in the validation phase. 

3.2.2. NEAR validation 

3.2.2.1. NEAR bad channel detection. Once the optimal parameters were 
identified by calibration, we used them to validate NEAR artifact 
removal on the newborn Test Dataset. First, we validated NEAR’s bad 
channel detection method by evaluating its performance in matching the 
bad channel scoring implemented in the original study (Buiatti et al., 
2019), here considered as the ground truth (see Section 2.3.2 for de
tails). We also compared its performance with one of the three 
state-of-the-art methods: the default EEGLAB function clean_rawdata 
(CRD) and the bad channel detection methods used by two popular 
pipelines specifically implemented for infant EEG data, HAPPE 
(Gabard-Durnam et al., 2018) and MADE (Debnath et al., 2020) (the 
latter using FASTER bad channel detection tool (Nolan et al., 2010)). As 
shown in Table 1, the number of bad channels in the ground truth widely 
varies between subjects, from a minimum of zero to a maximum of 14. 
Results (Table 1) show that NEAR is the tool that best captures this high 
variability (F1 score = 0.81). All the other methods tend to mark more 
bad channels (therefore, more false positives with respect to the ground 
truth). 

3.2.2.2. Overall NEAR validation. Then we validated the overall per
formance of NEAR artifact removal by testing whether the EEG data 

cleaned by NEAR showed the statistical significance of the two main 
neural responses described in (Buiatti et al., 2019): 1) The EEG response 
to the overall visual stimulation, by comparing the power at the tag 
frequency with the background power estimated at the same frequency 
in the occipital cluster of electrodes identified in (Buiatti et al., 2019) 
(Fig. 2A therein); 2) The facelike pattern response, comparing the FTR to 
facelike stimuli with the one to inverted facelike patterns in the posterior 
cluster of electrodes illustrated in (Buiatti et al., 2019) (Fig. 3A therein). 
We also compared NEAR performance with the one obtained using a 
standard artifact processing as in the original paper (Buiatti et al., 2019) 
and with the two artifact removal pipelines for developmental data1 

(MADE (Debnath et al., 2020) and HAPPE (Gabard-Durnam et al., 
2018)). 

Removing artifacts with ASR (both processing modes) on the Test 
Dataset resulted in rejecting one subject because of too short clean 
segments for computing FTR. To ensure a fair comparison, we restricted 
the validation results to the remaining 9 subjects for all the considered 
methods. 

For the visual response, standard processing resulted in a significant 
effect even with one less subject (t(8) = 3.03, P = 0.016) (Fig. 8, first 
row, left-hand panel). Compared to standard processing, ASRR resulted 
in a somewhat lower power peak at the tag frequency accompanied by a 
similar decrease in the background power (Fig. 8, second row, left-hand 
panel), likely resulting from a more efficient noise reduction together 
with a slight power reduction. This minor difference impacted equiva
lently on the numerator and denominator of the FTR, obtaining a sig
nificant effect (t(8) = 3.04; P = 0.016) equivalent to the standard 
processing, and a response which is statistically indistinguishable from 
the standard mode (paired t-test between standard and ASRR of the 
difference between power and background at the tag frequency across 
subjects: t(8) = 0.034, P = 0.97). The power spectrum resulting from 
ASRC is further reduced, in particular at the tag frequency (Fig. 8, third 
row, left-hand panel), probably due to a slightly sub-optimal recon
struction of the steady-state response in bad segments. Nonetheless, the 
statistical effect is also significant (t(8) = 2.60, P = 0.032) and the 
response is only marginally lower than the standard mode (paired t-test 
as above: t(8) = 1.91, P = 0.093). On the contrary, the overall profile of 
the power spectrum resulting from MADE processing is notably higher 
than the one from the standard mode and with a much wider variance at 
low frequencies (<0.8 Hz), likely the effect of residual low-frequency 
artifacts (Fig. 8, fourth row, left-hand panel). Still, the visual response 
is statistically significant also in this case (t(8) = 2.47, P = 0.039), 
though marginally lower than the one obtained with ASRR (paired t-test 
t(8) = 1.95, P = 0.086) and with standard correction (paired t-test t 
(8) = 2.14, P = 0.065). HAPPE (Fig. 8, fifth row, left-hand panel) also 
recovers a statistically significant peak of the visual response (t(8) =
2.58, P = 0.033) but it is significantly lower than for ASRR (t(8) = 3.04, 
P = 0.016), ASRC (t(8) = 2.59, P = 0.032) and standard processing (t 
(8) = 3.01, P = 0.016). 

Validation on the facelike pattern response shows similar results. 
NEAR with ASRR processing recovered a statistically significant effect (t 
(8) = 2.79, P = 0.023) and the facelike response was statistically 
equivalent to that obtained with the standard processing (paired t-test 
between standard and ASRR of the difference between FTR for facelike 
and inverted facelike patterns across subjects: t(8) = − 0.38, P = 0.71) 
(Fig. 8, first and second row, middle panel). Similar results are obtained 
with ASRC: a significant facelike effect (t(8) = 2.69, P = 0.027), and no 
significant difference with standard mode (t(8) = 1.67, P = 0.13) 
(Fig. 8, third row, middle panel). However, MADE processing resulted in 
a shallower spectral peak (Fig. 8, fourth row, middle panel) and 

Fig. 6. Optimal threshold tuning for LOF using F1 Score as evaluation metric 
on the newborn Training Dataset. The highest F1 Score is obtained with a 
threshold of 2.5. 

1 Neither MADE nor HAPPE are equipped with a method to detect flat 
channels. Since flat channels cause errors in the ICA classification algorithms 
used by these methods, we removed them before applying MADE and HAPPE to 
the data. 
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recovered only a marginally significant facelike effect (t(8) = 2.02, 
P = 0.078), showing again a marginally significant difference compared 
to both ASRR (t(8) = 1.96, P = 0.085) and standard processing (t(8) =
1.88, P = 0.097). HAPPE processing resulted in an even shallower peak 
(Fig. 8, fifth row, middle panel), failing to report a significant facelike 
effect (t(8) = 1.21, P = 0.26), although in this case the difference with 
NEAR methods is not significant (vs ASRR: t(8) = 1.59, P = 0.15; vs 
ASRC: t(8) = 1.35, P = 0.21), nor the one with standard standard pro
cessing (t(8) = 1.98, P = 0.08). These results are reflected in the single- 
subject responses (Fig. 8, right-hand column panel): While NEAR with 
both ASRR and ASRC recovered a preference for facelike patterns for all 
the subjects as with standard processing, two subjects following MADE 
and HAPPE processing showed an inverted effect. 

3.3. Validation of NEAR on infant data 

Although NEAR has been developed to remove artifacts in contin
uous newborn EEG data, here we show that NEAR is also efficient in 
removing artifacts from data of older infants and with event-related 
designs (thereby, proving its extensibility) by applying it to a 9- 
months-old EEG dataset recorded with an ERP paradigm (Parise and 
Csibra, 2012). 

3.3.1. NEAR parameter calibration 
Following the same procedure performed with newborns (Section 

3.2.1), we calibrated LOF threshold for bad channel detection on the 
infant Training Dataset. By using F1 Score as the quality metric, the 
optimal LOF threshold obtained is 2, which is 0.5 lower than the one 
obtained on newborn data. 

Likewise, the calibration of the ASR parameter k yielded an optimal 
value of k = 21 for ASRR and k = 3 for ASRC. Compared to what was 
obtained on newborns, this parameter is much lower for ASRC than for 
ASRR. 

3.3.2. NEAR validation 

3.3.2.1. NEAR bad channel detection. As done with the newborns data, 
we validated NEAR’s bad channel detection method by evaluating its 
performance to match standard bad channel detection on the infant Test 
Dataset. For comparison, we also tested the performance of the three 
state-of-the-art methods: CRD, HAPPE and FASTER. As for newborns, 
NEAR’s bad channel detection algorithm yielded the highest match with 
standard scoring: NEAR F1 = 0.69, HAPPE F1 = 0.42, FASTER 
F1 = 0.33, CRD F1 = 0.33. 

3.3.2.2. Overall NEAR validation. Then, as for newborns, we validated 
the overall performance of NEAR pre-processing by direct comparison of 

Fig. 7. A grid-search analysis to find the best ASR 
parameter settings on the newborn Training Dataset: 
Average visual response (FTR) on a predefined occipital 
cluster of electrodes (topography in top inset) as a function 
of ASR Parameter k and Processing Mode, computed on the 
Training Dataset (n = 11). The mean FTR is maximum at 
k = 13 for ASR Correction (ASRC) and k = 24 for ASR 
Removal (ASRR). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the 
web version of this article.)   

Table 1 
Performance of NEAR Bad Channel Detection tool compared to other methods (standard (Buiatti et al., 2019), clean_rawdata (CRD), HAPPE and FASTER). Top panel: 
Total number of detected channels for each subject. Bottom panel: Comparison of classification performance in matching standard bad channel detection (TP, FN, FP, 
TN, ACC indicate the number of True Positives, False Negatives, False Positives, True Negatives and Accuracy, respectively). NEAR shows the closest match with the 
standard bad channel detection score compared to other methods.  

Bad Channel Detection 

Methods/Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Standard 1 2 3 0 1 7 2 14 7 13 
CRD 5 8 8 6 0 13 6 22 9 9 
HAPPE 9 8 15 8 18 13 6 2 6 6 
FASTER 4 4 8 4 7 3 3 10 6 7 
NEAR 2 2 3 1 1 5 1 23 8 14 

Classification Metrics 
Methods TP FN FP TN ACC F1-Score 
CRD 3.3 1.7 5.6 113.4 94.11 0.47 
HAPPE 2.3 2.7 6.8 112.2 92.34 0.33 
FASTER 2.6 2.4 3 116 97.58 0.40 
NEAR 4.5 0.5 1.5 117.5 98.38 0.81  
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the statistical significance of the main effect obtained by manual pre- 
processing in the original work (Parise and Csibra, 2012): a N400 dif
ferential response between incongruous and congruous conditions 
higher on the right region-of-interest than on the left one (where the 

regions of interest were identified by the electrodes between C3 and P3 
and between C4 and P4, over the left and right hemisphere, respectively) 
(Fig. 9). 

We also compared NEAR’s performance with the state-of-the-art 

Fig. 8. Performance of NEAR in obtaining statistically significant neural responses from the raw newborn Test Dataset. Each row corresponds to an artifact removal 
method: Standard processing (Buiatti et al., 2019), NEAR using ASRR, NEAR using ASRC, MADE and HAPPE, respectively. Left-hand column: Power spectrum elicited 
by the overall visual stimulation. Shaded contour indicates the s.e.m. across subjects. The spectral peak at the tag frequency is statistically significant for all the 
methods, but NEAR using ASRR obtains the highest t-value. Mid column: Power spectrum associated with upright (red line) and inverted (blue line) facelike stimuli. 
While the facelike effect is statistically significant for both NEAR processing modes, it is only marginally significant after MADE processing and not significant after 
HAPPE processing. Right-hand column: Single-subject FTR for upright (red bars) and inverted (blue bars) facelike images. The facelike effect is present in all subjects 
for NEAR processing, but not for MADE and HAPPE processing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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artifact removal pipeline for developmental data MADE (Debnath et al., 
2020). 

Results show that the only method that recovered a significant 
ANOVA with factors condition and hemisphere is ASRR (F(1,13)= 5.13, 
P = 0.041), while no significant effect is observed for ASRC (F(1,13)=
1.68, P = 0.22), nor for MADE (F(1,13)= 2.90, P = 0.11). More specif
ically, NEAR using ASRR yielded a clear congruency effect on the right 
hemisphere that was absent on the left hemisphere, similarly to standard 
processing (Fig. 9, first two rows). NEAR using ASRC resulted in similar 
but shallower effects compared to ASRR (Fig. 9, third row). MADE also 
exhibited a congruency difference between the hemisphere in the same 
direction, but with the congruous condition higher than for the other 
methods (Fig. 9, fourth row). However, no significant difference was 
found between the three methods on the size of the effect (paired t-test 
between the ERP difference between hemispheres of the difference 

between conditions of ASRR vs MADE: t(13) = 0.01, P = 0.99; ASRC vs 
MADE: t(13) = − 1.00, P = 0.33; ASRR vs ASRC: t(13) = 1.70, P = 0.11). 

4. Discussion 

This paper presented NEAR, a pipeline that transforms artifacted raw 
developmental EEG data into clean data ready for downstream analysis. 
We demonstrated that NEAR’s novel artifact removal procedure effi
ciently removes artifacts both from newborn and infant EEG data (high 
sensitivity), while preserving the EEG signal of neural origin (high 
specificity). NEAR will hopefully contribute to establish a more objec
tive and reproducible preprocessing procedure within the develop
mental EEG community, a much-needed improvement considering the 
negative consequences of the variability of EEG data editing practices 
(Monroy et al., 2021). Hereafter we comment on some key aspects of 

Fig. 9. Event-related potential (ERP) results for each of the processing modes: Standard processing (Parise and Csibra, 2012), NEAR using ASRR, NEAR using ASRC 
and MADE, respectively. The figure shows grand-average waveforms on congruous and incongruous trials in left (left-hand panels) and right (right-hand panels) 
regions of interest (marked by black points on the scalp maps). The gray shading indicates the time window of the infant N400 (500–650 ms), and the vertical line 
marks the time at which the object in each trial appeared from behind an occluder. The scalp maps (middle panels) depict the spatial distribution of the difference in 
ERP amplitude between incongruous and congruous trials in the given time window. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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NEAR in the general context of EEG artifact removal. 

4.1. An artifact removal method for non-stereotyped artifacts 

The most problematic and predominant artifacts in newborn EEG 
data are non-stereotyped transient high-amplitude fluctuations 
involving variable sets of channels. By specifically simulating these ar
tifacts, we showed that ASR processing included in NEAR is very effi
cient in detecting and removing them. On the other hand, ICA-based 
methods as MADE (Debnath et al., 2020) and (to a lesser extent) HAPPE 
(Gabard-Durnam et al., 2018) failed in processing these artifacts, most 
probably because they are developed to detect mainly the stereotyped 
ones. Notably, both MADE and HAPPE are more successful on newborn 
EEG data than on simulated data, possibly because real newborn EEG 
artifacts are more stereotyped (i.e. their spatial distribution and tem
poral profile are partly correlated across occurrences) than simulated 
ones, which are generated by random shuffling of the artifact topo
graphical distribution. As discussed more extensively below, a combi
nation of detection methods for non-stereotyped and stereotyped 
artifacts might be the solution to deal with the wide range of EEG arti
facts, especially in developmental data. 

4.2. ASR parameter calibration 

One core tool used by NEAR is ASR (Kothe and Jung, 2016), an 
efficient algorithm that nevertheless depends on some user-defined pa
rameters. The selection of these parameters is not univocal: the most 
systematic investigation on this issue (Chang et al., 2020) proposes that 
the optimal value of the ASR k parameter for adults lies “between 20 and 
30", implicitly suggesting that it may be variable. Moreover, while ASR 
default processing mode is to correct the data from artifacts (a choice 
driven by the original aim of providing an efficient algorithm for 
real-time applications), the main developers of the EEGLAB software 
suggest removing the artifacted segments identified by ASR because the 
effects of ASR correction on the data “are not clearly understood” (https: 
//eeglab.org/tutorials/06_RejectArtifacts/cleanrawdata.html, 
Retrieved June 7, 2021). Our study confirms that ASR performance 
significantly depends on the choice of both ASR Parameter k and pro
cessing mode (Fig. 7). The quality of developmental EEG data may vary 
substantially between different EEG setups, and different data analyses 
may require different thresholds. Therefore, we propose an adaptive 
approach to ASR: run ASR on a dataset previously collected with the 
same EEG setup and analyzed with the same analysis chosen for the 
current data and find the k and processing mode that best recover the 
EEG effects observed on that dataset. We provide a script for this cali
bration procedure and we recommend NEAR users to perform it before 
applying NEAR to newly recorded data. Once these parameters are 
identified, validation shown in this paper suggests that NEAR might be 
safely used in automatic mode. If a training dataset is not available, we 
recommend tuning NEAR parameters on at least a few subjects by 
measuring a well-known sensory response for both processing modes 
and k between 10 and 30. In any case, we strongly recommend that users 
keep monitoring the efficiency of NEAR (an easy task provided by the 
visualization tools along NEAR’s pipeline and the report file), as 
unpredicted single-subject variations are always possible - automatic 
does not mean magic! 

4.3. Artifact removal vs correction 

Testing ASR on simulated data showed that removal mode is slightly 
more efficient than correction mode in cleaning the data from the effect 
of artifacts; results from the simulation suggest that while correction 
efficiently suppresses the artifacts, it also severely attenuates the un
derlying neural activity. This effect was consistently observed in the 
application of NEAR on both the newborn and infant data. This obser
vation, together with the fact that the effects of ASR correction on the 

data are not fully understood yet, lead us to adopt EEGLAB recom
mendation to set the removal mode by default for off-line analysis, un
less the performance of the correction mode on some training datasets 
shows significantly better results. In both processing modes, we 
recommend users to notice the amount of data being rejected (in case of 
ASRR), or modified (in case of ASRC) and the mean reduction of RMS 
variance in the processed signal. These values can be found in our report 
files. In particular for ASRC, we recommend users to customize these 
values to set inclusion criteria for the subjects into the group-level 
analysis to avoid the risk of mostly relying on the reconstruction of 
heavily artefacted data. 

4.4. Using NEAR on other experimental designs 

NEAR has been trained and validated on a frequency-tagging para
digm by using a measure of the SSVEP and on an event-related design by 
using an ERP measure. The adaptive approach of NEAR provides a 
straightforward strategy to tune NEAR parameters to data recorded from 
other experimental designs that include event-related measures like 
time-frequency analysis or resting-state measures like (de)synchroniza
tion in specific frequency ranges or connectivity measures. 

4.5. Combining NEAR with ICA for developmental EEG artifact removal 

In comparison with NEAR, the pipeline for artifact removal of 
developmental data MADE performed moderately worse on newborn 
and infant data, mostly because it was not equally efficient in removing 
low-frequency artifacts. We see two possible reasons for this difference: 
1) MADE’s bad channel and bad segment identification tools were not 
calibrated to newborn EEG data; 2) As mentioned above, the benefit of 
removing artifacts by ICA is limited by the fact that most artifacts in 
newborn EEG data are non-stereotyped, therefore not easily captured by 
ICA. Nonetheless, ICA (and in particular Adjusted-ADJUST (Leach et al., 
2020), the IC classifier developed for infant data and included in MADE) 
may be beneficial as a further processing step after NEAR because it 
could correct the data from residual stereotyped artifacts without any 
further data rejection. However, one issue that might be problematic for 
an efficient ICA decomposition of developmental EEG data with 
high-density systems is the very limited duration of the clean data seg
ments. Rather than reducing the number of electrodes as in (Leach et al., 
2020) (which would drastically decrease EEG spatial resolution, pre
venting a potential source reconstruction (Odabaee et al., 2014)), a 
possible solution would be to use PCA for dimensionality reduction. 
However, the application of PCA on EEG data has significant limitations 
(Artoni et al., 2018); therefore, investigations on alternative methods to 
run ICA on high-density EEG data of short duration would be very 
useful. 

NEAR availability 

NEAR is publicly available as open-source software at https://github. 
com/vpKumaravel/NEAR under GNU General Public License. An 
example anonymized dataset taken from the Test Dataset analyzed in 
the paper (data from (Buiatti et al., 2019)) has been deposited in the 
Open Science Framework and is freely available at https://osf. 
io/79mzg/. A step-by-step tutorial for the use of NEAR is included in 
the Appendix. 
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