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Abstract
Purpose of Review The prevalence of diabetes mellitus and its chronic complications are increasing to epidemic
proportions. This will unfortunately result in massive increases in diabetic distal symmetrical polyneuropathy
(DPN) and its troublesome sequelae, including disabling neuropathic pain (painful-DPN), which affects around
25% of patients with diabetes. Why these patients develop neuropathic pain, while others with a similar degree of
neuropathy do not, is not clearly understood. This review will look at recent advances that may shed some light on
the differences between painful and painless-DPN.
Recent Findings Gender, clinical pain phenotyping, serum biomarkers, brain imaging, genetics, and skin biopsy findings have
been reported to differentiate painful- from painless-DPN.
Summary Painful-DPN seems to be associated with female gender and small fiber dysfunction. Moreover, recent brain imaging
studies have found neuropathic pain signatures within the central nervous system; however, whether this is the cause or effect of
the pain is yet to be determined. Further research is urgently required to develop our understanding of the pathogenesis of pain in
DPN in order to develop new and effective mechanistic treatments for painful-DPN.

Keywords Diabetes . Peripheral neuropathy . Neuropathic pain . Small fiber neuropathy . Painful diabetic neuropathy . Diabetic
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Introduction

The worldwide prevalence of diabetes mellitus (DM) has
reached epidemic proportions, and is set to increase to 629

million by 2045 [1]. Rising population growth, aging, urban-
ization, and an increased prevalence of obesity and physical
inactivity are amongst the major contributing factors. Diabetic
neuropathies are one of the most common chronic
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complications of DM [2], and distal symmetrical
polyneuropathy (DPN) is the most prevalent form of diabetic
neuropathy, which may affect up to 50% of patients [2, 3•, 4•].
The Toronto Expert Group has defined DPN as “a symmetri-
cal, length dependent sensorimotor polyneuropathy attribut-
able to metabolic and micro-vessel alterations as a result of
chronic hyperglycaemia exposure and cardiovascular risk co-
variates” [5•]. A more recent definition of DPN in the
American Diabetes Association Position Statement is “the
presence of symptoms and/or signs of peripheral nerve dys-
function in people with diabetes after the exclusion of other
causes” [3•]. The rising numbers of patients diagnosed with
neuropathic disorders related to DM will have an immense
impact on health and social care provision [6].

DPN is a major risk factor for diabetic foot ulceration,
which remains a major cause of morbidity and is the leading
cause of non-traumatic amputations [7]. Although a large
number of patients with DPN may be entirely asymptomatic,
approximately 15–25% of people with DM present with neu-
ropathic pain (painful-DPN) [8–11, 12•, 13]. The neuropathic
pain is of varying degree of intensity [14] DPN and painful-
DPN has different clinical syndromes with the most common
of which is a mixed large and small fiber neuropathy. Small
nerve-fibers (SF) are small-caliber sensory fibers, which are
primarily responsible for peripheral nociception [15]. Pure SF
neuropathy may occur in DM and the clinical features include
symptoms of painful peripheral neuropathy with signs of SF
impairment (e.g., pinprick or thermal hypoalgesia or
allodynia) in a peripheral neuropathy distribution in the ab-
sence of large fiber impairment (e.g., impaired light touch,
vibration, proprioception or motor signs).

Painful-DPN often results in insomnia, mood disorders,
and a poor quality of life [12•]. The currently available thera-
pies for the pain associated with DPN remain inadequate,
given relatively modest pain relief and often troublesome side
effects [3•, 16, 17]. There is thus an urgent need to have a
better understanding of the pathogenesis of pain in DPN and
this has been the subject of a recent review (Fig. 1) [17].
Central to this understanding will be to develop new insights
as to why some patients develop disabling neuropathic symp-
toms while others with a similar degree of neuropathy do not.
This review will discuss the differences in risk factors, clinical
features, serum biomarkers, vascular alterations, quantitative
sensory testing (QST), skin biopsy parameters, genetics, and
brain imaging studies between painful- and painless-DPN.

Risk Factors

Several risk factors for DPN in general have been described and
confirmed in cohorts of type 1 and type 2 diabetes. The
EURODIAB Prospective Complications Study screened 3250
type 1 DM patients at baseline and followed 1172 patients

without DPN looking for risk factors that predicted the devel-
opment of DPN [4•]. The study found that in addition to gly-
cemic control, traditional vascular risk factors such as hyperten-
sion, raised triglycerides, obesity, and cigarette smoking were
independent risk factors for the development of new onset
DPN. Similar vascular risk factors were also found in T2DM
[18•, 19, 20]. However, the risk factors for neuropathic pain in
DM are less well known. This is partly because of the wide
variation in the diagnostic and population selection methods
employed by the epidemiological studies for painful-DPN
[21••, 22]. The reported risk factors include increasing age [9,
10], elevatedHbA1c [23••, 24], duration ofDM [9], and obesity
[10, 25]. A high alcohol intake, type of diabetes, macro and
microvascular disease, and ethnicity have also been implicated
[21••]. Recent large studies have also suggested nephropathy
and female gender as risk factors for painful-DPN [26, 27••,
28••]. Indeed, female gender was the only risk factor identified
in a large cross-sectional study (n = 816) performed by Truini
et al. which diagnosed painful-DPN using widely agreed
criteria [28••]. Thirteen percent were diagnosed with painful-
DPN and the only distinguishing risk factor from painless-DPN
was female gender. Gender differences are well recognized in
chronic pain conditions and neuropathic pain intensity has pre-
viously been reported to be more severe in females [29, 30].

Recent advances in gene sequencing technology have led
to several studies examining genetic variants associated with
DPN and painful-DPN [31–34, 35•, 36]. Two recent studies
by Meng et al. conducted genome-wide association studies in
Tayside, Scotland [32, 33]. Chr8p21.3, Chr1p35.1, and
Chr8p21.3 polymorphisms were associated with neuropathic
pain. However, the study did not use validated diagnostic
criteria for painful-DPN. Recently also, there has been great
interest in the role of voltage-gated sodium channels and their
role in neuropathic pain. The Nav 1.7 sodium channel is well
recognized to be involved in pain signaling and “gain of func-
tion”mutations of its encoding gene, SCN9A, cause rare pain
disorders. Additionally, studies have identified Nav 1.7 muta-
tions in idiopathic small fiber neuropathy [36] and painful-
DPN [34]. Blesneac et al. looked at the relationship between
Nav 1.7 variants and painful-DPN and found that none of the
participants with painless-DPN (n = 78) were found to have a
genetic variant [35•]. However, a total of 12 rare Nav 1.7
variants were identified in 10 out of 111 patients with pain-
ful-DPN. The subjects with these variants were found to have
a shorter duration of diabetes yet more severe burning pain.
Painful-DPN is a heterogeneous condition and subjects with
rare sodium channel gene variants may represent a subgroup
that may respond to a particular treatment.

In summary, while the risk factors for DPN are well recog-
nized, those for painful-DPN are less certain. This might in-
dicate the complexity of painful-DPN as many factors includ-
ing genetics, cultural, psycho-social, and gender may be
involved.
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Clinical Features

Neuropathic pain in diabetes has distinct presentations as
burning, sharp, aching, electric, and evoked pains [37].
However, patients may also describe symptoms of numbness,
tingling, and pins and needles, irrespective of the presence of
pain. Neuropathic pain may also induce various degrees of
physical disability, depression, anxiety, insomnia, and a
poorer quality of life than patients with painless-DPN, partic-
ularly with moderate to severe neuropathic pain [23••, 27••,
38]. Despite these profound differences in a patient’s clinical
presentation, there are few distinct differences in the neuro-
logical examination between painless- and painful-DPN. The
majority of patients with painful-DPN demonstrate sensory
loss on clinical examination but a small proportion of patients
with painful-DPN have evidence of “gain of function” signs
such as allodynia and hyperalgesia [23••]. There is controver-
sy regarding whether the severity of neuropathic impairment
is greater in painful-DPN. Several studies have reported a
correlation between neuropathy severity and the presence
and/or severity of neuropathic pain in DPN [8, 11, 15, 23••,
39–41] whereas other studies have not [18•, 28••]. Although

the weight of evidence seems to suggest that an increasing
severity of DPN may increase the risk of developing painful
neuropathic symptoms, severe DPN and pain are not mutually
exclusive, and there may have been a selection bias in
recruiting painful-DPN patients from tertiary referral centers.

Cardiovascular Autonomic Neuropathy

Both autonomic neuropathy and painful-DPN involve small
fibers, and a potential relationship was therefore investigated.
In a small study, we demonstrated greater changes in heart rate
variability studies, as measures of cardiovascular autonomic
neuropathy (CAN) in subjects with painful- compared with
painless-DPN [42], while other small studies reported that
painful DPN was more likely to be associated with the ab-
sence of a nocturnal fall in blood pressure (“non-dipping”)
[43], or with reduced Valsalva ratio [40]. However, these are
in contrast with other studies that have not found any differ-
ences in measures of CAN between painful and painless-DPN
[39, 44, 45].
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Fig. 1 An overview of the current postulated pathogenesis of painful-
DSPN. The risk factors for the generation of neuropathic pain in DSPN
may include glycemic burden (duration of diabetes), obesity, female
gender, and genetic variants of voltage-gated sodium channels (VGSC).

Both the central and peripheral mechanisms have been postulated in the
pathogenesis of painful-DSPN. ACC, anterior cingulate cortex. (Adapted
from: Sloan G, et al. Diabetes Res Clin Pract. 2018; 144: 177–91, with
permission from Elsevier) [17]
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Diagnostic Methods of Painful-DPN

Conventional neurophysiological testing methods, which
measure large fiber function, such as nerve conduction studies
(NCS), cannot detect pure small fiber neuropathy (SFN) [46].
However, QST and more recent advances in diagnostic tech-
niques, e.g., skin biopsy with intraepidermal nerve fiber den-
sity (IENFD) quantitation, corneal confocal microscopy
(CCM), and laser Doppler imaging flare (LDI Flare) have
allowed the reliable diagnosis of SFN [5•, 46]. Because of
their role in physiological nociception, studies have explored
whether damage or alterations in SF may relate to neuropathic
pain in DPN.

Skin Biopsy

Immunostaining of skin biopsy samples with protein gene
product 9.5 and quantitation of IENFD is a reliable means of
diagnosing SFN [46]. However, IENFD is unable to distinguish
between individuals with or without neuropathic pain [23••,
27••, 28••, 47••, 48, 49]. Other studies have been performed
to determine whether morphological and functional markers
of the epidermal innervation revealed differentiating features.
Intraepidermal nerve fiber (IENF) regeneration, by measuring
the ratio of growth associated protein-43 (GAP-43) to nerve
fibers, has been shown to be enhanced in painful-compared
with painless-DPN [49, 50•, 51]. However, Scheytt et al. found
no relationship between pain and GAP-43 reactivity in subjects
with peripheral neuropathies of varying etiologies [52]. There
are contradictory findings in studies investigating other IENF
markers to differentiate painful- from painless-DPN including
IENF length [50•, 53] and axonal swellings, which are mea-
sures of axonal degeneration [49, 54]. Levels within the skin of
the neurotrophin nerve growth factor (NGF) were increased in
patients withDPN and sensory symptoms, including pain, com-
pared to painless-DPN [55]. NGF has recently been shown to
sensitize nociceptors in human skin and it has been hypothe-
sized that the remaining IENF in painful-DPN may be exposed
to excessive levels of NGF (“over-trophing”) resulting in hy-
persensitivity and neuropathic pain [19, 55–58].

Corneal Confocal Microscopy

Confocal corneal microscopy (CCM) can rapidly, non-
invasively, and accurately image corneal nerves and is a re-
cently developed diagnostic test for DPN [59–61]. Studies of
CCM have explored the role of corneal innervation and neu-
ropathic pain in DM [53, 62•, 63]. Quattrini et al. reported
reduced corneal nerve fiber length with unaltered other
CCM measures [53], whereas Marshall et al. found unaltered
corneal nerve fiber length but reduced corneal nerve fiber
density [62•]. Recently, Kalteniece et al. [63] described signif-
icantly lower corneal inferior whorl length, and average and

total nerve length in painful- compared to painless-DPN.
Changes within this region have been suggested to be indica-
tive of early neuropathic damage. However, there were con-
founding factors, which could account for these group differ-
ences. Therefore, the association of CCM abnormalities to
neuropathic pain in DPN is thus far inconclusive.

Evoked Responses

Non-invasive tests have been developed to investigate the
peripheral function of SF to diagnose SFN. Such tests can
measure evoked potentials in response to stimuli that activate
the nociceptive pathway, for example contact heat-evoked po-
tentials (CHEPS) [64]. CHEPs correlates with other measures
of SFN including IENFD and leg skin flare responses [65, 66].
One small study found a relationship between enhanced brain
CHEP amplitudes in subjects with painful-DPN; this result
was most marked in those with thermal hyperalgesia and me-
chanical allodynia [67].

Quantitative Sensory Testing

QST is a psychophysical measure of the perception of differ-
ent external stimuli of controlled intensity to assess a range of
sensory modalities [68, 69]. Some studies with a relatively
small sample size suggested that conventional QST measures
of SF function may be statistically different between painful-
and painless-DPN [41, 44, 70, 71]. More recent studies have
employed the German Research Network on Neuropathic
Pain (DFNS) QST protocol to quantify sensory loss, for small
and large fiber function, and sensory gain abnormalities [72,
73••]. Three recent large cross-sectional cohort studies have
applied this protocol to patients with painful- and painless-
polyneuropathies with different etiologies [48] and painful-
and painless-DPN [23••, 27••]. In two studies of painful-
DPN, DFNS QST revealed more severe loss of function in
those with neuropathic pain, particularly patients with
moderate/severe pain [23••, 27••]. Thermal hyposensitivity
was more severe in painful-DPN whereas mechanical stimuli
showed fewer differences compared with painless-DPN. Gain
of function abnormalities and preserved SF function with
hyperalgesia were both rare. However, Üçeyler et al. studied
patients with painful- and painless-polyneuropathies of differ-
ent etiologies and found that patients with neuropathic pain
demonstrated elevated mechanical pain and detection thresh-
old, and lower mechanical pain sensitivity with no difference
in SF deficits [48]. This perhaps indicates there may be a
unique somatosensory phenotype associated with painful-
DPN characterized by more severe SF dysfunction with ther-
mal hyposensitivity [23••, 27••]. However, SF changes are
common and can occur in early DPN without pain [74–76];
therefore, these findings alone are unable to completely ex-
plain why some patients develop neuropathic pain and others
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do not. Perhaps, other investigations into small fiber function
and structure, such as skin biopsy studies, may shed further
light onto this paradox.

Pathogenesis of Painful-DPN

Microvascular Blood Flow

Consistent with vascular risk factors increasing the risk of
DPN [4•], both structural and functional microvascular abnor-
malities of the vasa-nervorum have been shown to be involved
in the pathogenesis of DPN [77–79]. Patients with treatment
induced neuropathy of diabetes who had extremely severe
neuropathic pain have proliferating blood vessels on the
epineurial surface bearing striking similarities to those found
in proliferative diabetic retinopathy [80]. It is well recognized
that very rapid improvement in glucose control can cause
proliferative retinopathy mediated by retinal ischemia and a
similar process appears to take place in the peripheral nerve.
Furthermore, several studies have shown that regulation of
peripheral blood flow is altered in patients with painful- com-
pared with painless-DPN [81–84]. Our group demonstrated
elevated sural nerve epineurial oxygen saturation and faster
blood flow in patients with painful- compared to painless-
DPN, perhaps secondary to arteriovenous shunting [82].
Other studies have examined the role of skin microvascular
vasodilator and vasoconstrictor responses in subjects with
DPN, with contradictory findings [71, 85–87].

Studies measuring serum markers of angiogenesis (vascu-
lar endothelial growth factor, VEGF) and endothelial dysfunc-
tion (soluble intercellular adhesion molecule – 1, sICAM-1)
have found them to be elevated in painful-DPN [86, 88•] and
symptomatic DPN respectively [89]. Furthermore, punch skin
biopsy studies have also indicated that skin microcirculation
may be involved in the pathogenesis of painful-DPN. One
study demonstrated evidence of hypoxia, by immunostaining
with hypoxia inducible factor 1α (HIF-1 α), to be related to
pain intensity in subjects with DPN [90]. Recently, our group
has also found dermal von Willebrand factor (vWF) immuno-
reactivity, as a blood vessel marker, to be significantly elevat-
ed in subjects with painful-DPN, in comparison to subjects
with painless-DPN, patients with DM without DPN and
healthy volunteers [56]. Moreover, small studies have demon-
strated that pain improves with topical application of vasodi-
lator treatments [91, 92], perhaps indicating that local blood
flow dysregulation could be a viable target for the manage-
ment of pain in DPN.

Hyperglycemia and Downstream Effects

Hyperglycemia mediated metabolic pathways have long been
associated in the pathogenesis of DPN, but their role in those

with neuropathic pain is less clearly defined. Studies using
DM rodent models have found neuropathic pain behaviors
to be related to numerous metabolic pathways including the
polyol pathway, protein kinase C activity, and increased ad-
vanced glycation end-products (AGEs) [93]. However, there
is limited evidence to support glycemic control or lifestyle
modifications in improving painful neuropathic symptoms
[3•]. Moreover, the evidence to support pathogenic treatments
for neuropathic pain in DPN has generally been disappointing
and only a few pharmacotherapeutic agents are available in
select countries [50•].

Methylglyoxal is a highly reactive dicarbonyl compound
and is a precursor to the formation of (AGEs). The formation
of AGEs has downstream deleterious effects on peripheral
nerves and Schwann cells including inflammation and oxida-
tive stress [94]. Methylglyoxal has been suggested to be an
important factor in the development of DM and incident DPN
[20•, 95]. In rodent models of painful-DPN, methylglyoxal
has been shown to induce hyperalgesia via activation of the
voltage-gated sodium channel Nav 1.8 and transient receptor
potential channel ankyrin-1 [96, 97]. Similarly, in a small
number of patients with DM (n = 30), serum methylglyoxal
levels were found to be elevated in painful-DPN [96]. In con-
trast to these findings, a larger study (n = 882) reported
methylglyoxal levels to be unrelated to painful-DPN [98].
Although the role of hyperglycemia mediated pathways in
generating neuropathic pain is uncertain, pathogenically ori-
ented treatments, particularly anti-oxidants, have been dem-
onstrated to improve pain in some pre-clinical and clinical
trials [99, 100].

Vitamin D

Although vitamin D is most commonly recognized for its role
in calciummetabolism and bone health, vitamin D is involved
in many disparate physiological processes [101]. Deficiency
of vitamin D has been shown to be predictive of numerous
chronic diseases including DM, DPN, and chronic pain
[101–104]. Pre-clinical studies indicate that vitamin D appears
to play a critical role in nerve function in health and may play
a role in neuropathic pain syndromes [105–109]. Our group
recently found vitamin D levels to be significantly lower in
patients with painful- compared to painless-DPN, with a sig-
nificant correlation between serum 25-hydroxyvitamin D lev-
el and pain scores on the Doleur Neuropathique 4 neuropathic
pain screening tool [110•]. The study was cross-sectional, and
therefore cannot establish a causal relationship, but it does
suggest a possible mechanistic link between vitamin D and
painful-DPN. Indeed, three non-randomized clinical trials
have demonstrated an improvement in painful neuropathic
symptoms with vitamin D therapy but, further, larger, ade-
quately powered RCTs are necessary to investigate this further
[111–113].
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Inflammation

Inflammation has been postulated to play a major part in DM
and DPN [114]. Low grade inflammation has been suggested
as a link between obesity and T2DM, via inflammation in-
duced insulin resistance [114]. Inflammatory chemokine and
cytokine production has been reported to be induced by sev-
eral metabolic pathways implicated in the pathogenesis of
DPN [115, 116•]. Multiple studies have demonstrated higher
systemic acute-phase proteins, cytokines, and chemokines in
DPN [88•, 117•], recently reviewed by Bönhof et al. [118•].
Furthermore, rodent models of neuropathic pain associated
with the metabolic syndrome and T2DM demonstrate elevat-
ed pro-inflammatory mediator expression in the serum [119]
and the dorsal root ganglia [119, 120]. The outcomes of stud-
ies examining the association of inflammatory biomarkers and
painful-DPN have been variable. Numerous inflammatory
markers have been associated with painful-DPN: C-reactive
protein (CRP) [86], tumor necrosis factor-α (TNF-α) [121],
inducible nitric oxide synthase [121], and interleukin 6 [117•].
Additionally, inflammatory mediators have been shown to
differentiate between painful- from painless-neuropathies of
various etiologies, including elevated serum IL-2, TNF-α,
and reduced anti-inflammatory IL-10 [122]; IL-6 and IL-10
sural nerve biopsy expression [123]; and TNF-α in human
Schwann cells [124].

The Central Nervous System

Technological advances in imaging modalities have enabled
detailed in vivo investigation of the nervous system in DM.
Key differences have been identified within the CNS in pain-
ful-DPN, using a variety of different techniques, especially
advanced MR imaging modalities.

Spinal Cord Changes in Painful-DPN

We have identified a reduction in the cross-sectional
area of the spinal cord in subjects with DPN in com-
parison to patient with DM without DPN, healthy con-
trols, and disease control subjects with hereditary senso-
ry motor neuropathy type 1A [125]. However, structural
differences in the spinal cord area have not been found
between subjects with painless- and painful-DPN [125].
Recent studies have indicated that spinal disinhibition,
measured using the rate dependent depression (RDD) of
the Hoffman reflex (H-reflex), may be a potential bio-
marker of spinally mediated pain to differentiate painful-
from painless-DPN [126]. The RDD has been demon-
strated to assess γ-aminobutyric acid (GABA) type A
receptor-mediated spinal inhibitory function in neuro-
pathic pain models of DM rats [127]. Impaired RDD
was found in DM rat models of T1DM and T2DM with

neuropathic pain phenotypes [62•]. Also, the RDD in
groups of healthy controls and T1DM subjects with
painful- and painless-DPN was evaluated and it was
significantly impaired in those with painful-DPN.
Patients with greater RDD attenuation had higher pain
scores but no difference in measures of large or small
fiber dysfunction, perhaps suggesting spinal inhibitory
dysfunction may occur independent of PNS alterations
in painful-DPN.

Advanced MRI Studies of the Brain

Functional MRI (fMRI) measures the activity of brain regions
by detecting changes in the oxygenation of hemoglobin, the
blood oxygen level dependent signal (BOLD). The neurolog-
ical signature of physical pain has been identified by fMRI
and includes activation of the venterolateral thalamus, dorsal
posterior insula, and somatosensory cortex, as well as brain
regions related to emotional pain processing, including the
anterior insula and anterior cingulate cortex (ACC)
[128–130].

The Thalamus

The thalamus receives somatosensory signals from the spinal
cord where they are processed, modulated, and transmitted to
higher brain centers. A variety of brain alterations have been
demonstrated in DPN and painful-DPN using advanced im-
aging techniques that examine brain neurochemistry, micro-
vascular blood flow, and functional changes. MR spectrosco-
py (MRS) enables the measurement of selected metabolites
within the brain [131]. Our group has used MRS to show
neuronal dysfunction within the thalamus, by reduced N-
acetyl aspartate (NAA) to choline ratio as a neuronal marker,
in subjects with painless-DPN [132]. Furthermore, DM ani-
mal models of painful-DPN have shown that the thalamus
may be responsible for central amplification of somatosensory
signals [133, 134]. Similarly, thalamic dysfunction appears to
play a key role in human painful-DPN. We have recently
shown preserved thalamic NAA and the GABA levels within
the thalamus in patients with painful-DPN, whereas these
levels were reduced in patients with painless-DPN [135,
136]. These findings suggest that neurochemical measures of
the thalamic neuronal function and neurotransmitters may be
essential for pain signal transmission and/or amplification in
painful-DPN.

Recently, we performed a study administering exoge-
nous perfusion contrast to subjects with painful- and
painless-DSPN to compare the thalamic microvascular
perfusion at rest [137•]. Subjects with DPN both dem-
onstrated delayed bolus arrival time to the thalamus, but
subjects with neuropathic pain had a significantly taller
peak concentration, a higher mean cerebral blood
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volume, and the longest blood transit time compared to
painless-DPN. Therefore, microvascular vasodilation
within the thalamus may induce hyperperfusion which
could be related to elevated thalamic neuronal activity.
Finally, fMRI study of the brain has indicated there may
be disruption in thalamocortical connectivity in painful-
DPN. Cauda et al. measured resting state fMRI to de-
termine temporal correlations of brain activity in a small
number of subjects with painful-DPN and healthy con-
trol patients [138]. Compared with the control group,
there was reduced synchrony between the somatosenso-
ry cortex and thalamic nuclei in painful-DPN patients.

Descending Inhibition

It is well recognized that the midbrain and medullary
brain regions can exert bidirectional control over
nociception [139]. The periaqueductal gray (PAG) and
rostroventromedial medulla (RVM) are key sites for the
control of descending pain modulation, disruption of
which in rodent models of painful-DPN has been shown
to lead to enhancement of descending pain facilitation
[140, 141]. In human studies, our group performed MR-
dynamic susceptibility contrast imaging at rest and un-
der experimental pain, by applying heat pain to the lat-
eral thigh where participants did not experience neurop-
athy [142]. During experimental pain, the time to peak
concentration of contrast reduced in healthy volunteers
but significantly increased in subjects with painful-DPN
in the bilateral sensory cortices and thalami, perhaps
indicating an underlying impairment in descending inhi-
bition. Segerdahl et al. interrogated the ventrolateral
PAG (vlPAG) using resting state fMRI and arterial spin
labelling to determine cerebral blood flow at rest and
during heat stimulation to the foot [143•]. The painful-
DPN group demonstrated altered vlPAG functional con-
nectivity, which correlated to their pain intensity and the
cerebral blood flow changes induced by experimental
thermal stimulation. These studies indicate that abnor-
malities within the descending pain modulatory system
may result not only in reduced inhibition of pain but
increased amplification of pain signals in painful-DPN.

Higher Brain Centers

The higher brain centers are involved in the localization
of pain (e.g., somatosensory cortex) as well as the be-
havioral, cognitive, and emotional response to painful
stimuli (e.g., ACC, amygdala, insular cortex). Using a
technique known as voxel-based morphometry, we cal-
culated the brain volumes in subjects with DPN and
identified total brain volume reduction which was local-
ized to the somatosensory regions [144, 145].

Furthermore, our group has performed the largest cohort
study of brain volume changes in DPN and painful-
DPN to date [146]. In painful-DPN, cortical atrophy is
localized within the somatomotor cortex and insula. We
have also demonstrated abnormal cortical interactions
within the somatomotor network at rest which correlated
with measures of pain and behavior in subjects with
painful-DPN [147]. A recent study performed single-
photon emission computed tomography to assess cere-
bral blood flow (CBF) in 24 subjects with painful- and
20 painless-DPN [148]. The painful-DPN group demon-
strated increased CBF within the right ACC and left
nucleus accuumbens. However, the painless-DPN group
demonstrated more severe neurophysiological neuropath-
ic impairment which may be a potential confounding
factor. Furthermore, application of thermal heat stimuli
resulted in altered BOLD fMRI responses in painful-
compared with painless-DPN, seen in two studies [149,
150]. A pilot study within our group found greater
BOLD response within the primary somatosensory cor-
tex, lateral frontal, and cerebellar regions [149].
Whereas Tseng et al. demonstrated augmented responses
in multiple limbic and striatal structures (i.e., ACC, su-
perior frontal gyrus, medial thalamus, anterior insular
cortex, lentiform nucleus, and premotor area) with the
BOLD signal in the ACC and lentiform nucleus corre-
lating with pain rating to thermal stimulation [150]. It is
currently unknown whether the CNS changes described
in these studies are a response to peripheral nervous
system afferent inputs or a primary mechanism respon-
sible for the maintenance of neuropathic pain.

Conclusions

Painful-DPN is a major cause of morbidity in patients
with DM. Unfortunately, our understanding of why pa-
tients with DPN develop neuropathic pain remains inad-
equate (Fig. 1.). We have summarized the current evi-
dence of the differences between painful- and painless-
DPN (see Table 1.). However, there are limitations in
many of the studies including small sample sizes, inap-
propriate definition of neuropathic pain and DPN, and
measurement of multiple variables, leading to a risk of
false positives. More recently, large, well-characterized
cross-sectional cohort studies have given valid insights
into the risk factors and somatosensory profiles of
painful-DPN [23••, 27••, 28••]. Unfortunately, longitudi-
nal studies which prospectively identify definitive differ-
ences in painful-DPN have not yet been performed, and
would be logistically challenging and costly to perform.
These limitations notwithstanding, painful-DPN seems
to be associated with female gender, increased small
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fiber injury and/or function, and peripheral/central vas-
cular alterations. The role of autonomic dysfunction, vi-
tamin D, inflammatory mediators, genetic factors, and
methylglyoxal needs further clarification. Studies of the
CNS demonstrate clear differences in painful- compared
with painless-DPN. The spinal, somatomotor, limbic,
thalamic, and ascending and descending modulatory sys-
tems demonstrate alterations using numerous testing
techniques. However, what remains unclear is the causal
relationship between painful-DPN and CNS changes.
Further studies are necessary to determine whether these
findings are the primary cause of neuropathic pain or
adaptive to neuropathic afferent impulses. Irrespective
of this, advanced MR imaging modalities have the po-
tential for acting as biomarkers for monitoring therapeu-
tic responses to treatments [151••].
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