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Window-of-Opportunity Study of
Valproic Acid in Breast Cancer
Testing a Gene Expression
Biomarker

abstract

Purpose The anticancer activity of valproic acid (VPA) is attributed to the inhibition of histone
deacetylase.WepreviouslypublishedthegenomicallyderivedsensitivitysignatureforVPA(GDSS-
VPA), ageneexpressionbiomarker thatpredictsbreast cancersensitivity toVPAinvitroand invivo.
Weconductedawindow-of-opportunity study that examined the tolerability ofVPAand theability
of the GDSS-VPA to predict biologic changes in breast tumors after treatment with VPA.

Patients and Methods Eligible women had untreated breast cancer with breast tumors larger
than1.5cm.Afterabiopsy,womenweregivenVPAfor7to12days, increasingfrom30mg/kg/dorally
divided intotwodosesperdaytoamaximumof50mg/kg/d.AfterVPAtreatment, serumVPAlevel
wasmeasured and thenbreast surgeryorbiopsywasperformed.Tumorproliferationwas assessed
byusingKi-67 immunohistochemistry.Histoneacetylationofperipheralbloodmononuclearcells
was assessed by Western blot. Dynamic contrast-enhanced magnetic resonance imaging scans
were performed before and after VPA treatment.

Results Thirty women were evaluable. Themedian age was 54 years (range, 31-73 years). Fifty-
two percent of women tolerated VPA at 50 mg/kg/d, but 10%missed more than two doses as a
result of adverse events.Grade3adverseevents includedvomiting anddiarrhea (onepatient) and
fatigue (onepatient).The end serumVPA level correlatedwith a change inhistone acetylationof
peripheral blood mononuclear cells (r = 0.451; P = .024). Fifty percent of women (three of six)
with triple-negative breast cancer had a Ki-67 reduction of at least 10% compared with 17% of
other women. Women whose tumors had higher GDSS-VPA were more likely to have a Ki-67
decrease of at least 10% (area under the curve, 0.66).

Conclusion VPA was well tolerated and there was a significant correlation between serumVPA
levelsandhistoneacetylation.VPAtreatmentcausedadecrease inproliferationofbreast tumors.
The genomic biomarker correlated with decreased proliferation. Inhibition of histone deace-
tylase is a valid strategy for drug development in triple-negative breast cancer using gene ex-
pression biomarkers.

Precis Oncol 00. © 2017 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0
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INTRODUCTION

Thegoalofbreast cancermanagement is toprovide
personalized therapy. Currently, patients receive a
series of sequential chemotherapies, antiestrogen
therapies, and/orreceptor-targetingdrugs.1Treat-
ment with nonspecific chemotherapy has substan-
tial toxicities.Treatment individualizationhasbeen
accomplished to a limited extent with the use of
hormone receptor testing to determine a patient’s
eligibility for antiestrogen therapy and human

epidermal growth factor receptor2 (HER2) testing
to determine eligibility for anti-HER2 therapies.
However,with the ability to analyze tumors on the
basis of their genomic profiles, further individu-
alization may be possible for additional cancer
therapies.

Histone deacetylase (HDAC) inhibitors have
shown promise in breast cancer in vitro, although
this promise has not yet translated to clinical
benefit. HDAC inhibitors have multiple cellular
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effects, including increasing the expression of tu-
mor suppression genes,2 increasing the expression
ofcell cycleregulators,3 increasing theexpressionof
mediators of apoptosis,4-7 decreasing proteasome-
mediated degradation of tumor suppressor genes,8

decreasing oncoprotein levels via loss of hsp90-
mediated protection,9-11 decreasing mitotic sta-
bility,12 and decreasing angiogenesis.13,14 HDAC
inhibitors potentiate the apoptotic effect of anthra-
cyclines on breast cancer cell lines.15

Valproic acid (VPA) is an antiepileptic discovered
in 1882, which has been used clinically since 1962.
VPA inhibits class I and class IIa HDACs.16,17

In vitro and in vivo studies show that VPA at
clinically relevant concentrations inhibits the
proliferation of breast cancer cell lines and
xenografts.18-21VPAhasbeenused inbreast cancer
in combination with chemotherapy in three small
trials22-24 inwhich response rates ranged from33%
to 70%, but the relative contribution of VPA and
other drugs could not be determined. By incorpo-
rating prior knowledge about the underlying sig-
naling pathways that drive cancer progression, we
can help define the patient subgroups that may
benefit fromVPA.Wepreviously published a gene
expression signature that predicted the sensitivity
of breast cancer to VPA in vitro and in vivo.21We
refer to this signature as the genomically derived
sensitivity signature for VPA (GDSS-VPA).

Before committing to phase I and II studies, it is
important to establish the biologic effect of a drug
and get preliminary data on potential biomarkers.
In window-of-opportunity studies, women with
newly diagnosed breast cancer receive a drug be-
tween the diagnostic breast biopsy and planned
surgical resection or the start of neoadjuvant
therapy. Decrease in Ki-67 during window-of-
opportunity studies is an indication of antican-
cer activity of the drug being studied.25-28 The
Valproic Acid Signature Trial (VAST) was a
window-of-opportunity study designed to assess
the tolerability of VPA, to validate the ability of
the GDSS-VPA to predict decreases in Ki-67 and
tumor changes on dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) scan-
ning, and to correlate VPA biologic activity with
bloodVPA levels andhistone acetylation changes
in blood.

PATIENTS AND METHODS

Study Design

VAST was a prospective, open-label, single-
center, window-of-opportunity study sponsored
by the Huntsman Cancer Institute and approved
by the University of Utah Institutional Review

Board. The primary objectives were to determine
safety and tolerability ofVPA,whetherVPA levels
correlate with histone acetylation in peripheral
blood mononuclear cells (PBMCs) during treat-
ment, and whether either VPA levels or histone
acetylation inPBMCspredicts histone acetylation
in tumor samples after treatment. Key secondary
objectives were to assess the sensitivity and spec-
ificity of the GDSS-VPA to predict histologically
measured antitumor activity of VPA in breast
cancer, to assess the sensitivity and specificity of
the GDSS-VPA to predict antitumor activity of
VPA in breast cancer as measured by DCE-MRI
scanning, and to determine whether women have
dose-limiting toxicities during or after treatment
with VPA over 7 to 12 days.

Eligibility

Women with any stage of breast cancer who had
received no prior treatment were potentially eli-
gible for the trial. Adult women were eligible if
they had EasternCooperativeOncologyGroup
performance status of 0 to 2, a biopsy-proven
invasive adenocarcinoma of the breast 1.5 cm or
larger by clinical examination or imaging, were
able to provide consent, and eitherwere scheduled
for breast surgery or were willing to have an end-
of-study biopsy. Exclusion criteria included preg-
nancy; need for immediate chemotherapy; hyper-
sensitivity to VPA or its components; peanut
allergy (because some VPA formulations contain
peanut oil); inadequate bone marrow, kidney, or
liver function (greater than grade 1 by Common
Terminology Criteria for Adverse Events v3);
were immunocompromised as a result of medica-
tions or HIV; used other antiepileptics or medi-
cations that interact with VPA; had inborn errors
of metabolism; had a history of pancreatitis; were
on a ketogenic diet; were unable to have an MRI
scan; or had a tumor that was unlikely to yield
adequate tissue for genomic studies.

Conduct of the Study

Women were enrolled between the biopsy that
diagnosed their breast cancer and the start of
therapy for the breast cancer, and all provided
informed consent. If RNA was not available from
thediagnosticbiopsy, abiopsywasperformedat the
start of the study.One corewas placed inRNAlater
(ThermoFisher Scientific, Waltham, MA) for
RNA isolation and one formalin-fixed paraffin-
embedded core was assessed by one pathologist to
confirm the presence of tumor and to assess Ki-67
(clone MIB-1; DAKO, Copenhagen, Denmark),
caspase 3 (clone JHM62; Leica mMicrosystems,
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Wetzlar, Germany), and p21 (Clone SX118; BD
Pharmingen, San Jose, CA) immunohistochem-
istry. Estrogen receptor (ER), progesterone re-
ceptor (PR), and HER2 were assessed by using
standard diagnosticmethods.29,30The percent of
invasive cancer cells that expressed Ki-67 in
samples before and after treatment with VPA
was determined manually by a certified expert
pathologist (R.E.F.), who used an eyeball esti-
mate. By using a subset of 24 slides, we compared
Ki-67 by eyeballing, manual counting, and dig-
ital imaging, which had high correlation (Cron-
bach’s a . .9; unpublished data). A DCE-MRI
scan was performed at baseline and after VPA
treatment.

VPAwas started at 30mg/kg/d orally divided into
twodoses per day.The start ofVPA treatmentwas
designated day 1. If no intolerable grade 2 or
higher adverse effects (AEs) were present, the dose
was increased every 3 days by 10 mg/kg/d to a
maximum of 50 mg/kg/d. The highest tolerated
dose was continued until the day of surgery or the
end-of-studybiopsy,whichwasnotbefore14doses

(7 days) of VPA had been given or after 24 doses
(12 days) of VPA had been given.

Once the patient had received the highest toler-
ated dose of VPA treatment for at least four
doses, a DCE-MRI scan was performed followed
by either surgical excision of the tumor per stan-
dard of care or a repeat core biopsy. The last dose
of VPA was given on the morning of surgery or
post-treatment biopsy. A core from the post-
treatment biopsy or surgery was placed in RNA-
later for RNA isolation, and the RNA was run on
HGU133Amicroarrays. Allmicroarrayswere run
in one batch. The blood VPA level was assessed,
andPBMCswere isolated that day aswell. PBMCs
were frozen, and histone acetylation was assessed
by using Western blot (Acetyl-H3 antibody
#9649S and beta-actin antibody #3700S; Cell
Signaling Technology, Danvers, MA).

The GDSS-VPA was calculated by using RNA
from the pretreatment and post-treatment spec-
imens as previously described.21 Parameters for
the gene expression signature were locked before
the trial. CEL files with the gene expression data
from women on the VAST trial were anony-
mized by an independent statistician not other-
wise involved in the trial. The CEL files have
been submitted to Gene Expression Omnibus
as GSE83530.

AEs were determined by using Common Termi-
nology Criteria for Adverse Events v3. Cognitive
effects were assessed by using the short portable
mental status questionnaire (SPMSQ).31

Statistical Analysis

A sample size of 33 patients was planned to give a
power of 80% to detect a correlation of 0.5 be-
tween the VPA level on the day of surgery and
change in tumor or peripheral blood histone acet-
ylation from day 0 to the day of surgery at a two-
sideda= .025. For the key endpoint of accuracy of
theGDSS-VPA, theprimarymeasureofantitumor
activity was a decrease in Ki-67 by 20%. Accuracy
of predictions was determined by using area under
the receiver operating characteristic (ROC) curves
calculated by using the pROCRpackage.32 CIs for
ROCcurveswerecalculatedbyusing themethodof
DeLong.33 Thirty-three patients would result in a
precision for estimating the specificity of the
GDSS-VPA of 6 14% if the specificity were 0.8
and 6 17% if the specificity were 0.6. For corre-
lating GDSS-VPA and change in Ki-67, Spear-
man’s r was used. Calculations were performed
withRv3.2.1 (www.r-project.org), andfigureswere
prepared by using GraphPad Prism 6.

Screened
(n = 39)

Evaluable for

  Tolerability              
  Ki-67
  PBMC histone acetylation (n = 25)
  DCE-MRI

Completed VPA
(n = 29)

Enrolled
(n = 31)

Missing some data
Post treatment MRI: (n = 4; 3 could

not complete, and 1 technical
problem)

PBMC histone acetylation: (n = 4;
insufficient PBMCs collected)

Unwilling to do rebiopsy

Withdrew consent
Could not have MRI

(n = 31)
(n = 29)

(n = 25)

(n = 8)Screen failed
No tumor on biopsy
Unable to isolate RNA
Infection

(n = 1)
(n = 2)

(n = 2)

(n = 1)
(n = 1)

(n = 1)

(n = 2)Withdrawn
(n = 1)Change in diagnosis

Withdrew consent (n = 1)

Fig 1. Flow of
participants through the
Valproic Acid Signature
Trial. DCE-MRI, dynamic
contrast-enhanced
magnetic resonance
imaging; PBMC,
peripheral blood
mononuclear cell; VPA,
valproic acid.
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RESULTS

Patient Characteristics

Between June 2010 and August 2014, 39 patients
were screened, 31 were enrolled, and 29 were
treated with VPA (Fig 1). The study was stopped
early because of slow accrual. The characteristics
of the patients are shown in Table 1. Patient
characteristics match those of the general popu-
lation of breast cancer patients, withmost patients
having tumors that were ER-positive (64%).Nine
patients (31%) had lumpectomy or mastectomy
immediately after completing the study; the
remaining patients received neoadjuvant chemo-
therapy. All patients completed the study.

Safety and Tolerability

Of the 31 women who started VPA treatment, 16
(51.6%) completed the 50 mg/kg/d dose. The
maximum dose tolerated was 40 mg/kg/d for 7
women (22.6%) and 30 mg/kg/d for 5 women
(16.1%). Three women (9.6%) stopped VPA
completely because of AEs.

The AE profile is consistent with the known
effects of VPA (Table 2). The most common
AEswere fatigue (80.6%), nausea (58.1%), vomit-
ing (48.4%), dizziness (48.4%), memory impair-
ment (32.3%), heartburn (29.0%), dysphasia
(25.8%), and weakness (22.6%). The GI symp-
toms were manageable with antiemetics and ant-
acids. Despite subjective feelings of cognitive
impairment, all women had normal scores (two
or fewer errors) on the SPMSQ throughout the

study. One patient had a surgical delay for throm-
bocytopenia. All AEs resolved quickly upon stop-
ping VPA.

Pharmacodynamics

Most women (68%) had increased PBMChistone
3 (H3) acetylation after treatment with VPA (Fig
2A). However, only 36% had more than a dou-
bling of H3 acetylation. Similarly, 80% of women
had increased levels of histone 4 acetylation,
with 32% having more than a doubling. There
was a statistically significant correlation be-
tween serum VPA levels on the last day of treat-
ment and the fold change in H3 acetylation
(r=0.45;P = .024).There seemed tobe a threshold
effect at 100 mg/mL of VPA, because no women
with VPA levels below this level had a doubling of
PBMC H3 acetylation. However, change in his-
tone acetylation was inconsistent; three of eight
women with serum VPA levels above 200 mg/mL
had less than a doubling of H3 acetylation. H3
acetylation in tumors could not be assessed be-
cause of technical issues.

We assessed the change in gene expression from
before to after VPA treatment in breast tumors by
using the GDSS-VPA, which was designed by
comparing gene expression patterns in breast can-
cer cells before and after in vitro treatment with
VPA.21 The gene expression pattern in the post-
treatment samples was significantly more like that
seen in cells treated in vitro with VPA (mean
difference, –0.2063 on a scale of 0 to 1, with
0 being the most like untreated cells and 1 being
themost likeVPA-treated cells;P, .001bypaired
t test). The change in GDSS-VPA in the post-
treatment samples compared with the pretreat-
ment samples correlated with the total VPA level
(r = –0.39; P = .05; Fig 2B).

We previously published that inhibition ofHDAC
downregulates the MYC pathway in vitro.3 In the
tumor samples before and after VPA treatment
in the VAST trial, we examined the gene expres-
sion patterns using gene set omic analysis (GSOA)
and generally applicable gene set enrichment
(GAGE).34,35 By using either the C6 data sets
(P = .022 by GSOA; P = 4.473 1027 by GAGE)
or the Hallmark pathway gene sets (P = .001 by
GSOA; P = 4.42 3 10261by GAGE) from
MSigDB,36 genes regulated by MYC were down-
regulated in the post-treatment samples compared
with the pretreatment samples.

Effects on Tumors

Four women (14%) had a decrease in Ki-67 of at
least 20%, and seven (24%) had a decrease in

Table 1. Characteristics of participants in VAST

Characteristic No. %

Median age, years (range) 54 (31-73)

Tumor size

T1 1 3

T2 18 58

T3 10 32

T4 2 6

Tumor grade

1 1 3

2 14 45

3 16 52

ER-positive/HER2-negative 17 57

ER-positive/HER2-positive 4 13

ER-negative/HER2-positive 4 13

Triple-negative 6 20

Abbreviations: ER, estrogen receptor; HER2, human epidermal growth receptor 2; VAST, Valproic
Acid Signature Trial.
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Ki-67 of at least 10%. Examples of histologic
treatment effect and decrease in proliferation by
Ki-67 immunohistochemistry are shown in
Figure 3A-B.The change inKi-67was not related
to the final VPA level. However, pretreatment
tumor characteristics seemed to influence response
to VPA treatment (Fig 3C). No woman with
HER2-positive breast cancer had a decrease in
Ki-67 of 10% or greater. Thirty-one percent of
the women with ER-positive/HER2-negative
breast cancer had a decrease in Ki-67 of at least
10%, and 50% of women with triple-negative
breast cancer (TNBC) had a decrease inKi-67 of
10% or greater with VPA treatment. Baseline
Ki-67 also predicted change in Ki-67 (r = –0.37;
P = .04).

Inposthocanalyses,wecompared the fourwomen
whose tumors had decrease in Ki-67 of 20% or
greater with the rest of the women. There was no
detectable difference in age, grade, tumor size,
baseline Ki-67, final VPA level, or tumor subtype
between the four responding women and the rest
of the group, with the exception of the lack of
HER2-positve tumors among the responders. In
particular, of the four women with tumors whose

Ki-67 decreasedby 20%ormore, two tumorswere
ER-positive/PR-positive and two were triple-
negative, two were grade 3 and two were grade 2.

In addition to using GDSS-VPA as an indicator
of exposure to VPA, we tested its ability as a
biomarker on the pretreatment tumor RNA to
predict sensitivity to VPA. There was a statis-
tically significant relationship between the gene
expression predictorGDSS-VPA and change in
Ki-67 (r = –0.43; P = .021), although the re-
lationship seemed to be nonlinear (Fig 4A).
Analysis of ROC curves showed an area under
the curve of 0.66 (95% CI, 0.38 to 0.95) for
predicting a Ki-67 reduction of 20% with the
GDSS-VPA (Fig 4B). With the optimal cutoff
chosen post hoc on the basis of the ROC curves,
the GDSS-VPA had a sensitivity of 75% and a
specificity of 64% for predicting a decrease in
Ki-67 of at least 20%. In a post-hoc analysis
excluding women with HER2-positive tumors,
because of the lack of response in this subgroup,
the area under the curve increased to 0.74 (95%
CI, 0.44 to 1.00).

As expected, given the shortdurationof treatment,
there were no changes in tumor size between the

Table 2. Treatment-Emergent AEs

AE

Grade 2 Grade 3 Any grade

No. % No. % No. %

Fatigue 5 16.1 1 3.2 25 80.6

Nausea 11 35.5 18 58.1

Vomiting 8 25.8 1 3.2 15 48.4

Dizziness 3 9.7 1 3.2 15 48.4

Headache 2 6.4 15 48.4

Memory impairment 2 6.4 10 32.3

Heartburn/dyspepsia 1 3.2 9 29.0

Dysphasia 4 12.9 8 25.8

Weakness 2 6.4 7 22.6

Cognitive disturbance (concentration) 3 9.7 6 19.4

Tinnitus 2 6.4 6 19.4

Hot flashes 1 3.2 4 12.9

Anorexia 2 6.4 2 6.4

Ataxia 2 6.4 2 6.4

Pruritus/itching 1 3.2 2 6.4

Diarrhea 1 3.2 2 6.4

Insomnia 1 3.2 1 3.2

Arthalgias 1 3.2 1 3.2

Somnolence 1 3.2 1 3.2

NOTE. AEs are included if they were grade 2 or higher. All toxicities that affected at least 10% of participants also met this criteria.
Abbreviation: AE, adverse event.
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pre- and post-treatment MRI scans. No tumors
showed a change in ER expression in response to
VPA treatment. One tumor, which had a decrease
from 60% to 40% in Ki-67, was grade 3 on the
pretreatment biopsy and grade 2 on the post-
treatment lumpectomy, and one tumor was grade
2 on the pretreatment biopsy and grade 3 on the
post-treatment lumpectomy. These changes are
consistent with the known rate of discrepancy
between biopsies and subsequent excisions.There
were no significant changes in any perfusion im-
aging parameters on DCE-MRI with VPA treat-
ment. Caspase 3 and p21 immunohistochemistry
were not informative (data not shown).

DISCUSSION

A window-of-opportunity trial was feasible in
women with breast cancer in the United States.
Window-of-opportunity studies have been pro-
posed as an efficient use of the time between
diagnosis and definitive therapy for testing the
biologic effects of novel therapies. Window-of-
opportunity studies in breast cancer have been
completed in the United Kingdom, Sweden, and
Canada.25,26,37-41 In the United States, window-
of-opportunity studies have been conducted but
have beenmore challenging.42-46 Despite the lack
of evidence of harm from short delays in definitive
therapy, women in the United States are often
reluctant to wait more than 2 weeks between
seeing a surgeon and having surgery.41

The VAST trial enrolled 94% of the goal pop-
ulation over 4 years. Although significant hurdles
remain, this study demonstrates that window-
of-opportunity studies can be completed for
breast cancer in the United States. We found
that limiting the delay to 1 week helped with
accrual.

The study’s key objectives were met. VPA had no
grade 4 toxicities at doses that achieved histone
acetylation changes in peripheral blood, and serum
VPA levels correlated with histone acetylation in
PBMCs. VAST demonstrates that HDAC inhib-
itors have biologic activity in a subset of breast
cancers.Without treatment, the absolute change in
Ki-67 between biopsy and surgery averages 2% to
4%.47 By contrast, large changes inKi-67were seen
in somewomen inour trial, particularlywomenwith
TNBC.Interestingly,noactivitywasseeninHER2-
positive cancers. This contrasts with in vitro and
in silico data from our group and from others.21,48

The reason for this lack of sensitivitymay be related
to the differences in expression of the various
HDACs among breast cancer subtypes.49,50

Our results complement another recent window-
of-opportunity study of HDAC inhibitors in
breast cancer. Stearns et al44 treated women with
3 days of vorinostat before surgery and found a
decrease inKi-67geneexpression.Theauthors saw
no differences in apoptosis, similar to our data. In
their trial, no significant change in Ki-67 by im-
munohistochemistry was seen, possibly because
of the shorter treatment time. They did not ex-
amine clinical, histologic, or genomic predictors
of response to HDAC inhibition. Other ongoing
studies are combiningHDAC inhibitors with che-
motherapy (NCT02632071, NCT02393794), en-
docrine therapy (NCT02820961,NCT02115282,
NCT02395627), or immunotherapy (NCT02708680,
NCT02453620,NCT02395627).None of these tri-
als use a biomarker selected population.

TheGDSS-VPAwas a prespecified gene expres-
sion signature performed in a blinded fashion.
Importantly, tumors that were predicted to be
resistant to VPA were unlikely to have a de-
crease in Ki-67 in response to a short period of
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treatment with VPA. Alternatively, most of the
tumors thatwere predicted to be sensitive toVPA
did show decreases in Ki-67. Our results offer
some support to the idea that a sensitivity bio-
marker based on in vitro gene expression changes
can predict biologic behavior in patients. Like
any biomarker, GDSS-VPA was not perfect.
Discrepant response to drug and biomarker pre-
diction could be the result of tumor heterogene-
ity, subtherapeuticVPA levels, deficiencies in the
signature, or insufficient time of treatment; our

sample size was too small for a multivariable
analysis.

VPA faces significant challenges as an anti–
breast cancer agent. Although by traditional
measures it is well tolerated with no grade 4
toxicities, many of the grade 2 toxicities, includ-
ing dizziness, sleepiness, and cognitive slowing,
are intolerable over long periods of time and are
difficult to ameliorate with standard supportive
care. A substantial minority of women were un-
able to tolerate a therapeutic level of VPA.
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Fig 3. (A) Hematoxylin
andeosinstain frombiopsies
before (left) and after (right)
treatment with valproic
acid (VPA) showing fibrosis
typical of a post-treatment
effect. (B) Ki-67
immunohistochemistry
from biopsies before (left)
and after (right) VPA
treatment showing
a decrease from
approximately 70% to
approximately 30%. (C)
Scatter plot of the absolute
change in Ki-67 from the
post-treatment tumor
compared with the
pretreatment tumor by
tumor subtype. The y-axis is
linear. Horizontal lines
show the mean change in
Ki-67 for each subgroup.
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Finally, the nonlinear relationship between VPA
serum levels and PBMC histone acetylation
changes suggests pharmacogenetic effects that
may make VPA ineffective in some people.
Therefore, otherHDAC inhibitors may bemore
appropriate for future studies.

Weaknesses of our study include the small sample
size and the inability to assess histone acetylation
changes in tumors. The sample size limited the
power to assess the independence of variables
that affected sensitivity to VPA, including tumor
subtype andGDSS-VPA. Conclusions about the
relationship between tumor subtype and sensi-
tivity to VPA are hypothesis generating only.
Finally, the short time period of treatment may

not have been long enough to see the full effect of
treatment.

We were able to complete a window-of-
opportunity trial of VPA in breast cancer and
to test a gene expression biomarker of sensitivity
to VPA. The VAST trial showed both a biologic
response of breast tumors, particularly TNBCs,
toHDAC inhibition and a significant correlation
between our drug response biomarker and de-
creased proliferation after treatment with VPA.
Future studies of HDAC inhibitors in select
populations testing gene expression biomarkers
are warranted.
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