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Arrhythmia Mechanisms and Basic Science

The general principles of cardiac electrophysiology (EP) have been 
studied for over a century, providing strong theoretical foundations upon 
which contemporary clinical management of arrhythmias is founded.1,2 
Contemporary clinical EP typically requires physicians to generate an 
electroanatomical model and commonly uses measurements of activation 
across the anatomy to diagnose, prescribe and provide therapy in the 
form of targeted ablation therapy. However, the treatment of AF, and even 
atrial flutter, is uncharacteristically generalised to anatomy.3,4 The standard 
anatomically-based treatment for AF, which isolates the pulmonary veins, 
provides only moderate performance in achieving long-term freedom 
from AF, particularly in patients with persistent AF.5,6 

AF is characterised by chaotic and non-synchronised waves of 
depolarisation propagating throughout the atrial syncytium. This degree 
of asynchrony prevents traditional fixed-reference-based timing 
measurements that are nearly ubiquitous in basic and clinical EP, limiting 
the ability to observe and characterise the pathophysiology of AF and 
ultimately stifling the efficacy of patient-specific therapy in the past.7 
However, large quantities of electroanatomical mapping (EAM) data are 
now available, together with new analysis techniques, with the potential 
to improve mechanistic understanding and treatment approaches through 
computational modelling.8

Computational modelling has long been used to improve our 
understanding of the underlying mechanisms that initiate, sustain and 
modulate complex arrhythmogenic substrates.9 For example, evidence 
from a right ventricular computational model was used by Hoogendijk et 
al. to investigate the current-load mismatch phenomenon in the sub-
epicardium of patients with Brugada syndrome (BrS) that leads to 
alterations in excitation wavelength and, ultimately, elevates arrhythmia 
risk.10,11 In addition, simulations generated through cardiac computational 
models have been used to predict phenotypes of a wide range of 
pathologies, such as acute ischaemia, BrS, long QT syndrome, MI and AF, 
to name just a few.12,13 

Personalised versions of these computational models may be used to 
predict individual patient response to ablation therapy, to predict patient 
trajectories, to guide individualised pharmacological treatment or for in 
silico trials. The patient-specific models can be personalised to different 
degrees using data from imaging or EAM. Specifically, creating 
personalised models of a patient’s cardiac EP requires several key 
components: an accurate geometric representation of the patient’s 
anatomy, an ability to characterise a patient’s electrophysiological 
substrate, a computational model of propagation, a method to calibrate 
the computational model to patient conduction properties and an 
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assessment of the uncertainty associated with measurement and 
parameterisation of the model. This review will summarise the recent 
advancements in the personalisation of atrial EP modelling using EAM 
data with a particular focus on progress made in the last decade in the 
field of model personalisation and calibration.

Personalised Geometry
Anatomically realistic geometries for personalised simulations of 
cardiac pathologies typically require either 3D imaging data, including 
CT, MRI and ultrasound, or anatomies constructed from catheter 
navigation within an EAM system during an EP procedure. The EAM data 
are segmented and meshed to create an anatomical model represented 
as either a single surface (a monolayer model), coupled endocardial 
and epicardial surfaces (a bilayer model) or a 3D volumetric model. An 
alternative technique to create an anatomical model that does not 
require patient-specific imaging data is to use a statistical shape 
modelling approach that generates anatomies within the ranges 
expected across a population.14 

To improve the model correspondence with clinical recordings, anatomical 
models may be augmented with specialised anatomical structures (such 
as the sino-atrial node, Bachmann’s bundle, crista terminalis and pectinate 
muscles) and inter-atrial structures in biatrial geometries, as well as 
outflow tracts and the Purkinje system in the ventricles.15–17 These 

structures may be registered from an atlas using a standard coordinate 
system to map spatial information between anatomical meshes; for 
example, the universal atrial coordinate and universal ventricular 
coordinate systems.18,19 

Universal coordinates are a visualisation technique and also a coordinate 
system for the registration and construction of patient-specific anatomical 
models. In addition to realistic anatomy, the fibre orientation of myocardial 
tissue may be encoded in the personalised geometry, typically using rule- 
or atlas-based methods using universal coordinate systems.20 Besides 
rule- or atlas-based methods that rely on diffusion tensor imaging, 
techniques have been developed to estimate cardiac fibres and 
anisotropy of conduction based on EAM data recordings.21,22 These 
methods for geometry personalisation have successfully produced single-
chamber as well as bi-atrial, bi-ventricle and four-chamber heart 
anatomies for personalised simulations.14,23 An example workflow for 
generating personalised cardiac geometries, along with major types of 
anatomical models, is depicted in Figure 1.

Mapping Individualised Electrophysiology
Personalised anatomical information may be augmented with detailed 
functional and structural information derived from EAM data or other 
imaging systems. These data enable characterisation of a patient’s 
pathophysiology through strictly structural means (e.g. fibrosis imaging), 

Figure 1: Anatomical Model Personalisation Workflow
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Source data derived using imaging modalities or EAM system catheter locations are used to generate patient-specific 3D anatomical models142–144 that include monolayer,104 bilayer,15,20 volumetric145 or 
statistical shape models.34 Integrating spatial information from multimodal datasets, as well as generalising the data across patient, requires a universal coordinate system146 such as the UVC18 or UAC.20 
Tissue fibres are added to the 3D anatomical model using rule-147 or atlas-based methods22 to introduce anisotropy of conduction observed in histological studies of human and animal tissue samples 
using diffusion tensor imaging. EAM = electroanatomical mapping; f0 = fibre direction; s0 = sheet direction; n0 = sheet normal direction; UAC = universal atrial coordinate; UVC = universal ventricular 
coordinate.
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surrogate electrical measures (e.g. low bipolar voltage), or interrogation 
of the activation sequence (e.g. conduction velocity [CV]; Figure 2).

Fibrosis Imaging and Bipolar Voltage Mapping
Fibrosis is a fundamental process observed in cardiac re-modelling and is 
considered to be a key contributor to cardiac pathologies. Low voltage 
mapping during electroanatomical catheter ablation procedures is used 
as a surrogate marker to identify and map fibrotic cardiac substrates.24,25 
Modelling of fibrosis in regions identified through imaging and voltage-
based (surrogate) techniques has been attempted in the past decade for 
better understanding and personalised treatment of cardiac 
arrhythmias.26,27 Such biophysical fibrosis models incorporate changes 
introduced at the membrane, cellular and tissue level.28 For example, the 
down-regulation and lateralisation of connexins (gap junctional protein) at 
the membrane level is incorporated in the personalised models either 
through reduction in coupling strength between cells or an increase in 
anisotropy ratios along with reduction in CV.19,29,30 At the cellular level, 
fibrosis personalisation includes assigning myofibroblast properties to a 
percentage of elements, with a random distribution, within the identified 
fibrotic regions. Deposits of excess collagen at the tissue level have been 
introduced into computational models using layers of electrical isolation 
in a coarse 2D mesh, achieved via element decoupling, or a percolation 
method that removes elements as a probabilistic function of late 
gadolinium enhancement (LGE)-MRI intensity.19,27

Characterising Personalised Propagation
Local Activation Time Annotation
Annotation of local activation times (LATs) on cardiac electrograms (EGMs) 
estimates the time that underlying or nearby tissue depolarises (or 
activates) at a recording site.31,32 This estimate of LAT is repeated over 
space, either sequentially, simultaneously or a combination of both, to 
build a LAT map over a given anatomical structure. Clinically, intracardiac 

EGMs are acquired and processed using EAM software to build LAT maps 
that are used by clinicians to diagnose and treat arrhythmogenic sites and 
pathways.32 Accurate annotation of LATs in the clinic enables patient-
specific diagnosis and treatment, as opposed to anatomical-only ablation 
approaches (such as pulmonary vein isolation).33 As such, the ability to 
successfully treat arrhythmias and to generate personalised models is 
intrinsically dependent on the annotation accuracy of activations on each 
EGM recording; hence, this process occupies a fundamental step in EP 
personalisation pipelines.34,35 However, the technique with which LAT is 
annotated varies substantially throughout the literature.

The most common and well-validated technique for annotating the LAT on 
unipolar EGMs uses the maximum negative gradient.36 LAT annotation for 
unipolar and bipolar EGMs using maximum gradient, signal morphology, 
wavelet decomposition and other signal processing techniques developed 
during the past decades has been previously reviewed by Cantwell et al.37 
The clinical environment can make robust and reliable annotation of 
activation using these earlier techniques alone challenging, motivating 
the recent development of several innovative approaches. These include 
probabilistic, hybrid and inverse methods that aim to mitigate the primary 
sources of error encountered when annotating LATs: far-field signal 
artefacts in unipolar EGMs, orientation ambiguity in the case of bipolar 
EGMs and uncertainty associated with acquiring intracardiac 
measurements.38–42 Table 1 lists techniques organised by category, along 
with the expected advantages that these approaches can provide towards 
model personalisation.

Interpolation of Activation Time Maps
Activation map construction is the result of a combination of steps, in 
which each step has an important impact on the final map. Along with 
signal annotation, activation time interpolation is an important (and often 
overlooked) step.43 LAT interpolation remains an open and challenging 
research problem for several reasons. First, LAT recordings may be sparse 
and limited in resolution, so it is not currently possible to clinically record 
EGMs in all regions of the anatomy being personalised. In addition, the 
data are irregularly sampled with respect to the anatomical mesh. 

Additional challenges for model personalisation include that each patient 
has both a unique cardiac anatomical structure and a distinct electrical 
activation pattern that must be taken into account to obtain an accurate 
LAT map. Furthermore, the surface of the heart is an irregular domain that 
is hard to represent mathematically and leverage for interpolation.44

However, in contrast to signal annotation, users cannot currently modify 
interpolation schemes in clinical practice, making their impact more 
difficult to study. Various interpolation schemes have already been 
reviewed, along with their effects on EAM.37,45–48 A comparison of current 
techniques aimed at the reconstruction of activation maps using sparse 
EAM recordings is shown in Table 2.44,49–52

Conduction Velocity Estimation
CV is one of the most important metrics for assessing and personalising 
cardiac activation patterns. Activation maps generated through annotation 
and interpolation are used as the input for the assessment of CV. Available 
CV estimation methods have been previously reviewed by Cantwell et 
al.37 Challenges associated with CV computation were covered by Han et 
al., and recent CV estimation techniques were compared by Nagel et al. 
and Good et al.47,53–55 Reviews on patient-specific models also consider 
CV an important determinant of model personalisation.56–58 A recent 
comprehensive review of clinical tools, algorithms and approaches by 

Figure 2: Left Atrium Model Personalisation Pipeline
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Coveney et al. classified available techniques into local, global and 
inverse methods, with detail on the advantages and disadvantages of 
each.47 As such, a huge body of literature on CV spans across a number of 
recording and measurement modalities, including EAM, optical mapping, 
ECG imaging, torso tank experiments, multi-electrode socks and arrays, 
plunge needles, etc. A detailed comparison of the techniques and 
approaches for the assessment of CV is beyond the scope of this review; 
however, recent methods used in current personalised models include 
inverse eikonal methods, omnipolar EGM-based techniques, probabilistic 
methods and streamline-based techniques.50,59–62 Previously reviewed 
methods commonly used in personalised models include radial basis 
functions, gradient methodologies, the use of isochrones and wavefront 
fitting methods.35,47

Contemporary Proprietary Techniques
Along with the aforementioned techniques, automatically annotated LAT 
maps generated from EAM systems have also been imported directly into 
model personalisation pipelines.34,35,63 Example LAT annotation systems 
include the advanced reference annotation algorithm in CARTO 3 V7 
(Biosense Webster), AcQMap (Acutus Medical) charge density (CD) 
mapping, and RHYTHMIA HDx LUMIPOINT (Boston Scientific). 

Although a clinical trial to compare these competing technologies is yet to 
be attempted, the performance of these algorithms regarding the 
accuracy of LAT annotation has been evaluated in a number of separate 
randomised clinical trials. For instance, clinical trials of the advanced 
reference algorithm (CARTO 3 V7), which uses a weighted reference 
algorithm across multiple electrodes to optimise reference annotation, 
demonstrated that this algorithm outperformed legacy algorithms and 
expert clinician diagnosis for 17 categories of both atrial and ventricular 
arrhythmias including AF, atrial flutter and VT.64 

Another recent international multicentre study MANual versus autoMATIC 
found that the CARTO 3 wavefront tracking algorithm demonstrated 

higher procedural efficiency compared with conventional, manual 
annotation carried out by expert operators, when applied to premature 
ventricular complex ablation.65 The RHYTHMIA HDx LUMIPOINT software, 
which uses a ‘group reannotation’ feature, displayed improved accuracy 
of LAT automatic annotation in a clinical study carried out to identify 
earliest activation in idiopathic right ventricle outflow tract ventricular 
arrhythmias.66 The Acutus Medical CD-based multi-position non-contact 
mapping produced highly accurate maps equivalent to gold standard 
contact mapping in 3 minutes of procedural time during clinical trials 
carried out to identify atrial tachycardia mechanisms and ablation sites.67 
Interesting developments make automatic LAT annotation a subject of 
expanding research interest that may lead to better and improved 
personalisation of computational models.

Models for Simulating Cardiac Electrophysiology
A variety of propagation models of EP are employed to simulate different 
arrhythmias, for mechanistic investigation, or to predict treatment 
response. The aforementioned models, including their advantages and 
limitations, have been discussed in several reviews. These models can be 
broadly classified into the following main categories based on their type 
and level of complexity: 

Cellular and sub-cellular level models: this category is fairly broad and 
covers a variety of ordinary differential equations-based models that 
provide a mathematical description of the physiology of the cardiac cells 
and transmembrane potential.68 These enable simulations of ionic 
currents, channels, gating variables, pumps, exchangers, calcium cycling 
and other cellular/subcellular functions using Hodgkin–Huxley- and 
Noble-type formulations.69

Reaction diffusion type models: founded on Maxwell’s equations and 
the volume conductor theory, the reaction-diffusion type bidomain and 
monodomain model simulate propagation of the transmembrane 
potential.70 These comprise a pair of coupled partial differential equations 

Table 1: Local Activation Time Annotation Methods

Annotation 
Type

EGM Type Methodology Applicability for 
Personalised Models

Validation Techniques

Unipolar Bipolar
Spatiotemporal41

✓ Incorporates not only the temporal EGM deflection, but 
also the spatial gradients

Noisy or fractionated input 
signals

Simulated data, torso tank data 
and limited clinical data (n=1)

Probabilistic38

✓

Amplitude normalised BiEGMs are bracketed using 2.5% 
amplitude threshold. Gaussian process is applied to 
reconstruct smooth signal using raw recorded data. 
Cumulative area under the signal is calculated and extents 
are marked at 75% and 25% of the cumulative area. LAT is 
marked at 50% of the area under the rectified 
differentiated signal between the signal beginning and 
end.

Sparse clinical EAM data and 
for obtaining uncertainty 
estimates

Clinical data for limited number 
of patients (n=3)

Hybrid39

✓ ✓

Detects the maximal negative slope in the unipolar EGM 
within a predefined window demarcated by the beginning 
and the end of the bipolar activation complex

Effective in case of 
fractionated signals where 
legacy annotation methods 
might fail

Clinically validated for 
activation time (n=31) and focal 
premature ventricular 
complexes (n=15)

DELTA40

✓
Bipolar EGMs are calculated as the difference between 
pairs of amplitude normalised unipolar signals

Effective to counter unipolar/
bipolar EGM recording 
artefacts

LAT difference measurements 
by DELTA were compared with 
simulated ground truth

Deconvolution with 
regularisation42

✓

Use of regularisation based on sparsity of the first-order 
time derivative of the EGMs to solve the inverse problem 
of local activity estimation. Proposed deconvolution 
problem is solved using the split Bregman method.

Improved LAT annotation of 
fractionated atrial EGMs

Simulated data, Limited 
patients. Epicardial EGM 
recording using 8 × 24 unipolar 
electrode array.

BiEGM = bipolar electrogram; DELTA = determination of electrogram latencies using transformation of amplitude; EAM = electroanatomical mapping; EGM = electrogram; LAT = local activation time.
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coupled with a suitable set of ionic current cellular ordinary differential 
equations, enabling us to model the action potential and the diffusion of 
current through the myocardial tissue.71–74

Reduced-order models: another type of model is reduced order versions 
of the full order bidomain equations.75,76 For example, eikonal models are 
based on macroscopic kinetics of the EP wavefront propagation and 
provide an efficient way of computing arrival times of depolarisation 
wavefronts in the myocardium. Variants of the eikonal type models that 
have been used in personalised models include reaction-eikonal and 
diffusion-reaction-eikonal.77

Cellular automata: cellular automata models follow a set of rules to 
simulate electrical propagation. Previous applications include assessing 
the risk of arrhythmia in patients who have had an MI.72

Limitations and Challenges
While the predictive nature of personalised electrophysiology models can 
immensely contribute towards developing tools to advance the precision 
and efficacy of AF treatment, the following limitations pose substantial 
challenges. 

Simplified representations: despite significant progress in EAM-based 
modelling of personalised organ-level EP propagation, such as ionic 
cellular currents and action potentials, cellular calcium dynamics, model-
based reconstruction of EGMs and sensitivity analysis linking cell to whole 
organ mechanisms, the existing models still introduce certain 
simplifications in cardiac tissue physics and may not capture the full 
complexity of arrhythmogenic substrates.9,68,78,79 For example, the question 
of how to accurately model different types of fibrosis has not been 
satisfactorily answered;78 another example is related to modelling of 
necrotic infarct regions where the assumption of a pure insulator neglects 
important passive properties of myocardial scar core despite clinical and 
in vitro evidence.80 Similarly, simplified assumptions related to 
simultaneous ablation of lesions, growth and remodelling of fibrotic tissue 
and modelling of microstructure at spatial scales close to the cellular 
scale are substantial modelling challenges.81,82

Parameter sensitivity: existing models depend on numerous 
parameters and small variations in these parameters can lead to 
significant differences in model predictions.79,83 Accurate 
parameterisation can be challenging. Further details on available 
parametrisation strategies have been discussed at length in the next 

Table 2: Local Activation Time Interpolation Methods

Interpolation 
Technique

Input LAT 
Map Density

Computational 
Expense

Manifold 
Interpolation

Personalisation Feature Uncertainty 
Quantification

Cubic spline37,45 High Medium – Enables estimation of LAT values where measured values 
are not available using EAM data -

RBF37,46 Medium Medium –
Allows differentiation of interpolation function for 
calculation of CV, which can be used to calibrate EP 
model

-

PINN21,122 Medium High ✓

-	� Incorporates the physical knowledge using an eikonal 
EP model, which describes the behaviour of the 
activation times for a CV field

-	� Creates an active learning algorithm that, for a given 
set of initial measurements, recommends the location 
of the next measurement to systematically reduce the 
model error

Epistemic

GP regression29 Medium High – Directly approximates the input–output mapping by 
fitting an emulator to a set of training data LAT estimation

GPMI47,50 Medium–low Medium ✓

-	 Quantify uncertainties in LAT arising from bipolar EGM 
analysis and assignment of electrode recordings to 
the anatomical mesh

-	 Interpolate uncertain LAT measurements directly on 
left atrial manifolds to obtain a global probabilistic 
activation maps

-	 Interpolate LAT jointly across both the manifold and 
different S1–S2 pacing protocols

-	 Assign confidence to LAT predictions
-	 Suggested GP allows to estimate CV distributions from 

a probabilistic interpolation of noisy LAT measurement

LAT annotation, 
observation and
estimation

CV estimation

Graph convolutional 
neural networks51,52 Low High –

Convolutional layers leverage feature information of 
vertices within local neighbourhoods defined on a graph. 
By stacking these convolutional layers, the network can 
propagate information over a large receptive field

LAT estimation

Graph signal 
interpolation44 Low Low ✓

A graph signal processing framework to reformulate the 
irregular spatial interpolation problem into a semi-
supervised learning problem on the manifold with a 
closed-form solution that requires less time for activation 
map generation and fewer observations (n=100)

-

CV = conduction velocity; EAM = electroanatomical mapping; EGM = electrogram; EP = electrophysiology; GP = Gaussian process; GPMI = Gaussian process manifold interpolation; LAT = local activation 
time; PINN = physics-informed neural networks; RBF = radial basis function. 
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section (Approaches to Model Calibration), which addresses model 
calibration techniques.

Lack of spatial detail: many models are 1D or 2D, which may limit their 
ability to account for spatial variations in cardiac EP. Extensive 
arrhythmogenic substrates are complex and 3D, and this simplification 
can miss important phenomena. Pericardial substrates need to be 
localised exactly to be mapped and ablated, and distinguishing between 
the right and left ventricle may be challenging.

Temporal variability: cardiac properties may change on a beat-to-beat 
basis in response to changes in the autonomic system, making the choice 
of input data for calibration challenging.

Limited validation: validation of these models can be challenging due to 
the difficulty of obtaining comprehensive experimental data. This can 
make it hard to determine the accuracy and reliability of the models. 
Efforts to define methods to assess patient-specific model credibility are 
now being developed, such as the recently issued Food and Drug 
Administration guidelines and recommendations made by the research 
community.84,85

Computational intensity: simulating cardiac EP at high spatiotemporal 
resolution requires significant computational resources, making real-time 
or large-scale simulations challenging. Reduced order and simplified 
eikonal models have been proposed to allow model generation time 
suitable for clinical timelines.86,87 The accuracy of such eikonal models and 
techniques, however, requires validation against full-scale models and 
clinical data.

Model and data uncertainty: EAM data collection and suitability for 
model generation are other practical limitations associated with model 
personalisation. In this regard, the spatial resolution of recorded EAM 
data often limits model fidelity. EAM recordings collected before ablation 
therapy are mostly focused on specific regions of atria and uncertainty 
about surface recordings at unmapped regions exist. This also raises 
data-related uncertainty and can limit accurate parametrisation of cardiac 
tissue where recordings are not available. There is often uncertainty in 
the choice of model equations and parameters, which can lead to a lack 
of confidence in model predictions, especially when extrapolating to 
different conditions or patient-specific cases.88–90 A range of credibility 
assessment mechanisms/techniques/criteria for models personalised to 
patient data is required to quantify uncertainty and provide an index for 
the measure of confidence for use of a given model to serve clinical 
needs.85,91

Complexity of tissue interactions: models often do not account for the 
interaction of cardiac tissue with other parts of the body, such as the 
nervous system, which can be important in certain pathological conditions. 
Personalised models based on EAM may eventually require a modelling 
interface with other organs. An Ecosystem for Digital Twins in Healthcare 
(EDITH) has been laid out in this regard by the European Commission, with 
the aim of bridging the gap between separated single organ systems and 
a data-driven and knowledge-driven fully integrated multiscale and 
multiorgan whole-body twin.92

Incomplete knowledge: our understanding of cardiac EP is not yet 
complete, and there are still many unknown factors and mechanisms that 
models cannot account for. For example, drivers of pathologies such as 
AF, fibroblast coupling and exact mechanisms of mechano-transduction 

channels are just a few such mechanisms that are still to be uncovered. 
Limitations associated with imaging of thin tissue structures and mapping 
of electrophysiological substrate also contribute towards our incomplete 
understanding of the EP of the heart.

Patient-specific variability: final challenges include that there is a huge 
range of inter-patient variability and that pathologies affect these 
measurements.93–96 While models can be used for personalised medicine, 
individual patients may have unique characteristics that are not well-
represented by general models. There is a drive towards population-
based models to develop virtual cohorts of cardiac digital twins that can 
capture the heterogeneity associated with this challenge.97–99

Ethical and practical limitations: clinical application of computational 
models may face ethical and practical challenges, such as the need for 
accurate data and regulatory approval.

Approaches to Model Calibration
The problem of calibrating tissue conductivity parameters and conduction 
anisotropy of personalised models using electroanatomical data is 
challenging due to high dimensionality, nonlinearity and stochasticity.77 
Only three fully experimentally determined datasets of the four bidomain 
conductivities in ventricular tissue exist, while experimentally measured 
atrial tissue conductivity parameters have not been reported.100,101 For 
modelling purposes, it is customary to use these conductivity values as a 
reference value, or in lieu of accurate conductivity values, researchers 
often tune the conductivity values to ensure that the conduction velocities 
are in the range of 30–80 cm/s.73,102,103 The problem is further compounded 
due to model and measurement uncertainty.88

To overcome the above limitations, there is a drive towards discovering 
computationally efficient, faster and precise means to calibrate tissue EP 
properties to identify the mechanisms underpinning AF and to predict 
optimal therapy on a patient-specific basis.104 In this regard, the traditional 
approach towards model personalisation is aimed at calibrating the 
conductivity diffusion tensor parameters, fibre directions and anisotropy 
of conduction using EAM data.21,22,34,105 In addition to cardiac tissue 
conductivity calibration, the approach to calibrate tissue restitution 
properties leads to personalisation of the effective refractory period 
(ERP). Recently suggested methods also include probabilistic means to 
calibrate models to a range of parameters, which incorporates the effects 
of uncertainty. Various methods reported for calibrating cardiac EP models 
to EAM data recordings are covered in the following paragraphs.38,88,106

Iterative Tuning
LATs, CV and LGE-MRI image intensity ratio (IIR) have been used to 
characterise atrial tissue conductivities to calibrate models to clinical 
observations (Figure 3).107,108 The idea is to improve the agreement 
between clinical observations and simulations by using either LATs, CV or 
tissue IIR as inputs to fitting algorithms. These methods allow a global 
characterisation of tissue conductivity values based on clinical 
observations directly obtained from EAM or MRI mapping; however, a 
single map is insufficient to calibrate the anisotropy of propagation. 
Hence, typically, conduction anisotropy is prescribed based on average 
values.

LAT-based calibration A recently proposed atrial personalisation pipeline 
called AugmentA suggests iteratively tuning the conductivity of each 
element in a mesh to minimise the root mean squared error between 
simulated LAT and the recorded clinical LAT.34 In a related study, the 
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AugmentA personalisation pipeline was used to perform personalised in 
silico ablation (PersonaAL) on a cohort of 29 patients to test 13 different 
ablation approaches.105

CV-based calibration Assuming a continuously propagating planar 
wavefront along a given direction, Costa et al. proposed a method that is 
designed to iteratively retrieve all three bulk conductivities from 1D cable 
simulations by tuning them to match atrial or ventricular CV.103 This fitting 
technique was used in later work for personalising a left atrial model by 
tuning conductivity values based on CV.109 To model atrial propagation, a 
3-mm radius sphere was stimulated at a fixed location. A range of 
conductivity values were tested, with the LATs at pre-defined points 
recorded on the spherical surface. For each value of the conductivity, the 
CV triangulation algorithm was used to estimate values of conduction 
speed within each of the three triangles. The three conduction speeds 
were averaged and plotted against the conductivity to obtain a relation 
between conduction speed and conductivity values. A similar approach 
was used for atrial geometries by Pagani et al.35

IIR-based calibration: several other studies, such as Optima, rely on 
atrial IIR values for characterising atrial tissue fibrosis108–110. In addition, an 
extension to the AugmentA study has suggested a number of approaches 
for personalising models through use of atrial IIR.105 In one such method, 
the model is calibrated by discretely applying CV values depending on the 
IIR value following Beach et al.110 In this case, IIR<1.2 was used to prescribe 
normal/healthy tissue (longitudinal CV of 1 m/s), whereas, 1.2≤IIR<1.32 was 
modelled as interstitial fibrosis (0.7 m/s CV). Tissue with IIR>1.32 was 
classified as dense fibrosis (0.6 m/s CV). Another method uses a regression 
model for relating CV to IIR values.105

Inverse Eikonal Simulations
In the early 1990s, work by Franzone et al. and Keener elucidated the 
relationship between the eikonal equation and the bidomain model.71,111 
Since then, diffusion and curvature-based eikonal models of EP have 
been used as an efficient way of computing arrival times of the 
depolarisation wavefront in the myocardium; the potential limitations 
have also been studied extensively.95,96,112

Inverse eikonal simulations provide a computationally inexpensive way to 
estimate macroscopic metrics of interest, such as cardiac conductivity, 
activation times and fibre directions. To solve inverse eikonal models 
using EAM data, Chinchapatnam et al. suggested a multilevel approach to 
the conduction estimation problem, Cedilink et al. proposed parametrising 
eikonal simulations through the use of a genetic algorithm and Grandits 
et  al. developed a fast iterative method minimisation algorithm for 
identifying governing parameters of the cardiac CV field and earliest 
activation sites.112–114

A recently proposed technique called Personalized Inverse Eikonal Model 
from Cardiac Electro-Anatomical Maps (PIEMAP) implements an inverse 
problem in which the optimal conductivity tensor field is selected such 
that the mismatch between recorded activation times and the simulated 
activation times is minimised on the domain in the least-squares sense 
using a fast iterative method.115 Fibre directions and CV are estimated 
through eigen decomposition of the conductivity tensor, with the largest 
eigenvalue showing CV in the fibre direction. In a proof-of-concept 
extension to this work, PIEMAP was used to reconstruct activation patterns 
of atria for nine symptomatic paroxysmal or persistent AF patients.116 While 
a good correlation was observed (r >0.93 in seven patients and modest 
r=0.62 and r=0.74 in two patients), the technique is amenable to 

inaccuracies in the case of ectopic activity, multiple breakthroughs or 
noise in the earliest activation. Moreover, the optimisation problem is 
convex and nonlinear with a strong dependence on the choice of initial 
condition of the conductivity tensor.

Data Assimilation and Inverse Techniques
Data assimilation techniques can be used to estimate tissue conductivity 
parameters that cannot be measured or observed directly, especially in 
patient-specific settings. A variational procedure achieves this assimilation 
by finding orthotropic conductivity values that minimise the mismatch 
between cardiac EAM data and the results of an eikonal, a monodomain 
or bidomain solution.117,118 Formally, this leads to an inverse problem of EP 
discussed by MacLeod et al. and Dössel et al. and later adapted for 
determining cardiac conductivities in the monodomain model.119,120

Conduction Anisotropy Assessment
Statistical and Geometric Methods
Statistical techniques such as least squares have been used in combination 
with geometric modelling for estimating fibre direction and conductivity 
ratios from LATs recorded during the EAM process. Assuming the 
propagation wavefront as planar, circular or elliptic, the idea is to use 

Figure 3: AugmentA: Patient-specific Atrial 
Model Calibration Using Activation Maps

Clinical LATA

B

C

0 94

Simulated LAT

LAT (ms)

Iteratively tuning each element conductivity to minimise the root mean squared error between the 
simulated LAT and the recorded clinical LAT.116 A: Posterior and anterior view of the clinical LAT 
map of patient; B: Posterior and anterior view of the clinical LAT map of patient in which black 
nodes indicate nodes with an earlier activation with respect to the neighbours; C: Posterior and 
anterior view of the simulated LAT map of patient. LAT = local activation times. Source: Azzolin 
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recorded activation time and distances to estimate the conduction 
anisotropy ratio and dominant propagation direction (fibre angle) over an 
EAM mesh.

Making use of single or multiple activation maps, Roney et al. proposed 
an algorithm for estimating local conduction anisotropy and fibre 
directions.22 The algorithm works for any arrangement of points on the 
atrial surface and for any pacing location. Ellipse fitting was performed on 
CV vectors from two clinical activation maps to predict the longitudinal 
and transverse CV, assuming an atlas distribution of fibres, or to three 
activation maps fitting the fibre distribution. The proposed algorithm is not 
limited to atrial data but is also applicable to ventricular data in the 
instance that transmural activation is not considered.

Based on a similar idea, a method proposed by de Vries et al. calculated 
local conduction slowness, represented as points in the conduction 
slowness space.121 For a homogeneous area of tissue, these points 
roughly align with an ellipse. The fibre direction and conductivity 
anisotropy ratio can, therefore, be estimated from an activation map by 
fitting an ellipse to the conduction slowness points using a least squares 
approach.

Deep Learning and Physics-informed Neural Networks
Development of deep learning-based physics-informed neural networks 
(PINNs) for the solution of forward and inverse partial differential equations 
have opened new avenues to encode eikonal physics in the network loss 
function for computationally efficient and accurate means of CV and 
tissue conduction assessment using EAM mapping data.122 For estimating 
fibre anisotropy, the objective is to identify the ratio of tissue longitudinal 
and transverse conductivities such that the corresponding activation map, 
resulting from the solution of the anisotropic eikonal model, will closely 
reproduce the observed data. The method approximates both the 
activation map and the conductivity values using a feedforward neural 
network using a loss function, which comprises of the sum of activation 
time accuracy (the difference of values between model predictions and 
clinical ground truth), the partial differential equation model accuracy and 
two regularisation terms that ensure that approximated data remains in 
agreement with the physics of EP.

Built on this idea, a recently proposed multiple map neural network 
technique, FiberNet suggests the use of multiple neural networks for 
increased accuracy and penalising the loss function only partially for 
achieving a good balance between complexity and efficiency.21 This 
method estimates the complete CV tensor from a set of EAM maps. This is 
achieved by simultaneously fitting multiple neural networks to multiple 
electroanatomical maps while using a common network that predicts the 
CV tensor at different locations. The decomposition of the tensor 
simultaneously provides a patient-specific estimate of the fibre directions, 
conduction anisotropy and conduction velocities.

PINNs are constrained to respect any symmetries, invariances, or 
conservation principles originating from physical laws that govern the 
observed data, as they are modelled by eikonal models of EP. The results 
of fibres produced by this method were tested against synthetic and 
diffusion tensor MRI datasets. The method produced a root mean squared 
error of 2.09 ms in the predicted activation.

In another recent work by Ntagiantas et al., the spatial distribution of 
tissue conductivity is directly inferred from an array of concurrently 
acquired contact EGMs using a deep neural network, based on a modified 

U-net architecture.123 The network is trained to estimate location of the 
scar and conductivity of the tissue. Based on synthetic data, the method 
provides a proof of concept that EGM recordings can be used in 
conjunction with deep neural networks to estimate conduction properties 
of the underlying myocardium.

Probabilistic Calibration
Probabilistic approaches show promise as a way to obtain personalised 
models while taking account of noise, sparseness and uncertainty intrinsic 
to EAM recordings. Workflows have been proposed to recover parameters 
from sparse EAM data of atria in which Gaussian processes (GPs) are used 
to represent parameter fields, and the posterior distribution of CV is 
inferred using Markov chain Monte Carlo.50,106,124 The starting point of the 
workflow is a mesh representing the left atrium, and bipolar EGMs are 
recorded at different locations within the left atrium and at different 
pacing cycle lengths. From these observations, LATs are estimated at the 
electrode locations using a modified centre of mass method. The second 
step is to interpolate LAT across the left atrial mesh taking a set of 
uncertain measurements modelled as a GP. Having obtained a probabilistic 
interpolation of LAT, the third step is to calculate the inverse of the 
gradient in LAT to obtain an uncertain estimate of CV at each mesh vertex. 
The last step is to use these estimates to calibrate the EP model based on 
the workflow suggested by Coveney et al.124 For recovering parameters 
fields related to tissue conductivity and restitution properties and to 
calibrated EP models, an extension has been suggested using latent GPs 
by Coveney et al.106

Calibration of Tissue Restitution
Cardiac cells exhibit rate adaptation to allow the body to adapt to 
increased heart rates. This means that action potential duration and CV 
depend on the coupling interval between beats or the diastolic interval. 
There is a time after an action potential is initiated when a new action 
potential cannot be initiated, termed the ERP. Whether re-entry can be 
induced and AF properties both depend on the CV and ERP, and so 
calibration of ERP and tissue restitution is important for capturing patient-
specific arrhythmia properties.

Estimation of ERP is accomplished through an S1–S2 pacing protocol 
using a measuring catheter in the clinic (or a simulated sensing electrode 
in silico), where ERP is the longest S2 coupling interval to produce an 
atrial capture. In general, action potential duration (APD) increases with 
increasing coupling interval and the relation between action potential 
duration and the preceding diastolic interval describes the APD restitution 
curve.125 The latter has recently been the focus of considerable interest 
since the steepness of the initial part of the restitution curve plays an 
important role in electrical stability and arrhythmogenesis.126 Calibration of 
tissue restitution is markedly different from calibrating tissue conductivity 
as, in this case, there is a need to calibrate ionic properties of the cellular 
model, which are largely not directly observable.127 Some methods falling 
in this category have, therefore, made use of the modified Mitchell–
Schaeffer model described by four parameters representing the 
characteristic time constant of four distinct phases of an action potential.128

Conduction Velocity Restitution Curve Fitting
This approach makes use of an EP computational model to generate pre-
computed CV and ERP restitution curves, which are fit to clinically 
recorded data to identify model parameters.129 Using activation times 
measured with a PentaRay catheter and caused by a stimulus applied in 
the coronary sinus with a remote catheter, Corrado et al. fitted parameters 
of the modified Mitchell–Schaeffer model and the tissue conductivity to 
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the recorded local CV restitution curve and estimated local ERP. The 
method was applied to five clinical cases; the spiral wave stability was 
analysed on a 5 cm2 square homogeneous tissue slab and both stable 
and unstable self-terminating rotors were identified.130 Recently, a 
workflow based on the same calibration approach has been used to 
generate a cohort of left atrial models that capture clinically measured 
patient-specific EP heterogeneity for data sets recorded from seven 
paroxysmal AF patients undergoing pulmonary vein isolation.104

Restitution Curve Emulators
This approach is motivated by the need to perform probabilistic calibration 
with clinical data, such as restitution measurements. Restitution curve 
emulators (RCEs) are probabilistic models that can capture the shape and 
variability of restitution curves using principal component analysis and 
GPs.131 These probabilistic models can perform model exploration, 
sensitivity analysis and Bayesian calibration to noisy data. RCEs are built 
by decomposing restitution curves using principal component analysis. 
RCEs allow rapid and accurate prediction of CV, APD, and ERP restitution 
curves from model parameters.

Discussion
Innovative mechanistic EP studies have the potential to provide detailed 
characterisation of a patient’s electrophysiological substrate. For 
example, Honarbakhsh et al. recently investigated the relationship 
between rotational drivers, focal drivers, and structural remodelling.132 
Such detailed datasets may be further used to calibrate personalised 
atrial models to investigate the individual and combined contribution of 
factors to patient-specific AF mechanisms and expected treatment 
outcomes.80,105 Multiple studies have demonstrated that CV, action 
potential duration and their restitution properties vary both between 
patients and spatially across the atria.133 Initial computational studies that 
varied action potential duration and CV from a baseline parameter set 
have shown that model predictions depend on these parameters.19,134 For 
example, Deng et al. found that simulated driver locations changed when 
action potential duration and CV were changed within a small range of ± 
10%.83 As an extension to this, Macheret et al. showed that persistent AF 
simulations better matched clinical data when different conductivity 
values were simulated.135 This broadly demonstrates both the variability of 
these metrics between and within patients, and the importance of these 
metrics on personalised model predictions, and yet most studies do not 
include calibration to EP measurements. In our review, we present the 
state of the art in model personalisation using EAM data, with the hope 
that groups can use and further develop the techniques presented here in 
their research.

The state-of-the-art computational modelling of EP has matured to a level 
where clinical trials of in silico ablation approaches and population 
models of in silico pharmacology testing are now being reported.108,136 
Research software ranging from imaging data analysis to EP data import 
and treatment planning has the potential to enable a fundamental 
translation from population-based approaches to patient-specific 

treatments of cardiac pathologies. Examples, such as OpenEP pipeline 
suggested by Williams et al., cemrgApp for cardiovascular imaging by 
Razeghi et al., biatrial modelling pipeline by Roney et al. and MusiCardio 
for treatment planning by Merle et al., are just a few among a widely 
diverse range of workflows beings developed.137–140 The research 
landscape is continuously developing from cardiac digital twins to 
populations of cardiac models at scale, enabling large in silico trials. With 
a wide range of cellular-level EP models alongside a range of strategies 
for model generation and calibration, we hope that the computational and 
clinical community will devise standards and benchmarks, such as those 
suggested by Clayton et al. and Pathmanathan et al., for setting up a road 
map of implementation, from bench to bedside.84,88 Computational 
models offer valuable insights into complex arrhythmias, such as BrS and 
AF, but have limitations, including oversimplification and challenges in 
real-time dynamics capture. Dynamic aspects of arrhythmic substrates in 
BrS and AF pose modelling challenges. Ongoing research is crucial to 
refine models and ensure clinical relevance. Ethical concerns, unanswered 
questions and the lack of direct clinical validation raise limitations. Despite 
these challenges, computational models – when validated and calibrated 
– contribute scientifically to advancing the understanding of EP. 
Collaboration between researchers and industry should aim at scientific 
knowledge enhancement rather than solely increasing industry activity. 
Ethical concerns regarding therapy require cautious interpretation and 
rigorous clinical validation.

Looking to the future, we hope to see translation to the clinical 
environment of several of the probabilistic calibration techniques 
presented here for restitution and conduction anisotropy. This will require 
careful consideration of the potential limitations of the use of EAM data for 
model calibration because of the invasive nature of the data and likely 
constraints on the model complexity and processing speed to use model 
predictions in the same procedure. Future research will investigate the 
effects of new mapping modalities, including omnipolar mapping, on 
personalised model construction and the transformation of anatomically 
personalised models to EP-personalised models, with the potential to 
guide treatment.141 
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