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Abstract
Marine populations are controlled by a series of drivers, pertaining to both the physical envi-

ronment and the biological environment (trophic predator-prey interactions). There is

heated debate over drivers, especially when trying to understand the causes of major eco-

system events termed regime shifts. In this work, we have researched and developed a

novel methodology based on Genetic Programming (GP) for distinguishing which drivers

can influence species abundance. This methodology benefits of having no a priori assump-

tions either on the ecological parameters used or on the underlying mathematical relation-

ships among them. We have validated this methodology applying it to the North Sea pelagic

ecosystem. We use the target species Calanus finmarchicus, a key copepod in temperate

and subarctic ecosystems, along with 86 biological, hydrographical and climatic time series,

ranging from local water nutrients and fish predation, to large scale climate pressure pat-

terns. The chosen study area is the central North Sea, from 1972 to 2011, during which

period there was an ecological regime shift. The GP based analysis identified 3 likely drivers

of C. finmarchicus abundance, which highlights the importance of considering both physical

and trophic drivers: temperature, North Sea circulation (net flow into the North Atlantic), and

predation (herring). No large scale climate patterns were selected, suggesting that when

there is availability of both data types, local drivers are more important. The results pro-

duced by the GP based procedure are consistent with the literature published to date, and

validate the use of GP for interpreting species dynamics. We propose that this methodology

holds promises for the highly non-linear field of ecology.
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Introduction
Ecosystems dynamics are an integrated response of the ecosystem’s biological components
(species/groups) to drivers, which act independently, synergistically or even antagonistically [1,
2]. These drivers are defined as any natural or human-induced factor that directly or indirectly
causes a change in an ecosystem or population [3].

A long, unsolved ecological question is whether top-down trophic drivers (i.e. predation) or
bottom-up drivers (often intended as climate, hydrography, food) control populations and eco-
system states [4]. With regard to these terms, Conversi et al [2] note that the usage of climate
variables as bottom-up, although widely used, may not be entirely correct for the marine envi-
ronment: in fact, climate related variables, such as temperature and other physical factors are
likely to simultaneously affect several trophic levels in the marine food chain [5], or may skip
some levels [6], hence are not operating in a strictly “bottom-up”manner. Hence, in this article
we use Conversi et al [2] definitions of drivers: “physical drivers”, which are related to the phys-
ical environment, and “trophic” (or “biological”) drivers, which are related to predator-prey
interactions. Only the latter are subdivided in bottom-up and top-down drivers.

Several studies have suggested that physical processes such as climate-induced temperature
or circulation changes are the main drivers for planktonic populations [7–23], whilst others
suggest that human induced top-down changes, such as overfishing, which leads to changes in
trophic level structure and to trophic cascading, are the main drivers [24–31]. These theories
are then confronted by the idea of synergistic relationships, where a combination of drivers
control a population and a change in the population depends on how drivers affect each other
and/or on the resilience of the ecosystem [1, 2, 4–6, 32–43], and the debate is still open.

In this work, we address the question of the drivers of planktonic populations using a novel,
holistic approach, in which multiple, potential drivers are analysed without assumptions on
either their relative importance or the mathematical relationship between them and the target
species.

These potential drivers are analysed using a symbolic regression methodology based on
genetic programming (GP). GP [44–46] is a domain-independent evolutionary computation
methodology, capable of generating solutions to a given problem without any strong a-priori
knowledge or assumption on the problems solution (see S1 File for details). GP has been used
successfully in a wide range of applications [46], such as robotics [47, 48], physics [49], stock
market analysis [50], and medicine [51]. Its use for understanding environmental patterns and
drivers is very recent, for example, investigating the causes of copepod variability in the English
Channel [52], predicting harmful algal blooms [53], predicting early warning of cyanobacterial
blooms in freshwater ecosystems [54], and the energy output of wind farms based on weather
data [55]. As well as predictions, genetic algorithms have been used to parameterise coupled
biological–physical copepod population-dynamics computations [56]. In particular, the GP-
based approaches in [54] have been compared with other methodologies for multivariate func-
tion fitting and knowledge discovery and have shown superior quantitative performance.

The proposed GP-based analysis is conceptually opposite to the mechanistic approaches
where modelling is based on a-priori knowledge and the model parametrizations are based on
literature values and laboratory experiments (e.g., [57, 58]). Quite the reverse, the symbolic
regression methodology based on GP is capable of extracting mathematical models from the
data, whose interpretation can provide useful information on the investigated context. These
properties make it worth investigating how this methodology can be applied for analysing eco-
systems, in particular for detecting variables that can be relevant for (i.e., explain ecosystem
variability of) a target variable, and for identifying the mathematical models governing them
[45, 59, 60]. The GP approach can be of particular service in the analysis of population
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dynamics, since species may respond to environmental change in a nonlinear manner (as in
the case of ecological regime shifts), and the usual linear analyses may not be appropriate.

In this work, we aim to validate a novel methodology based on GP at distinguishing which
drivers can influence species abundance. We use the target species Calanus finmarchicus in the
North Sea, a key copepod in temperate and subarctic ecosystems, along with 86 biological,
hydrographical and climatic time series, ranging from local water nutrients and fish predation,
to large scale climate pressure patterns.

Calanus finmarchicus in the North Sea
The North Sea is situated on the continental shelf of northwest Europe. It opens into the Norwe-
gian Sea and the Atlantic Ocean to the north, into the Atlantic Ocean to the southwest via the
English Channel, and into the Baltic Sea to the east through the Skagerrak Strait. The North Sea
is often divided into the shallow southern North Sea (<50 m depth), the central North Sea, the
northern North Sea (~200 m depth), the Norwegian Trench (up to 700 metres deep) and the
Skagerrak. In the North Sea, North Atlantic water mixes with freshwater runoff and river dis-
charges in a predominantly anti-clockwise circulation. Smaller currents move southwards along
the east coast of the UK and northwards along the continental western European coast. Shallow
areas of the North Sea (<30 m) are generally fully mixed by tidal action, whilst deeper areas have
a surface mixed layer (upper 30 m) which is usually mixed by wind action [61, 62].

The North Sea is an area of high importance for commercial fisheries and wildlife, and once
provided 5% of the global fish harvest [41, 63]. However, the North Sea is under increasing
pressure from the effects of climate change and associated temperature increase [64] and
human populations; with increased coastal development, pollution, nutrient input, maritime
transport, as well as food and energy demands with around 30 different commercial fish stocks
still being exploited, and interests from gas, oil and renewable energy industries [61, 62]. It has
been an area of focus and debate on the drivers of pelagic populations due to a series of abrupt
ecosystem transitions, termed regime shifts [2, 65, 66]. These events affected the entire North
Sea ecosystem, however, the exact timings and causes are inconclusive, with physical and tro-
phic possible drivers, as well as synergistic combinations, being identified using a variety of
methods [21, 32, 66–76].

Copepods constitute a key trophic group, transferring energy from phytoplankton to higher
trophic levels [77]. Members of the genus Calanus are amongst the largest copepods and can
comprise as much as 90% of the dry weight of mezozooplankton in regions of the North and
Celtic Seas [77].

The calanoid copepod species Calanus finmarchicus is one of the most important large zoo-
plankton species in the subarctic waters of the North Atlantic [78] and dominates the dry
weight of the mesozooplankton in the northern regions. C. finmarchicus does not reside year-
round in the North Sea (although it did so in the 1960s [57]), and its population is replenished
each spring by advection of late-stage individuals mainly originating from an overwintering
stock located beyond the shelf edge, in the deep Atlantic and Norwegian Sea, particularly the
Faroe-Shetland Channel [79, 80], which makes this species presence in this area very suscepti-
ble to circulation changes.

Over the past four decades there has been a pronounced decline in its abundance in the
North Sea: in 1962, the species represented 80% of the total Calanus, and it used to dominate
the spring time biomass, whereas it represented only 20% of the genus by the beginning of the
2000s [8, 11, 12, 81, 82].

Calanus finmarchicus is subjected to a range of drivers, both physical and trophic (top-
down and bottom-up) (Fig 1) [81]. From eggs to adults, it is a primary source of food for

An Unbiased Analysis Approach for Investigating Population Dynamics: Drivers ofC. finmarchicus

PLOSONE | DOI:10.1371/journal.pone.0158230 July 1, 2016 3 / 26



commercially important fish species, such as cod (larvae), herring, lesser sandeel, mackerel,
blue whiting, anchovy and chaetognaths, and as such its dynamics have been extensively stud-
ied [28, 63, 83–89]. C. finmarchicus feeds on a range of microplankton including diatoms,
dinoflagellates, ciliates, coccolithophores and rotifers [90, 91]. Sea surface temperature deter-
mines the geographical, vertical, seasonal distributions, the development, and physiology of
calanoid copepods, and can be particularly relevant for C. finmarchicus, as this species is at the
edge of its thermal niche in the North Sea [11, 23, 57, 58, 71, 73, 77, 92–95]. Because this species
reproduces in the Norwegian Sea and individuals are transported from there into the North
Sea, marine circulation and the atmospheric patterns driving it are crucial for its geographical
distribution [11, 22, 79, 80, 96].

While the literature cited above indicates that this species can potentially be influenced by a
variety of drivers, many of the studies mentioned use only part of the possible drivers, which might
result in a partial picture [97]. Whilst most research traditionally focuses on a single driver (e.g.
NAO, SST, or fishery impacts), in this work we use the GP-based methodology on a large (86) col-
lection of variables, encompassing both physical and trophic, bottom-up and top-down, potential
drivers of C. finmarchicus (Table 1), without any a priori assumptions on the population’s drivers.

Materials and Methods

Overall analysis approach
The statistical approach used in this work is based on Genetic Programming, complemented
by additional statistical analyses (Fig 2). The Genetic Programming approach is a data driven

Fig 1. Variables identified as potential drivers of the abundance of C. finmarchicus. Potential drivers have been sectioned into physical, on
the left, and biological, on the right. Biological variables have subsequently been divided into two further groups, top-down and bottom-up, which
are positioned above and belowC. finmarchicus respectively. The data used in this research article are listed in Table 1.

doi:10.1371/journal.pone.0158230.g001
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Table 1. Timeseries used in this study. The links to the data sets used are shown in S3 File.

Dataset Units Period Gaps Frequency Area Source

Physical
variables

North Atlantic Oscillation
(NAO)

1950–2012 No Monthly North Eastern Atlantic NOAA-CPC

East Atlantic Pattern (EA) 1950–2012 No Monthly North Eastern Atlantic NOAA-CPC

East Atlantic West Russia
Pattern (EAWR)

1950–2012 No Monthly North Eastern Atlantic NOAA-CPC

Scandinavian Pattern (SCA) 1950–2012 No Monthly North Eastern Atlantic NOAA-CPC

Polar Eurasia Pattern (POL) 1950–2012 No Monthly North Eastern Atlantic NOAA-CPC

Atlantic Multidecadal
Oscillation (AMO)

1948–2012 No Monthly North Atlantic NOAA-PSD

Northern Hemisphere
Temperature (NHT)

1850–2012 No Monthly Northern Hemisphere NOAA-anomalies

N. Atlantic Southward Flow Sverdrup 1970–2012 No Monthly Orkney-Norway NORWegian ECOlogical
Model System (NORWECOM)

N. Atlantic Northward Flow Sverdrup 1970–2012 No Monthly Orkney-Norway NORWegian ECOlogical
Model System (NORWECOM)

N. Atlantic Net Flow Sverdrup 1970–2012 No Monthly Orkney-Norway NORWegian ECOlogical
Model System (NORWECOM)

English Channel Eastward
Flow

Sverdrup 1970–2012 No Monthly Dover Strait NORWegian ECOlogical
Model System (NORWECOM)

English Channel Westward
Flow

Sverdrup 1970–2012 No Monthly Dover Strait NORWegian ECOlogical
Model System (NORWECOM)

English Channel Net Flow Sverdrup 1970–2012 No Monthly Dover Strait NORWegian ECOlogical
Model System (NORWECOM)

Sea Surface Temperature
(SST)

°C 1891–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (surface data)

Sea Surface Salinity (SSS) PSU 1891–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (surface data)

Biological
variables

Bottom-up
drivers

Total Nitrogen (N) μmol/l 1970–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (Bottle data)

Total Phosphorus (P) μmol/l 1969–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (Bottle data)

Silicate (SiO4) μmol/l 1958–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (Bottle data)

Chlorophyll-a (Chl-a) μg/l 1961–2012 Yes Monthly 55 to 60°N and -2.5 to
9°E

ICES (Bottle data)

Phytoplankton Colour Index
(PCI)

1–5 scale 1958–2011 Yes Monthly CPR areas C1 and C255
to 58°N and -3 to 11°E

Sir Alister Hardy Foundation
for Ocean Science

Top-down
drivers

Chaetognaths Eyecount Mean 1958–2011 Yes Monthly CPR areas C1 and C255
to 58°N and -3 to 11°E

Sir Alister Hardy Foundation
for Ocean Science

Total Fish Larvae abundance 1958–2011 Yes Monthly CPR areas C1 and C255
to 58°N and -3 to 11°E

Sir Alister Hardy Foundation
for Ocean Science

Herring (Claupea harengus)
Total Stock Abundance

estimate 1947–2011 No Annual Subarea IV ICES HAWG

Herring (Claupea harengus)
Total Stock Biomass

tonnes 1947–2011 No Annual Subarea IV ICES HAWG

Cod (Gadus morhua) Aged 1
year

‘000’s 1963–2011 No Annual Subarea IV and Divisions
IIIa and VIId

ICESWGNSSK

Cod (Gadus morhua)
Spawning Stock Biomass

tonnes 1963–2011 No Annual Subarea IV and Divisions
IIIa and VIId

ICESWGNSSK

Target Variable:

Calanus finmarchicus Mean 1958–2011 Yes Monthly CPR areas C1 and C255
to 58°N and -3 to 11°E

Sir Alister Hardy Foundation
for Ocean Science

doi:10.1371/journal.pone.0158230.t001
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methodology, which has no a priori assumptions on the relationship between the data—these
relationships are selected through an evolutionary process lasting hundreds of generations.
This evolutionary/selection process is validated through a cross validation procedure. The Rele-
vance Analysis complements the selection of the variables by identifying those that occur with
a frequency superior to chance, which are therefore deemed relevant for the approximation of
the target variable. The Gradient Analysis is specific to the identification of the drivers of the
target variable since it provides essential information for causal associations, i.e., the direction
(direct or inverse) between target and relevant variables. The CuSUM analysis identifies the
year of a regime shifts, and is specific to the North Sea case study, as this sea was involved in an
ecological regime shift in the 1980s.

The details of each analysis are given in the next sections. The mathematical in depth infor-
mation is provided in S1 File.

Genetic programming
Genetic Programming (GP) is an evolutionary computation approach that generates solutions
starting from an initial population of randomly generated functions, based on a set of variables,
mathematical primitives, and constants [44–46]. As the name suggests, the initial solutions are

Fig 2. The analysis approach used in this work. The figure summarizes the proposed analysis approach,
where TS1, . . ., TSn are the time series shown in Table 1, Norm is the data normalisation step needed to
analyse time series with different magnitudes, the Genetic Programming and the Cross-Validation
respectively generate and validate the functions that approximate the target variable, the Relevant Analysis
identifies the relevant ecological variables and the modelling functions capable to express the target variable,
and finally the Gradient Analysis identifies the role of the relevant variables in relation to the target variable.
CuSUM is the cumulative sums analysis used to identify the starting year of the regime shift in the target and
relevant variables.

doi:10.1371/journal.pone.0158230.g002
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improved by miming the selection processes that occur naturally in biological systems. This is
done through an iterative process encompassing multiple generations, during which the Selec-
tion, Crossover, Clonation, and/or Mutation GP operators are applied.

This process is explained in detail in S1 File. The initial population consisted of 1000 indi-
viduals (i.e., functions) and the evolutionary process lasted for at most 500 generations, when
the stop criterion was met. To evaluate the fitness of the evolved individuals we used the Root
Mean Squared Error (RMSE) [98] between the target and the evolved individuals.

Similarly to the approach described in [99], the GP based procedure was coupled with a
Cross-Validation framework (CV) [98, 100, 101], with the aim of selecting a set of approximat-
ing functions that generalise the target variable’s dynamics.

The CV process randomly splits each time series into two disjoint subsets: (i) the training
subset used to run the GP procedure in order to evolve the functions which approximate the
target variable; (ii) the validation subset used to evaluate the approximation capability of the
evolved functions. Since the time indices of the validation subset are not involved in the train-
ing phase (training and validation subsets being disjoint), the generalization capability of an
evolved function is defined as the error obtained by predicting the values of the target variable
on the time indices of the validation subset. The smaller the prediction error, the more the
function generalises and is therefore more suitable for explaining the dynamics of the target
variable. The best generalising functions are selected to become part of a group of functions
approximating the target variable, named population-pool. The heterogeneous mathematical
forms of the population-pools individuals are normal in the context of GP, as the diversity of
the evolved genetic material (genotype) captures the complexity of the target variable [102]. In
fact, functions with different genotypes (function syntax) can produce similar phenotype
effects (function semantic), as genotype diversity, together with phenotype convergence, indi-
cates the existence of multiple solutions for the same problem [102].

All the population-pool functions were subsequently analysed for identifying the variables
relevant to the target time series.

Relevance Analysis
A variable is deemed relevant if it appears in the individuals of the population-pool more times
than by chance. On the contrary, not relevant variables should be considered randomly selected
by the GP procedure and for this reason they are not suitable for explaining the behaviour of
the target variable.

The problem of identifying whether a variable is relevant or not can be formalised as a Ber-
noulli trial [103] defined on the number of functions of the population-pool. In the proposed
experiments, the assumption that all the variables have the same probability to appear among
the individuals of the population-pool is rejected with p-value equal to 0.001 according to
Johnson [104]. According to the proposed Bernoulli trial, this p-value corresponds to a variable
occurrence greater than or equal to a threshold variable occurrence. This means that in our
study all the variables whose occurrence among the individuals of the population-pool is
greater than or equal to the threshold are deemed relevant (for details see S1 File).

Some approximating functions, or individuals, in the population-pool contain only relevant
variables; other functions contain both relevant and not relevant variables. The former individ-
uals should be considered a reliable set of functions for modelling the target variable, since they
do not contain random components; for this reason, in the remainder of this article the indi-
viduals that contain only relevant variables are namedmodelling functions (listed in S1 File).
In contrast, the individuals containing random components (not relevant variables) are
deemed not valid for generalising the dynamics of the target variable [52].
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The relevant variables and the modelling functions extracted from the population-pool
through the k-fold cross-validation framework and the proposed statistical analysis reduce the
possibility that random information contained in the evolved functions produces over-fitting
of the investigated time-series.

Gradient Analysis
The GP procedure, as all multivariate or correlation analyses, can identify the relationships but
cannot provide information on the corresponding causal direction, i.e., it does not have the
ability to distinguish the internal dynamics in trophic chains, in particular drivers from “dri-
vees”. This distinction needs to be made through the analysis of the relationships between
approximating functions, original time series, and target variable [105].

This is a common problem in the analysis of populations within food webs. To solve this we
have added to the results of the GP procedure a gradient analysis with the purpose to identify
the role of each relevant variable with respect to the target variable dynamics. In this work, the
partial derivatives of all the modelling functions have been analysed based on the finite differ-
ence approach in order to estimate the function gradient, and from this, to infer whether a rele-
vant variable is directly or inversely proportional to the target variable.

Cumulative Sums Analysis
The relevant variables were tested for a change point in their mean to further compare their
significance to the target variable. Cumulative Sums analysis (CuSUM) was used to determine
the year of the most prominent shift in the time series. This method consists of plotting the
cumulative sum of standardised values over time. Each value of the series is subtracted from
the mean of the time series, resulting in a new time series of residuals which are used for the
calculation of the cumulative sum. The interpretation is based on the slope of the line on the
chart: a constant deviation from the mean of the time series shows a constant slope. Persistent
changes from the mean of the times series cause a persistent change of the slope [66, 106].

Case Study: Calanus finmarchicus in the North Sea
Data. A total of 26 environmental variables representing large and local scale, trophic or

physical potential drivers of C. finmarchicus were used in this study (Table 1). Climatic and
hydrographic variables were further divided into seasonal averages because we wanted to eval-
uate the effect different seasons can have on zooplankton abundance [95]. Therefore, a total of
86 time series were used in this experiment. The multiplication of time series over several sea-
sons is not considered as a duplication of information, as the GP based approach simply identi-
fies the variables that are relevant in relation to C. finmarchicus and ignores all other variables,
independently from the number of variables used.

Plankton data were obtained from the Sir Alister Hardy Foundation for Ocean Science
(SAHFOS) database for the Continuous Plankton Recorder (CPR), survey regions C1 and C2,
located in the central North Sea. The CPR survey method is described in detail in [107–110].
The CPR plankton data (abundances) were separated into the target variable (Calanus fin-
marchicus), bottom-up (phytoplankton colour index (PCI)—proxy for food availability), and
top-down (chaetognaths and total fish larvae—proxies for predation) trophic variables.

Herring (Clupea harengus) and cod (Gadus morhua) estimates were chosen because they
are major predators of C. finmarchicus [63, 84, 111]. Yearly fisheries stock assessment data for
herring total stock biomass (TSB), herring abundance (sum of all age groups), cod spawning
stock biomass (SSB), and 1 year old cod (cod1) were retrieved from the annual stock-assess-
ment reports for the North Sea, ICES area IV [112, 113], which corresponds to the area selected
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for C. finmarchicus. Cod spawning stock biomass values were used as a proxy for the amount
of larvae (which feed on C. finmarchicus) which could be produced by the adult cod that year,
with a higher SSB inferring more cod larvae production. Cod stock assessments do not estimate
year 0 age groups, therefore estimates of 1-year-old cod were also used as a proxy for the abun-
dance of larvae present the year before. These two variables were used to represent the preda-
tion pressure of larval cod, as that is the key life stage which feeds on plankton.

Oceanographic data were downloaded from the International Council for the Exploration
of the Sea (ICES) Oceanographic Database for the same area as CPR survey regions C1 and C2.
Chemical and biological variables, total nitrogen, total phosphorus, silicate (SiO4), all as μmol/
l, and chlorophyll-a (μg/l) were downloaded from the CTD and Bottle Data database (Table 1).
Total nitrogen, phosphorus and silicate are considered proxies for primary productivity.

Seawater temperature and hydrography affect C. finmarchicus biogeography [39, 64]. SST
(°C) and surface salinity (PSU) were downloaded from the ICES Surface Data database, which
consists of CTD, Bottle and Underway/Pump data collected at depths< 10m (Table 1).

Additional temperature measurements included the Northern Hemisphere Temperature
(NHT) index, which is a large scale temperature index, defined as the combination of land and
sea surface temperature anomalies over the entire northern hemisphere and the Atlantic Multi-
decadal Oscillation (AMO), a regional index that describes long-term variations in sea surface
temperature of the Atlantic Ocean [114] (Table 1).

Large-scale climatic patterns influence circulation in the North Atlantic and North Sea and
therefore need to be considered as potential drivers of C. finmarchicus abundance. For this
work, the following climate patterns where chosen: North Atlantic Oscillation (NAO), East
Atlantic Pattern (EA), East Atlantic/ West Russia Pattern (EAWR), Scandinavian Pattern
(SCA), The Polar/ Eurasian pattern (POL). These data were downloaded from http://www.cpc.
ncep.noaa.gov/data/teledoc/telecontents.shtml (Table 1).

North Sea circulation and flow data are from the NORWegian ECOlogical Model system
(NORWECOM). NORWECOM is a coupled 3D physical, chemical and biological model, vali-
dated for the North Sea and the Skagerrak [115]. Average monthly transports through an east-
west section from Utsira (Norway) to the Orkney Islands along 59°17’N in the northern North
Sea (N. Atlantic inflow) and a longitudinal section through the English Channel in the Dover
Straits along 0°E (English Channel inflow) were computed, and values for inflow, outflow and
net flow were used. Inflow represents southwards flow through the Utsira to Orkney transect
and eastward through the Dover Strait, whilst outflow represents northward and westward
flow respectively.

The data used shows some bias which should be mentioned. It has been suggested that the
CPR shallow sampling depth may not be adequate at sampling species absolute numbers [116,
117], and those which migrate beneath the thermocline, such as C. finmarchicus [118]. How-
ever, analysis has shown the CPR is a consistent semi quantitative index of phyto- and zoo-
plankton abundance in comparison to satellite data [119] and to other planktonic sampling
techniques [107, 109, 120, 121], and in particular that it provides an accurate representation of
both spatial and temporal patterns of C. finmarchicus [122].

Fishery stock assessment data are based on model estimates from all available data for that
species and are reviewed extensively before publishing; they are favoured over total landing val-
ues because they take into account fishing effort [123]. The yearly-averaged nutrient data may
not contain 12 monthly values, meaning some months may be underrepresented, especially at
the start of the series. Cod SSB and cod1 are not actually feeding on C. finmarchicus larvae (see
Discussion), and they were used as proxies for larval production. These two variables were cho-
sen because they were the best larval cod proxy data that we could find.
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Data manipulation. Due to missing data and different begin-end dates in the time series,
this study used the period in common, 39 years from 1972 to 2011. Yearly averages which con-
sisted of 3 or less monthly values were excluded from the GP-based model to improve accuracy.
The removal of these years is the cause of the gaps in the approximating functions output.

The 39 time indices were split into k = 13 folds corresponding to 3 years each according to
the k-fold Cross-Validation design, and the GP procedure was run 50 times per fold, each time
randomly sampling 85% of the time indices.

ICES chemical and biological data recorded below the depth of 20m were excluded from
analysis, due to the towed depth of the CPR and the productive surface layer above the thermo-
cline generally forming at 15–20 m in the summer months in the North Sea [68]. Fisheries data
were available at an annual frequency whilst all other variables were downloaded at or averaged
to a monthly frequency. Because of this, all monthly times series were yearly or seasonally aver-
aged prior to analysis. Seasonally averaged data means that the averages were calculated over
the 3 months of each season, as follows. Climate seasons for NAO, EA, EA.WR, SCA, POL,
AMO and NHT, were defined as winter (December-February), spring (March-May), summer
(June-August) and autumn (September-November), whilst seasons for hydrographic variables
(Atlantic flow, English channel flow, SST and salinity) lag one month behind climatic, i.e. win-
ter is January-March, etc. [124]. Nutrient and biological data were averaged annually with no
seasons implied.

The time series presented in Table 1 refer to the observed data with their own units and
scales. All the time series were normalised by dividing each value by the maximum value of
that time series [125]. The time series having only positive values were normalised in the range
[0,1], while the time series having both positive and negative values were normalised in the
range [–1,1]. Without this normalisation approach, time series whose values are in the order of
107 (e.g., cod and herring abundance) could not be compared to time series whose values were
in the order of 101 (e.g., hydrographic parameters, climate indices). This normalisation
approach discards the scale of the time series, and allows focusing only on the time series
dynamics. In this way, the proposed analysis approach can select the relevant variables capable
to describe the dynamics of the target variable.

Results

Application of the GP-based analysis to Calanus finmarchicus
abundance in the North Sea

1. Identification of the relevant variables. In this work, we have used GP to identify the
variables that are relevant for approximating the abundance of Calanus finmarchicus in the
North Sea, using 86 biological and physical variables, chosen because they are potential drivers
of C. finmarchicus. The GP parameters and the Cross validation design used in the case study
are detailed in S1 File.

At the end of all the GP/cross-validation iterations, the population-pool consisted of 104
functions. The average validation error of these functions, resulting from the cross-validation
process, was 0.102 with a standard deviation equal to 0.082.

The relevance analysis of the population pool identified the variables that occurred with a
frequency superior to chance among the approximating functions of the population-pool.
According to the statistic test based on the Bernoulli trial (see S1 File for details), the variables
whose occurrence frequency was larger than 7 were deemed relevant. Out of the original 86
potential drivers, 9 variables, statistically relevant for the approximation of C. finmarchicus,
where thus identified. These 9 relevant variables (6, once seasons and multiple datasets are
combined, e.g., herring biomass and abundance represent 1 potential driver, herring) are, in
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order of frequency of occurrence in the final population-pool: herring (total stock biomass and
total abundance estimates), cod (spawning stock biomass and abundance at age 1), phyto-
plankton (as represented by the PCI), SST (spring and winter), and two circulation variables,
N. Atlantic net flow in winter (wNAtlNET) and English Channel eastward flow in summer
(smEnglChanE) (Table 2, Fig 3). It is worth noticing that a) the relevant variables encompass
both top-down/ bottom-up (predators, prey proxies) biological and physical (climate, tempera-
ture, circulation,) potential drivers, and b) they do not encompass large-scale climate indices.

2. Temporal shifts in the relevant variables. In order to further evaluate the selection of
the 9 variables by the GP procedure, each variable was tested for an abrupt shift in the mean
using Cumulative Sums analysis. All 9 time series showed a shift during the 1980s (Fig 4) (see
S2 File for each variables CuSUM plot).

A shift towards a lower mean abundance of C. finmarchicus was detected in 1986. This hap-
pened after shifts towards higher means in herring (1982/85), summer English Channel east-
ward flow (1984) and winter N. Atlantic net flow (1985). After the downward shift in C.
finmarchicus, PCI saw an increase in 1987, while cod (both age 1 and spawning stock biomass)
concurrently decreased. Winter and spring SST shifted upwards in 1988 and 1989 respectively.

3. Gradient analysis of the relevant variables. In order to understand the nature of the
relationship of the 9 relevant variables with C. finmarchicus, gradient analysis was used. This
analysis provides information on the type of relationship (direct, inverse, variable) between
each relevant variable and C. finmarchicus, which gives important information for identifying
the likely drivers.

The results of this analysis are presented in the last column of Table 2. All relevant variables
are inversely related to C. finmarchicus, with the exception of N. Atlantic net flow (positively
related), and cod, which is either positively related (cod1) or variable (SSB).

This analysis indicated that some of the relevant variables are very unlikely drivers of C.
finmarchicus.

PCI showed an indirect relationship with C. finmarchicus. In the studies period PCI (a prey
proxy) increased, yet C. finmarchicus decreased. Further, the CuSUM analysis showed a (posi-
tive) shift in PCI after a (negative) shift in C. finmarchicus. Both analyses suggest that PCI is
not driving, but, if anything, is driven by C. finmarchicus, but see the Discussion. Hence, PCI
has been eliminated as a likely driver.

Cod age 1 showed a direct relationship with C. finmarchicus. This predator (proxy)
decreased in the studied period, yet C. finmarchicus decreased as well, indicating that it was not
driven by it (but see the Discussion for more information). Hence Cod age 1 was eliminated as
a likely driver.

Table 2. Relevant variables selected by the Genetic Programming basedmethodology combined with the relevance analysis, the abbreviations
used in this article, and the frequency of occurrence of each variable in the 104 approximating functions in the population pool. The last column
indicates the type of relationship between the relevant variables andC. finmarchicus, identified with the gradient analysis.

Variable: Short name Occurrence Direction of relationship

Herring Total Stock Biomass HerringTSB 40 inverse

Cod Spawning Stock Biomass CodSSB 38 variable

Phytoplankton Colour Index PCI 35 inverse

Herring Total Abundance HerringTAE 15 inverse

Cod Aged 1 Cod1 13 direct

Winter North Atlantic Net Flow wNAtlNET 9 direct

Spring SST spSST 8 inverse

Winter SST wSST 7 inverse

Summer English Channel Eastwards Flow smEnglChanE 7 inverse

doi:10.1371/journal.pone.0158230.t002
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Cod SSB had a variable relationship showing no consistent relationship with C. finmarchi-
cus, hence it was also eliminated as a likely driver, but see the Discussion for more details on
this variable.

Fig 3. Time series of Calanus finmarchicus and the 9 relevant variables identified by the GP procedure. The time series are ordered from left to
right of most frequently occurring. All time series were normalised by dividing each value by the time series maximum value before the GP process.

doi:10.1371/journal.pone.0158230.g003
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The summer English Channel eastward flow was eliminated as a potential driver over
magnitude considerations. The overall flow exchange with the N. Atlantic through the Strait of
Dover (English Channel flow) is about 1/10th of the flow exchange through the Faroe-Shetland
transect (N. Atlantic flow) [126]. However, due to the normalisation process applied in this
work, the differences in the variables magnitude are lost, and all variables belong to the same
range. While this variable resulted relevant, its small magnitude indicates that it is not a likely
driver.

All the above variables remain nevertheless relevant and can be used to approximate C. fin-
marchicus abundance and for forecasting experiments,

With the use of gradient analysis, supported by a literature review, 5 (3 once combined) of
the 9 relevant variables selected by the relevance analysis can be identified as likely drivers: her-
ring (total abundance estimate and total stock biomass), SST (winter and spring) andN.
Atlantic net flow in winter, shown in Fig 5.

Discussion

1. Evaluation of the GP-based methodology
The aim of the proposed analysis methodology is the identification of the relevant information
needed to explain the dynamics of the investigated ecosystem. This is obtained by evolving a

Fig 4. Sequences of abrupt shifts in the North Sea. Time series of C. finmarchicus average annual abundance, with arrows
indicating the years of the regime shifts, detected using cumulative sums analysis both on this species and in the 9 variables
identified as relevant by GP. The table in the insert specifies the year of the shift and shows its direction: + meaning an increase,
—meaning a decrease.

doi:10.1371/journal.pone.0158230.g004
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set of mathematical functions capable to generalise the behaviour of the target variable (i.e. C.
finmarchicus abundance in the case study).

In the design of the statistical methodology used in this work we took special care in produc-
ing generalized (vs overfitting) results, in significantly selecting the relevant variables, and in
correctly identifying potential drivers.

The generalising capability of the evolved functions was obtained by coupling the Genetic
Programming procedure with a k-fold Cross-Validation (CV) design, which provided a predic-
tion error for each evolved function. The individuals with the smallest prediction error (i.e., the
greatest generalising capability) were selected for the final population pool.

The relevance analysis provided the tool to statistically identify within the population pool
relevant (not occurring by chance) variables for the target species. Additional experiments
were ran, which used randomly generated time series together with the ecological variables.
During these experiments, the artificial variables were never selected as relevant, thus confirm-
ing the reliability of the proposed statistical analysis.

While the GP/cross validation plus relevance analysis methodology can identify significant
relevant variables (in the case of C. finmarchicus, nine out of the 86 initially selected possible
drivers), a present limitation of this methodology is that it cannot provide information on the
role they play for explaining the dynamics of the target variable. This is a limitation common
to all multivariate or correlation analyses. In the C. finmarchicus application, we approached
the question of the causal relationship among relevant and target variables with the gradient
analysis, by analysing the partial derivatives of the modelling functions, i.e., the members of the
population-pool involving only relevant variables. The Gradient Analysis provided informa-
tion on the relationship between the target variable and the relevant variables incorporated in
the modelling functions.

The results achieved by applying this methodology to Calanus finmarchicus in the North
Sea are coherent with what can be seen in the literature (see next section), which validates this
approach.

2. Application to Calanus finmarchicus in the N. Sea
In this section, we combine the results of GP/CV, relevant, gradient and cumulative sums anal-
yses with a literature review, and discuss their relationship with C. finmarchicus to explain its
decline over a 40 year period. The set of variables selected by the GP analysis is justified and

Fig 5. The new conceptual model of potential drivers of Calanus finmarchicus abundance deduced from the GPmethod
supplemented by the relevance and gradient analyses. The new model is composed of two physical variables, North Atlantic
net flow and Sea Surface Temperature, and one biological variable, Herring, which is recognised as a top-down driver.

doi:10.1371/journal.pone.0158230.g005
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evaluated in order to demonstrate the potential use of this method in identifying drivers within
a marine system.

Relevant variables. The 9 variables shown in Table 2 and Fig 3 encompass both physical
(temperature and circulation) and biological variables (both top-down (predators) and bot-
tom-up (prey) proxies). All the relevant variables are associated to modelling functions (listed
in S1 File), which can be used to approximate or forecast the target variable’s abundance.

Relevant physical variables. Out of the large selection of potential physical drivers (Fig 1
and Table 1), only SST and circulation proxies (the flow in/out of the North Sea) were identi-
fied as relevant. It is quite interesting that none of the large-scale climate patterns (e.g., NAO,
NHT. . .) were identified by the GP model as relevant variables. These findings contradict a
large body of research cited earlier suggesting that large-scale climate anomalies are the main
drivers of marine ecosystems. However, our results may have been the outcome of having both
large scale and local drivers as model inputs. In other words, when there is availability of both
data types, local drivers seem to be more important factors to population dynamics, even if
they are controlled by larger scale factors.

Winter and spring SST (Fig 3H & 3I) increased steadily over the time series, and the gradi-
ent analysis identified an inverse relationship with C. finmarchicus (Table 2), meaning that a
temperature increase corresponded to a decrease in this species. It has been suggested that the
increased SST in the North Sea has affected the physiology and development rates of C. fin-
marchicus individuals [58], since this species, whose thermal critical boundary is around 10° C,
is at the edge of its niche in the North Sea [81, 127]. The temperature increase is proposed to be
the main cause of a northwards range shift of this and other species, and of its decrease in the
study area by several authors [2, 5, 8, 14, 19, 81, 128, 129], although other studies have found C.
finmarchicus is still abundant below the thermocline [118], indeed that under higher SST the
relative abundance of C. finmarchicus in deeper water increases [57].This suggests that the
North Sea population might have moved to a cooler, deeper zone as SST increased, reducing its
abundance in the CPR time-series. While increasing spring SST may affect the development
and growth of C. finmarchicus [58, 130, 131], changes in winter SST may also be associated to
circulation changes, which also can affect plankton abundance in the sea [15, 132]. SST in fact
acts as an overarching driver, not only directly affecting C. finmarchicus, but also its predators,
its prey [105, 133, 134] and the surrounding habitat. For example, an increase in winter SST is
suspected to affect the overwintering habitat of C. finmarchicus in areas such as the Norwegian
Sea deepwater. An increase in SST and deeper ocean temperatures reduces the available area
for C. finmarchicus to overwinter causing a decrease in the North Sea population by affecting
reproductive capabilities and leading to less individuals being advected into the North Sea in
spring [79, 96].

N. Atlantic net flow is a circulation proxy for the net amount of flow leaving-entering the
North Sea via a transect running from Scotland to Norway. The winter N. Atlantic net flow
was northward (positive) throughout the time series, as the flow leaving was always greater
than that entering the N. Sea. The flow intensity varied over time, increasing until 1990, and
then declining (Fig 3G). The C. finmarchicus time series shows an opposite trend, steadily
declining since the late 1970s, then staying low before a year of higher abundance at the end
(Fig 3), and in fact the relationship between these variables is overall inverse (Table 2). This
inverse relationship between C. finmarchicus and net flow can be related to the transport of
zooplankton into/out of the North Sea. The increasing overall flow to the north in the first half
of the series could in fact have significantly contributed to reducing the number of C. finmarch-
icus that were re-entering the North Sea [11, 12, 22]. An increase in winter northward flow
could also transport warmer water further northwards which could contribute to the north-
ward shift of this cold-water species and its reduction in the North Sea as well as impacting the
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size of cold water overwintering areas such as the Norwegian Sea deepwater [8, 96]. It has also
been suggested that transport of warmer water into the North Sea has led to increased competi-
tion for food from warm water species such Calanus helgolandicus [77].

The English Channel flow represents the flow entering/exiting the southern North Sea via
the Strait of Dover (eastward = entering). The summer English Channel eastward flow (Fig 3J)
has been eliminated as a likely driver due to the evaluation of its magnitude and potential influ-
ence on the North Sea (see Results). It remains, however, a relevant variable for approximating
C. finmarchicus abundance.

Relevant biological variables: bottom–up. The bottom-up drivers included chlorophyll,
PCI, and nutrients. Of these, only PCI appeared as relevant, but an unlikely driver of C.
finmarchicus.

The Phytoplankton colour index (PCI) provides an index based on the colour that the
accumulation of green chlorophyll pigments gives to the CPR filtering silk. It is considered to
be a semi-quantitative measurement of phytoplankton abundance [120], which is a main food
source for C. finmarchicus [90, 91]. PCI saw an abrupt increase during the 1980s (Fig 3D)
despite concurrent decreasing nutrient concentrations [135], possibly because of changes in
the phytoplankton predator community over the past 40 years [7]. With an increase in phyto-
plankton one would expect an increase in the abundance of their predator C. finmarchicus.
However, our gradient analysis shows the opposite, i.e. a direct relationship (Table 2). This
confirms the findings by several studies in the North Sea on increased phytoplankton abun-
dance while C. finmarchicus decreased [19, 70, 136–138]. This discordance suggests that while
the feeding environment in the North Sea may have changed to one seemingly more favourable
for C. finmarchicus, changes in other drivers might be more important for this particular spe-
cies. Alternatively, it can be considered that PCI might not reflect C. finmarchicus diet, being
an aggregate index which provides no information on species (for example, the abundance of
several diatom species decreased in this period [139]). Finally, PCI might have increased
because of reduced pressure by C. finmarchicus. Both our analyses and the literature review
indicate that it is unlikely that PCI is a direct driver of C. finmarchicus (if anything, the direct
relationship with C. finmarchicus suggests that PCI is driven by it), for which reason it was dis-
carded as a driver. However, because of its possible links with overarching physical drivers,
such as SST, whose increase could boost phytoplankton biomass but adversely affect C. fin-
marchicus abundance [7, 136], PCI remains very relevant for approximating and possibly pre-
dicting C. finmarchicus abundance, as indicated by its frequency in the GP output.

Relevant biological variables: top-down. Only herring and cod where selected as relevant
by the GP approach, while other predators, such as chaetognaths or fish larvae were not
selected at all. These two species were the most frequently selected variables, which suggest
they are very relevant for C. finmarchicus abundance; however, the overall patterns are very dif-
ferent, and only herring can be considered as a driver.

Herrings are planktivorous throughout its life, and C. finmarchicus can be an important
prey [84, 140].Herring biomass (TSB) is the most frequently selected variable by the GP pro-
gram, occurring 40 times, and also the selection of herring abundance (TAE) is very high, occur-
ring 15 times (Table 2). The gradient analysis shows that both herring parameters are inversely
related to C. finmarchicus (Table 2), which is consistent with the hypothesis that herring can
drive C. finmarchicus abundance through predation. This inverse relationship is likely related to
the large herring population increase over the time series whilst C. finmarchicus declined at a
similar rate (Fig 3B & 3E). The persistent selection of herring by the GPmodel suggests that her-
ring predation pressure could be one of the most important drivers of C. finmarchicus.

Cod spawning stock biomass (SSB) and cod age 1 abundance (cod1) were also selected as
relevant by the algorithm with high frequencies (38 and 13 times respectively, Table 2). The
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cod variables in fact showed a similar rate of decline as C. finmarchicus over the time series (Fig
3C & 3F). The cause of the decline in cod and cod larvae has been attributed to overfishing and
the miss timing of larvae cod and their food, as C. finmarchicus declined and was replaced by
other warmer water species of zooplankton which have different life cycles and nutrition qual-
ity [36, 82, 133, 134], and to more complex dynamics involving competition with herring,
internal feedbacks in the ecosystems, and the reversals of predator-prey roles [43, 74, 141].
Moreover, in this study we used cod SSB and cod age-1 as proxies for cod larvae, for which
there were no data available. This is however a gross simplification; in fact, while C. finmarchi-
cus is a major prey for cod larvae, juvenile and adult cods prey on a wide variety of epifaunal
species or species associated with hard substrates, and also on the planktivorous herring and so
do not directly drive C. finmarchicus [133, 142]. The gradient analysis harmonises with these
studies by showing a direct relationship between this copepod and cod aged 1, and a positive
but variable (not constant through the series) relationship with cod biomass (Table 2). Both
the analyses and the literature review propose that cod is not driving C. finmarchicus. If any-
thing, it is driven by it. Cod SSB and cod-1 still remain very relevant variables for approximat-
ing C. finmarchicus abundance, and can possibly be used for predicting it.

Overall, the literature review supports and gives an ecological explanation to the selection of
the environmental variables relevant for C. finmarchicus abundance

Temporal changes in the North Sea (the 1980s regime shift). Abrupt shifts in the means
of the relevant variables were analysed with the CuSUM analysis, in order to determine the tempo-
ral sequence of changes in the identified variables and thus propose an explaination of C. finmarch-
icus’s decline (Fig 4). All variables presented a shift in the 1980s. This is a well-known period in
time and a large number of studies have addressed the ecological regime shift that involved the
North Sea during this period [67, 70] as well as other European basins [15, 68, 69, 124].

It has been proposed that the overfishing of cod caused a reversal in the trophic roles
between herring and cod [43, 74]. Herring was released from predation pressure when cod
numbers declined and the herring population was then able to increase, shifting around 1982–
5 (Fig 4). Herring predation on larval cod subsequently increased, stopping the trophic roles
from switching back, even if there was reduced fishing pressure on cod [74]. The increased her-
ring population also predated on zooplankton at a greater magnitude than cod, as herring are
planktivorous throughout their lives [63, 84]. This was then intensified by a positive shift in the
N. Atlantic net (overall northward) flow in 1985 (Fig 4) which might have contributed to
reduced advection of C. finmarchicus from the Norwegian Sea into the North Sea, as well as an
increase in central North Sea SST by transporting more heat northwards, possibly impacting
the formation of overwintering habitats. The synergistic impacts of these drivers might have
caused the abundance of C. finmarchicus to shift to a lower state around 1986 (Fig 4), before an
increase (1987) in phytoplankton (PCI), possibly released from the copepod predation or
responding positively to increased SST, and a decrease in cod biomass and age 1 larvae (1987),
possibly related to their prey reduction and overfishing, occurred (Fig 4). The shift in C. fin-
marchicus preceded the increase in winter and spring SST in 1988/89, both of which might
have contributed to the continuing decline in the abundance of C. finmarchicus in the subse-
quent years by affecting their geographical range, overwintering habitat space, physiology, food
availability and competition with other zooplankton species.

In this proposed scenario, the decline in C.finmarchicusmay have been initiated by overfish-
ing and a change in top-down drivers, whose impact has then been magnified by a change in
the Atlantic net flow in the North Sea (physical drivers). As the population of C. finmarchicus
declined, other drivers, such as the increasing SST, may have caused its abundance to decrease
further. This switch in drivers might explain why, while herring have experienced recruitment
failures since 2000 [37], the C. finmarchicus population still declined further. The importance
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of synergistic and time-delayed roles in driving regime shifts is examined in Conversi et al [2],
and this work suggests that such a scenario could be identified more frequently than usually
thought, provided that the statistical analyses include diverse types of drivers.

Conclusions
This study has shown how the Genetic Programming based methodology can select a small
number of variables from a large initial pool. In the application on C. finmarchicus in the
North Sea, the ecological meaning of the relevant variables (SST, North Atlantic net flux,
English Channel flux, PCI, cod and herring) is backed up by a review of the literature. The
analysis of the temporal shifts in these variables can explain C. finmarchicus decline within the
41 years study period.

Moreover, the capability of the proposed analysis approach to produce multiple mathemati-
cal models, which use a few variables to approximate the same target, can also be very useful
for future robust forecasting applications. These applications could include how the target pop-
ulation respond to climate change using predicted conditions, for example in a global warming
scenario. This application could be very important for ecosystem studies and management and
we are currently investigating its feasibility. Additional studies of potential interest include
comparing this data-driven methodology with knowledge-based mechanistic models.

In the C. finmarchicus application, the list of relevant variables selected by the GP-based
analysis, fine-tuned with the relevance and gradient analyses provided 3 likely drivers of this
species abundance (Herring, Natl flow, SST) out of the 86 initially selected. This result high-
lights the importance of both physical and biological drivers on the abundance of this species
in the North Sea, and increases our understanding of how climate, circulation, and predation
all play a part. The ability to identify relevant drivers indicates future applications for using this
GP-based analysis within marine ecosystems, and shows that it can shed light on ecosystem
events such as regime shifts.

The application of GP to marine ecology is very novel. With this work we propose that this
method holds promises in the near future for the highly non-linear field of ecology, in the same
way as the consolidated GP-based methodologies discussed in the introduction have obtained
relevant results in many scientific fields, like for example robotics, physics, stock market analy-
sis, and medicine.
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