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A lysosome-centered view of nutrient homeostasis
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ABSTRACT
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in
digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks,
cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their
substrates by fusing with endosomes or autophagosomes, or through specialized translocation
mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their
substrates using up to 60 different soluble hydrolases and release their products either to the cytosol
through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the
plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis
goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a
signaling hub that can integrate and relay external and internal nutritional information to promote cellular
and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules
like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling
pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how
lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in
spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to
the past and future discoveries of how the lysosome simultaneously executes and controls cellular
homeostasis.
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Introduction

The presence of approximately 60 different hydrolases makes
the lysosome the primary catabolic center of the cell.1 The
products of digestion are ultimately used as building blocks for
biosynthetic pathways or to meet energy demands. Lysosomal
membrane proteins include exporters of these metabolites
allowing their translocation and clearing.2 With the collective
action of lysosomal hydrolases that include proteases, glycosi-
dases, lipases, nucleases, phosphatases and sulfatases, macro-
molecules and even metabolic organelles such as mitochondria
and peroxisomes or energy storage compartments such as lipid
droplets can be degraded or recycled in the lysosome.3,4 How-
ever, because it is the only organelle receiving cargo directly
from both the inside and the surroundings of the cell, the lyso-
some is uniquely positioned to have the additional functions of
integrating nutritional information and orchestrating homeo-
static responses. In fact, as it gains more attention, the multifac-
eted and central role in nutrient homeostasis of this formerly
neglected organelle becomes increasingly evident. Although
there are many essential functions ascribed to the lysosome,
here we focus on 3 interrelated but distinct functions relevant
to nutrient homeostasis. The first section, “Nutrient sensing at
the lysosome,” describes the emerging role of the lysosome in

sensing nutrients and locally relaying information to the master
nutrient sensors MTOR and AMPK. In section 2, “Nutrient
processing by the lysosome,” although we acknowledge the
lysosome’s role as a processor of damaged organelles, macro-
molecular complexes, nutrient and growth factor receptors,
and proteins, we focus on the role of lysosomal hydrolases in
processing energy-dense molecules (glycogen and lipids) to
generate energy units that contribute to energy homeostasis.
The third section, “Nutrient signaling from the lysosome,”
summarizes the role of the lysosome in generating signaling
molecules capable of traveling either to the nucleus to activate
homeostatic transcriptional programs, or to distant tissues to
activate global homeostatic responses. All in all, we describe a
picture in which the lysosome plays a central role in providing
nutrients and ensuring that organisms invest in growth and
reproduction only when the internal and external conditions
are favorable to do so.

Nutrient sensing at the lysosome

A key nutrient-sensing node acting in all tested eukaryotes is
the kinase complex MTOR complex 1 (MTORC1). This master
growth regulator promotes anabolic processes such as protein
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translation when nutrients are available, and licenses catabolic
processes such as macroautophagy when nutrients are scarce.5

Interestingly, nutrients such as amino acids6 and glucose,7 pro-
mote the translocation of MTORC1 to the lysosomal surface.
Proteomics approaches revealed that in the presence of
nutrients, 2 protein complexes, the Ragulator and the RAG-het-
erodimer, dock MTORC1 on the surface of the lysosome, and
that formation of this multiprotein complex, coined lysosome
nutrient sensing machinery or LYNUS,8 is a key event in nutri-
ent signaling through MTORC1.9,10 Ragulator is a multiprotein
guanine nucleotide exchange factor (GEF) that acts as a lyso-
somal anchor for RAG.6,9 RAG is a multiprotein complex com-
prising the obligate GTPase heterodimers RRAGA or RRAGB
in complex with RRAGC or RRAGD. MTORC1 seems to be
differentially regulated by specific amino acids.11 The human
SLC38A9 (solute carrier family 38 member 9) is part of the
Ragulator-GTPase machinery,12 and activates MTOR in the
presence of arginine.13 RRAGA and RRAGB are required for
MTOR activation by leucine, whereas glutamine does not
require RAG GTPases. Instead glutamine-mediated MTORC1
activation occurs via the ARF1 (ADP ribosylation factor 1)
GTPase.11

Various proteins interact with Ragulator and RAG GTPases
to facilitate and fine-tune MTOR-mediated responses at the
lysosome. For example, a Ragulator interacting protein,
BORCS6/c17orf59, was recently shown to competitively inhibit
RAG binding to the Ragulator, thus preventing RAG GTPase
docking to lysosomes, and negatively affecting the amino acid
activation of MTORC1.14 However, a loss of BORCS6 in HeLa
cells has no effect on the inhibition of MTORC1 signaling dur-
ing nutrient deprivation suggesting that there could be other
roles for the Ragulator-BORCS6 complex independent of
MTORC1. BORCS6 may regulate the interaction of Ragulator
with BORC, shown to be important for lysosomal position-
ing.15 Another MTOR modulator is SQSTM1/p62 (sequesto-
some 1), a multidomain receptor protein involved in
intracellular signaling, which interacts with MTORC1 in the
presence of amino acids. This interaction is in turn required for
the interaction of MTORC1 with RAG GTPases, and thus the
translocation of MTORC1 to the lysosomal surface.16 Also,
SQSTM1 interacts with TRAF6 (TNF receptor associated factor
6), which is required for the activation of MTOR.17 In addition,
the GATOR complex (GTPase activating protein toward Rag
GTPases), a multiprotein complex consisting of 2 subcom-
plexes, GATOR1 (DEPDC5-NPRL2-NPRL3) and GATOR2
(MIOS-SEH1L-WDR24-WDR59-SEC13), regulates the RAG
GTPases.18,19 GATOR1 functions as a GTPase activating pro-
tein for RRAGA and RRAGB, and GATOR2 acts as a negative
regulator of GATOR1.18 Finally, a series of stress responsive
growth regulators known as sestrins (SESN1, SESN2, and
SESN3) interact with GATOR2 in response to lack of amino
acids. Sestrins act as guanine nucleotide dissociation inhibitors
for RAG GTPases, thus suppressing the lysosomal localization
of MTOR.20-22

A Drosophila cell-based RNA interference screen for genes
involved in lysosomal biogenesis or function, unveiled that
amino acid signaling to MTORC1 does not begin at the plasma
membrane, but begins within the lysosome.23 The vacuolar-
type HC adenosine triphosphatase (V-ATPase), an ATP-

dependent proton pump, has a pivotal role in acidifying the
lysosomal lumen by pumping protons into the lysosome. How-
ever, V-ATPase regulates signaling through MTOR indepen-
dently of its acidifying capacity.23 Assembly of 2 domains of
the V-ATPase, the membrane spanning proton-translocating
domain (V0) and the peripheral ATPase domain (V1) is
increased upon amino acid starvation, but reversed on re-addi-
tion of amino acids. Amino acid-triggered changes in V-
ATPase assembly also depend on its catalytic activity as well as
the pH of the lysosomal lumen.24 In the presence of amino
acids, V-ATPase triggers Ragulator GEF activity for RAG
GTPases.9 Interestingly, recruitment of MTOR to the lysosome
is dependent on RRAGA/B but seems to be independent of
RAG GTP charge.10,25,26

Although how nutrient sufficiency leads to recruitment of
MTORC1 to the lysosomal surface is not fully understood, lyso-
somal localization and interaction with its activator RHEB are
required for full MTOR activation. The small GTPase RHEB
(Ras homolog enriched in brain), stimulates the phosphoryla-
tion and activation of MTORC1 when bound to GTP in a
nutrient-abundant state. Upon amino acid withdrawal or the
inhibition of growth factor signaling, RAG GTPases recruit
TSC (tuberous sclerosis complex) to the lysosomes.27 TSC,
which acts as a GTPase-activating protein for RHEB, is com-
posed of TSC1, TSC2, and the GTPase TBC1D7, which con-
verts GTP-RHEB to GDP-RHEB preventing its stimulatory
effect on MTORC1 (Fig. 1).28,29 The GTP/GDP-independent
activation of MTORC1 by RHEB may implicate other modula-
tors in RHEB-mediated activation of MTORC1.30

In addition to nutrients, metazoans couple growth rates to
growth factors. Notably, insulin-mediated activation of
MTORC1 requires amino acids and Ragulator present on the
lysosomal surface.6,25 Insulin and growth factors stimulate the
class I phosphoinositide 3-kinase (PI3K), which phosphorylates
AKT. In turn, AKT phosphorylates TSC2 of the TSC com-
plex.31-33 In the absence of growth factors, the TSC complex is
localized to the lysosome in a RHEB-dependent manner. In
response to insulin and AKT-mediated phosphorylation, the
TSC complex gets acutely released from lysosomes eventually
leading to MTORC1 activation.34 Thus, the lysosome is a nexus
between nutrients, growth factors, and MTORC1-mediated
regulation of cellular and organismal growth.

Glucose regulates MTORC1 activity through its regulation
of RHEB. The enzyme GAPDH (glyceraldehyde-3-phosphate
dehydrogenase), directly interacts with RHEB independent of
GDP/GTP-RHEB binding when glucose levels are low, thereby
preventing RHEB from activating MTORC1.35 Knocking down
or perturbing the interaction between GAPDH and RHEB ren-
ders MTORC1 unable to sense changes in glucose levels. Inter-
estingly, this GAPDH-RHEB interaction is observed even
under high levels of glucose suggesting that GAPDH shuttles
between glycolysis and the MTOR pathways acting as a direct
mediator of MTORC1 signaling in response to glucose levels.
Low glucose levels also affect MTORC1 signaling indirectly
through decreasing ATP levels, which leads to activation of
AMP-activated protein kinase (AMPK). AMPK inhibits
MTORC1 activity by phosphorylating TSC2, which inhibits
RHEB-mediated MTORC1 activation.36,37 The RHEB-medi-
ated signaling of glucose to MTORC1 suggests that lysosomal
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localization would also be an important component of glucose
sensing; however, this has so far not been directly tested.
Whether or not MTORC1 relocates to the cytoplasm when
inactivated by GAPDH-RHEB signaling remains to be
determined.

Lipids also interact with and regulate MTOR activity. The
saturated free fatty acid palmitate induces MTORC1 activation
by increasing its translocation onto the lysosomal surface.38

Palmitate supplementation also decreases AMPK phosphoryla-
tion leading to hypophosphorylation of RPTOR and the activa-
tion of MTORC1; this is reversed upon addition of the mono-

unsaturated fatty acid oleate.39 Oleate and the polyunsaturated
fatty acid eicosapentanoic acid, inhibit MTORC1 activation.38

Thus, saturated and unsaturated FFAs could have opposing
effects on MTORC1 regulation.

AMPK is another major intracellular energy sensor that can
inhibit MTORC1 by direct phosphorylation of RPTOR40 or by
activating TSC2.41 The V-ATPase-Ragulator complex also
plays a role in sensing low energy levels by forming a complex
with the AMPK regulators AXIN and STK11/LKB1 at the lyso-
some, and subsequent activation of AMPK. In addition, the
GEF activity of Ragulator for RAG is inhibited by AXIN,

Figure 1. The lysosome is a nutrient-sensing center. When nutrients are sufficient (upper panel), amino acids induce structural changes in the lysosomal vacuolar-type
ATPase (V-ATPase), so that it weakens its association with the Ragulator-RAG complex. Thus, Ragulator-RAG can recruit MTOR to the lysosomal membrane.23 The small
GTPase RHEB that resides at the lysosomal membrane, can now stimulate the phosphorylation and consequent activation of MTOR.28,29 RRAGA/B facilitates MTOR activa-
tion and recruitment of TFEB to the lysosome for its phosphorylation and retention in the cytoplasm by YWHA chaperones.9,26,47 When nutrients are scarce (bottom
panel), the RAG GTPases recruit TSC (tuberous sclerosis complex), which converts GTP-RHEB to GDP-RHEB causing inactivation and release of MTOR into the cytosol.27

Fasting stimulates AMPK, which in turn activates the TSC complex. In addition, since MTOR phosphorylates the MiTs transcription factors, upon MTOR inhibition, these
transcriptional regulators are not phosphorylated and are free to translocate to the nucleus and activate genes involved in lysosomal biogenesis and function.46,48,50,51

AUTOPHAGY 621



leading to inactivation of MTOR and thus activation of the cat-
abolic activities of the cell.42 Therefore, the lysosome is not a
passive loading dock for important nutrient sensors; instead,
the lysosome is sensing and relaying information to warrant
that the cell will fully commit to growth only when long-range
growth factor signals, local building blocks, and energy are
present.

The location of the lysosome in the cell is also found to be
important in coordinating catabolic and anabolic processes
that respond to nutrients. When nutrients are not limiting,
lysosomes are found at the periphery of the cell associated with
an activated MTORC1. By contrast, starvation causes perinu-
clear clustering of lysosomes facilitating autophagosome-lyso-
some fusion and the consequent release of nutrients during
starvation.43

An emerging line of investigation in lysosomal biology is
how lysosomal biogenesis, function, and turnover are regulated
through the lysosome. Integrated transcriptomics analysis
revealed that several genes encoding lysosomal proteins are co-
expressed after genetic, chemical, or environmental perturba-
tions.44 Promoter analysis of these lysosomal genes revealed a
common regulatory sequence known as an E-box.45 Together
these data led to the identification of the coordinated lysosomal
enhancement and regulation (CLEAR) gene network, which
controls lysosomal biogenesis, and lysosome-related functions
such as autophagy, exocytosis, endocytosis, and phagocytosis.
The related E-box transcription factors MITF (microphthal-
mia-associated transcription factor), TFE3 (transcription factor
binding to IGHM enhancer 3), TFEC (transcription factor EC),
and TFEB (transcription factor EB) can bind to CLEAR sites.
MITF, TFE3 and TFEB, hereafter MiTs, respond to starvation
promoting autophagosome formation and lysosomal biogene-
sis.46-48 When MTORC1 is active, it phosphorylates MiTs.
Given that active MTOR is on the lysosomal membrane, the
MiT transcription factors must be recruited to the lysosome to
be phosphorylated. MiTs transiently localize to the lysosomal
membrane through binding to the same RAG GTPases that
recruit MTORC1 to the lysosome. Phosphorylation causes their
binding to the cytosolic chaperone YWHA/14-3-3 and seques-
tration in the cytoplasm.46-50 The current model suggests that
in fed conditions the MiT transcription factors continuously
cycle between the lysosome and the cytosol. When MTORC1 is
inhibited, unphosphorylated MiTs are released from the
YWHA chaperones and are free to enter the nucleus to tran-
scriptionally regulate lysosomal homeostasis and autoph-
agy.46,48,51 Additionally, the class III phosphatidylinositol 3-
kinase PIK3C3/VPS34 (a pro-autophagic lipid kinase) controls
lysosomal tubulation downstream of MTOR. Upon phosphory-
lation by MTORC1, UVRAG activates PIK3C3; mutant ver-
sions of UVRAG result in reduced PIK3C3 activity, which in
turn reduces the lysosomal pool of phosphatidylinositol 3-
phopshate (PtdIns3P) causing increased lysosomal tubulation
and failure to generate normal lysosomes during starvation.52

Therefore, through the control of MTORC1, lysosomes control
their own biogenesis and function.

Various ion channels present in the lysosomal membrane
also help sense the presence of nutrients. MTORC1 associates
with an ATP-sensitive sodium channel, a complex of TPCN1
and TPCN2 (2 pore segment channels) on the lysosomal

membrane. Upon nutrient depletion and reduced ATP,
MTORC1 is translocated away and the channel is open. This
channel controls membrane potential, pH stability, and amino
acid homeostasis.53 The activity of a lysosomal Ca2C channel,
MCOLN1 (mucolipin 1) is also increased during starvation.
Increased Ca2C release promotes autophagosome-lysosome
fusion as well as lysosome reformation from autolysosomes.54

A lysosome specific phosphoinositide PtdIns(3,5)P2, activates
both ion channels, TPCN and MCOLN1.55,56 Thus, regulation
of lysosomal cation channels is another mechanism by which
lysosomes control their own health and abundance.

Nutrient processing by the lysosome

In this section we focus on the role of the lysosome in digesting
energy-dense substrates like glycogen and lipids, and make a
brief reference to the processing of proteins, growth factors and
their receptors, micronutrients, and metabolic organelles. For a
comprehensive description of lysosomal storage disorders, refer
to recent reviews on the subject.57,58

In addition to its role in nutrient sensing, the lysosome con-
tributes to energy homeostasis through its direct role in the
mobilization of energy stores. Specialized lysosomal hydrolases
process energy-rich molecules such as lipids and glycogen to
generate energy units and building blocks. Lysosomal hydro-
lases digest and mobilize nutrients in growth-promoting condi-
tions (fed state), as made evident by the hyper-accumulation of
undigested lipids or glycogen when the function of the lyso-
somal hydrolases is impaired, or of digested products when
these cannot be cleared via lysosomal membrane transporters
or other unknown exporting mechanisms. Undigested lipids or
glycogen accumulate inside the lysosome and become toxic,
leading to pathological states ranging from mild disease to
death.59,60 The essential role of the lysosome in nutrient
homeostasis is illustrated by the compromised survival
observed in organisms with impaired lysosomal hydrolase
activity; this selective pressure has led to a high level of conser-
vation of the hydrolases and their modulators across eukaryotes
(Table 1).

The enzyme GAA (glucosidase, a; acid) is responsible for
breaking down glycogen into glucose within the lysosome, and
mutations in this gene lead to Pompe disease.59 Pompe disease
is characterized by the accumulation of glycogen within and
beyond the lysosome, most prominently in glycogen-storing
tissues like skeletal and cardiac muscle.61 Humans with pene-
trant mutations in GAA experience severe muscle weakness in
skeletal and respiratory muscles, and many die as infants.62

Additionally, the disrupted mobilization of sugars from the
lysosome can also lead to disease, as is the case in Salla disease,
a sialic acid storage disease, where export of the monosaccha-
ride sialic acid is defective due to mutations in its transporter,
SLC17A5/sialin.63 It is unclear how glucose is transported from
the lysosome to the cytoplasm to be processed through the gly-
colytic pathway. Of the 3 sugar transporters that have been
described to reside in the lysosome, only one has been shown
to transport glucose out of rat liver lysosomes.64,65 More
recently, SLC2A8/GLUT8 (solute carrier family 2 [facilitated
glucose transporter], member 8) was found to contain a highly
conserved late endosomal/lysosomal motif. SLC2A8 was
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observed within endosomal/lysosomal membranes, and it does
not translocate to the plasma membrane like the better-known
transporter SLC2A4/GLUT4; however, the functional relevance
of SLC2A8 remains to be determined.66

Unlike glucose, which is soluble in the bloodstream and
internalized into the cytoplasm through dedicated transporters,
lipids circulate as parts of various lipoproteins and are taken up
from the extracellular environment through specialized inter-
nalization mechanisms.67 In one of the best-known examples,
receptor-mediated endocytosis mediates the uptake of low-den-
sity lipoprotein (LDL) particles and directs them to the lyso-
some.68 First, LDL binds the LDL receptor, then the plasma
membrane invaginates forming a clathrin-coated vesicle con-
taining LDL bound to its receptor, and these vesicles eventually
fuse with the lysosome.67 Within the lysosome, LIPA (lipase A,
lysosomal acid, cholesterol esterase) is responsible for hydrolyz-
ing triglycerides and cholesteryl esters contained in the LDL
particle, converting them into free fatty acids and choles-
terol.69,70 The lysosome membrane protein NPC1 (Niemann-
Pick disease, type C1), deletion of the gene that causes Nie-
mann-Pick disease, type C, facilitates the efflux of cholesterol
out of the lysosome.71,72 It is unclear how free fatty acids are
transported from the lysosome to the mitochondria, or the
mitochondria and peroxisomes in the case of lower eukaryotes
for their processing through b-oxidation.

In addition to processing bloodstream-circulating lipids, the
lysosome digests lipids stored in cytoplasmic lipid droplets.
Lipid droplet hydrolysis in fasted hepatocytes occurs mainly in
autolysosomes, a process termed lipophagy.73 When cells are
under nutritional stress, the small GTPase RAB7A is activated
and promotes trafficking of lipid droplets to multivesicular
bodies and lysosomes for lipophagy.74 Once in the lysosome,
lipids are broken down by specialized lipases. Lysosomal acid
lipases75 and Atg15,76 an autophagy-related protein with pre-
dicted triglyceride-lipase activity, are proposed to mediate lip-
ophagy. Epistatic analyses were used to establish that lysosomal
lipases are responsible for breaking down fats through lipoph-
agy in C. elegans. C. elegans mutants for the lysosomal lipase
genes lipl-1 and lipl-3 accumulate 2-fold more fat than wild-
type animals, and this obesity phenotype is not additive with
the genetic inactivation of autophagy.77 High-content in vivo
RNA interference screening in C. elegans revealed that the
MAX-like transcription factor MXL-3 represses lysosomal
lipolysis in the presence of nutrients. MXL-3 shares its target

sequence with HLH-30 (the C. elegans TFEB ortholog).78

Opposite of MXL-3, HLH-30 induces the expression of lyso-
somal lipase genes upon fasting and this response is conserved
in mouse and human cells in culture.77 Interestingly, whereas
mammals have only one lysosomal acid lipase, LIPA, yeast
defective in either ATG15 or TGL1 (the homolog of human
LIPA) accumulate more lipid droplets and mobilize lipids at a
slower rate.79 C. elegans has at least 3 lysosomal acid lipases.77,80

This higher functional divergence in the lysosome of lower
organisms suggests a need for more specialized processing, pos-
sibly to distinguish nutrients from lipid signals and biotoxins
abundant in the complex habitats of these organisms. Mice
deficient in lysosomal acid lipase show massive storage of tri-
glycerides and cholesteryl esters in adult liver, adrenal glands,
and small intestine, and die at 7 to 8 mo of age.81 In humans,
lysosomal acid lipase deficiency causes cholesteryl ester storage
disease and the more severe Wolman disease, which is charac-
terized by infant mortality accompanied by increased fat
stores.60

Two additional roles for the lysosome in lipid homeostasis
were recently reported. Mice with impaired chaperone-medi-
ated autophagy (CMA), a chaperone-dependent targeting of
soluble cytosolic proteins to the lysosome, show liver steatosis
in the presence of functional macroautophagy, suggesting that
CMA is involved in lipid droplet breakdown.82 Like macroau-
tophagy, CMA is activated during prolonged starvation.83

However, as expected from the consensus that the main sub-
strates of CMA are proteins and not lipids, the role of CMA in
lipid homeostasis is mediated by the proteolytic and not the
lipolytic function of the lysosome. PLIN2 (perilipin 2) and
PLIN3 are lipid droplet-coating proteins that protect lipid
droplets from cytosolic lipases such as LIPE (lipase, hormone-
sensitive). In basal conditions, and more so upon fasting, CMA
translocates PLIN2 and PLIN3 to the lysosome for their degra-
dation. Therefore, the lysosomal degradation of perilipins pro-
motes fat breakdown by licensing cytosolic lipases access to
their substrates contained in lipid droplets.84 Second, recent
data suggest that the lysosome could also be involved in scav-
enging of lipids for long-term provision of energy during pro-
longed starvation.85

The lysosome also stores and provides nutrients, generates
building blocks (i.e., amino acids), recycles nutrient and growth
factor receptors, and participates in the quality control for
important metabolic organelles. Proteins delivered to the yeast

Table 1. The lysosome is an essential energy generator.

Macromolecule
Defective gene/

protein S. cerevisiae C. elegans M. musculus H. sapiens

Glycogen GAA (glucosidase,
a; acid)

Glycogen accumulation119 Protein conserved120

but phenotype
not reported

Increased glycogen content in
cardiac and skeletal
muscle121

Pompe disease: general
myopathy,
cardiomyopathy,
pulmonary failure122-124

Triglycerides and
cholesteryl esters

LIPA (lipase A,
lysosomal acid,
cholesterol esterase)

Increased steryl
ester content79

Increased fat mass77 Massive ectopic fat
accumulation, shortened life
span125

CESD and Wolman disease:
massive ectopic fat
accumulation, mild
symptoms to infant
death126

The essential, and consequently conserved, role of lysosomal hydrolases in providing energy units by processing energy-dense nutrients is illustrated here by the pheno-
typic effects of their mutation in eukaryotes ranging from yeast to humans. CESD, cholesteryl ester storage disease.
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equivalent of the lysosome, the vacuole, are degraded by pro-
teases and other vacuolar hydrolases.86 Newly recycled amino
acids such as leucine are effluxed to the cytosol via various vac-
uolar effluxers including Atg22, enabling protein synthesis.87

Lysosomal proteases can nonselectively digest endogenous or
exogenous proteins. Lysosomal proteases are generally termed
cathepsins, which are mainly cysteine and aspartic proteases.
Cathepsins are differentially active in various cell types and tis-
sues, providing some level of substrate specificity.88-90 Addi-
tionally, mammals break down cytosolic proteins selectively
delivered to the lysosomes through CMA. The cytosolic
HSPA8/HSC70 chaperone (heat shock protein family A
[Hsp70] member 8) recognizes proteins containing a sequence
similar to KFERQ.91 These complexes formed of CMA sub-
strate bound to HSPA8 bind to LAMP2A (lysosomal-associated
membrane protein 2A) promoting its multimerization. CMA
substrate proteins undergo unfolding and pass through the
LAMP2A multimers helped by intralysosomal HSPA8. Lyso-
somal proteases then degrade the protein substrates after trans-
location.92 Disease can arise from the improper breakdown or
efflux of protein-derived amino acids from the lysosome. For
example, an amino acid transporter called CYNS/cystinosin
helps the translocation of cysteine across the lysosomal mem-
brane; deletion of the corresponding gene leads to cystinosis, a
lysosomal storage disease.93 In C. elegans, loss of the lysosomal
lysine/arginine transporter LAAT-1 causes accumulation of
lysine and arginine and results in enlarged and defective lyso-
somes that compromise embryonic development.94 Lysosomes
are not only involved in digesting nutrients but also in tempo-
rarily storing essential elements such as zinc or iron.95,96

In addition to the mobilization of macro- and micronu-
trients, the lysosome processes critical growth factors, and
growth factor-receptor complexes. GHR (growth hormone
receptor) bound to GH1 (growth hormone 1) is degraded in
the lysosome after selective delivery of the receptors that will be
recycled back to the plasma membrane.97 Inhibition of the sort-
ing of EGFR (epidermal growth factor receptor) into multive-
sicular bodies and its subsequent degradation in the lysosome
leads to tumorigenesis in mice, developmental defects in Dro-
sophila, as well as vulval abnormalities in C. elegans.98-100 In
addition, secretory granules containing growth factors such as
insulin are also processed in the lysosome.101 Therefore, lyso-
somal degradation of growth factors and their receptors con-
tributes to fine tuning cellular responses to growth signals.

The lysosome is also required for the rejuvenation of meta-
bolic organelles. In yeast, selective digestion of the endoplasmic
reticulum happens in the vacuole during excessive ER stress.
Termed reticulophagy/ER-phagy, this mechanism is distinct in
that it does not require autophagosomes or proteins implicated
in autophagy.102 Additionally, the lysosome degrades mito-
chondria brought to it through a specialized form of macroau-
tophagy termed mitophagy.103 Lysosomes also recycle
ribosomes,104 peroxisomes,105 and even other impaired
lysosomes.106

Long-range nutrient signaling from the lysosome

Significant progress has been made in our understanding of the
role of the lysosome in providing a platform and local signaling

to MTORC1 and AMPK. By contrast, little is known about the
contribution of the lysosome to distal signaling. However the
few known examples, described below, suggest the lysosome
generates short- and long-range signals with important roles in
cellular and organismal homeostasis.

As described in section 2, cholesteryl esters are taken up by
receptor-mediated endocytosis, and degraded through the
action of LIPA to release cholesterol through specialized trans-
porters. In addition to being a precursor of many metabolites
and a structural component of membranes, cholesterol released
from the lysosomes also functions as a signaling molecule. The
SREBF (sterol regulatory element binding transcription factor)
proteins control the expression of genes involved in lipid
uptake and biosynthesis.107 When lysosome-derived cholesterol
levels are high, SREBF resides in the ER, bound to SCAP
(SREBF chaperone) and INSIG1 (Fig. 2).108-110 Low cholesterol
levels lead to dissociation of INSIG1, freeing the SREBF-SCAP
complex to traffic to the Golgi where it is cleaved by the pro-
teases MBTPS1/S1P and MBTPS2/S2P. Free SREBF translo-
cates to the nucleus to activate the transcription of genes
involved in lipid uptake and biosynthesis.110 Conversely, bind-
ing of cholesterol to SCAP inhibits cleavage of the SREBF-
SCAP complex. In this way, lysosomal cholesterol represses its
own synthesis. Additionally, an excess of lysosome-derived
cholesterol causes activation of the transcription factor NR1H/
LXR (nuclear receptor subfamily 1 group H), which transcribes
genes involved in the removal of cholesterol from cells.111

Thus, sterol signals originated in the lysosome are an integral
part of cholesterol homeostasis.

In fed as well as in starvation conditions, lipids stored in
lipid droplets and the membranes of organelles are processed
in the lysosome. Lysosomal acid lipases then break down these
lipids into fatty acids. Mammals have a single lysosomal
lipase, LIPA, whereas other animals like C. elegans have sev-
eral lipases within their lysosomes. In C. elegans, the lysosomal
acid lipase gene lipl-4 is upregulated upon starvation.112

Increased expression of LIPL-4 leads to an enrichment in v-3
and v-6 polyunsaturated fatty acids during starvation,112 and
oleoylethanolamide (OEA) in nonphysiological conditions.80

Both v-3 and v-6 polyunsaturated fatty acids (PUFAs) and
OEA act as lipid signals. The lipid binding proteins LBP-3
and LBP-5, whose encoding genes are also upregulated upon
fasting, transport v-3 and v-6 PUFAs to distant tissues where
they activate autophagy in response to nutrient deprivation.112

Lapierre et al. reported that upregulation of LIPL-4 leads to
the inactivation of LET-363/MTOR;113 it would be interesting
to test if supplementation of the diet with v-3 and v-6 PUFAs
is sufficient to reduce MTOR activity and thus explain the
beneficial effects of fish oils on health span. Folick et al.
reported a more intriguing lipid signaling mechanism by
which the lipid binding protein LBP-8, whose encoding gene
is paradoxically downregulated upon fasting,112 translocates
OEA into the nucleus.80 OEA then binds and activates the
nuclear hormone receptors NHR-49 and NHR-80; that among
others, regulate the expression of genes involved in fatty acid
b-oxidation (Fig. 2). Interestingly, in MCF-7 breast cancer
cells, v-3 PUFA-derived ethanolamines stimulate the
mammalian homolog of NHR-49, PPARG/PPARg (peroxi-
some proliferator-activated receptor gamma), inhibit the
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AKT-MTOR pathway, and induce phosphorylation of BCL2,
thereby promoting its dissociation from BECN1/Beclin 1
which results in the activation of autophagy.114 These observa-
tions, in addition to v-3 and v-6 PUFAs activating autophagy
in human cells in culture,112 suggest that the role of lysosome-
derived lipid metabolites in organismal homeostasis may be
conserved all the way up to humans.

The lysosome is the second largest store of calcium in the
cell. The presence of calcium microdomains on the surface of
the lysosome suggests a role for calcium in relaying messages
from this organelle.115 During starvation, TFEB becomes
dephosphorylated enabling it to enter the nucleus and tran-
scribe its target genes (Fig. 2). High-content short interfering
RNA screening based on cytoplasm-to-nucleus shuttling of
TFEB during starvation revealed that the calcium/calmodulin-
dependent phosphatase PPP3/calcineurin is responsible for
dephosphorylating TFEB, an essential requirement for its trans-
location to the nucleus.116 Starvation of HeLa cells induces the
release of calcium from the lysosome through the MCOLN1
channel without affecting endoplasmic reticulum calcium lev-
els. Inhibition of MCOLN1 impairs the nuclear translocation of
TFEB, and the induction of autophagy.116 Thus, lysosomal

calcium signaling controls autophagy through PPP3/calci-
neurin-mediated activation of TFEB.

Beyond its classic role in protein quality control and selec-
tive clearance lies a regulatory role for CMA where the upregu-
lation of this autophagy mechanism allows for adaptation to
stress and the activation of homeostatic transcriptional pro-
grams.117 Cuervo et al. showed that during nutrient depriva-
tion, the increase in transcription factor NFKB (nuclear factor
of kappa light polypeptide gene enhancer in B-cells) activity is
dependent on lysosomal degradation of NFKBIA/IkB (nuclear
factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, a).118 Thus, lysosomal proteolysis is required for the
regulation of genes involved in inflammation, cell proliferation
and cell death in conditions of nutritional stress.

Future directions

We have described the role of the lysosome in: 1) nutrient sens-
ing, 2) processing of energy-dense nutrients, and 3) the emis-
sion of signals that distally control or modulate energy
homeostasis (Fig. 3). The critical role of the lysosome in ensur-
ing organismal homeostasis is made evident by the striking

Figure 2. Long-range signals from the lysosome coordinate nutrient homeostasis. The lysosome generates signals that travel to activate cell autonomous or systemic
responses that promote nutrient homeostasis. Some of these signaling pathways are depicted here: I. Cholesterol uptake and synthesis is controlled from the lysosome.
Cholesterol is taken up and processed by the lysosomal system. When the lysosome releases enough cholesterol, the transcription factor SREBF/SREBP is in the ER. By con-
trast, low cholesterol promotes SREBF trafficking from the ER to the Golgi (not shown), and then to the nucleus where it transcribes genes involved in lipid uptake and
biosynthesis.110 II. Lysosome fatty-acid derivatives distally control autophagy and the transcription of b-oxidation genes. In C. elegans, fasting leads to increased lysosomal
lipase activity (LIPL-4).112 Increased LIPL-4 activity is capable of: 1) generating lipid signals including v-3 and v-6 polyunsaturated fatty acids (v-FA) and oleoylethanola-
mide (OEA),80,112 2) inhibiting LET-363/MTOR,113 3) activating autophagy,112,113 and 4) inducing b-oxidation and other metabolic genes through NHR-49 and NHR-80.80

v-3 and v-6 polyunsaturated fatty acids are transported to distant tissues by LBP-3 and LBP-5, and OEA is transported to the nucleus by LBP-8. Green arrows indicate
unconfirmed activation during fasting conditions. Dotted lines illustrate likely pathways that have not been directly tested (intermediate steps are likely). III. Lysosomal
calcium activates lysosomal biogenesis and autophagy. Starvation triggers calcium release from the lysosome through the MCOLN1 channel. Calcium then activates the
phosphatase PPP3/calcineurin, which dephosphorylates TFEB promoting its translocation to the nucleus where it transcribes genes involved in lysosomal biogenesis and
autophagy.116 LAL, lysosomal acid lipases.
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conservation of its regulation and function. Comprehensive
understanding of the role of the lysosome in essential biological
functions, such as growth and reproduction, and in human dis-
ease requires broad approaches. Genomics, transcriptomics,
proteomics, and lipidomics of patient-derived samples may
reveal variations in sequence, expression, and activity of lyso-
somal proteins as well as its derived metabolites. These variants
may either have predisposing, protective, or no effect on disease
onset or progression. Therefore, functional genomics approaches
in simpler model systems may help elucidate how these variants,
and others too disruptive to be found in human populations,
affect how the lysosome senses, processes, and relays informa-
tion, and ultimately defines organismal homeostasis.

A few examples of important advances would be: 1) the dis-
covery of protein complexes specialized in sensing other amino
acids, nutrients other than amino acids, growth factors, or
stress signals. The existence of complexes sensing specific
amino acids, and the fact that these complexes share most but
not all of their components supports the hypothesis that differ-
ent lysosomal sensors could assess nutrients like fats or

carbohydrates, as well as growth factors, or stress signals, so as
to coordinate growth with the physiological status of the organ-
ism and the environment; 2) determining how lysosome-gener-
ated signals influence the function of other nutrient sensors,
organelles, or distant cells; 3) defining the role of the lysosome
in the flow of energy/nutrients to growth or reproduction.
Lysosomes are directly involved in integrating nutrients and
nutritional information to decide when to promote growth.
Lysosomes also control reproduction through the mobilization
of yolk particles. Thus, lysosomes are uniquely positioned to
play a role in deciding soma vs. germline nutrient allocation; 4)
assessing to which extent and how lysosomal signaling and
function contribute to health span. We predict the lysosome
will have roles in health span beyond being the digestive com-
panion of autophagy.

We expect the body of knowledge on lysosomal structure,
function, and regulation generated by the combination of
‘omics’ with traditional and emerging genetics and cell biologi-
cal approaches will provide us with the ability to target lyso-
somal function to improve human health.

Figure 3. The lysosome is a nutrient sensing, processing and signaling center. The lysosome is the only organelle that receives nutrients and nutritional information from
the cell (autophagy) and from the environment (endocytosis). Some of the roles of the lysosome in nutrient homeostasis include: I) sensing of nutrients and growth fac-
tors by the Lysosome Nutrient Sensing (LYNUS) machinery, II) digestion and recycling of circulating nutrients (i.e., cholesterol), growth factors (i.e., GH1 [growth hormone
1]), and nutrient regulators (i.e., perilipins); III) digestion and recycling of intracellular macromolecules and organelles; IV) recycling of growth factors, growth factor recep-
tors (i.e., for GH1 and insulin), and nutrient receptors (i.e., LDLR/LDL receptor), V) coordination of responses to fluctuations in nutrient availability by releasing signaling
molecules that activate homeostatic responses (i.e., cholesterol biosynthesis or activation of autophagy) locally and in distant cells and tissues; VI) controlling its own bio-
genesis, and VII) storage. All together, these functions provide building blocks and energy units to promote growth and reproduction, but most importantly the lysosome
integrates nutritional information from the cell and the environment so that growth and reproduction are only promoted when conditions are favorable to do so.
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Abbreviations

AMPK AMP-activated protein kinase
BORCS6 BLOC-1 related complex subunit 6
CMA chaperone-mediated autophagy
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GATOR GTPase-activating protein toward Rag GTPases
GEF guanine nucleotide exchange factor
LDL low density lipoprotein
MCOLN mucolipin 1
MITF microphthalmia-associated transcription factor
MiTs MITF, TFE3 and TFEB transcription factors
MTOR mechanistic target of rapamycin (serine/threonine

kinase)
NHR nuclear hormone receptor
NPC1 Niemann-Pick disease, type C1
OEA oleoylethanolamide
PUFA polyunsaturated fatty acid
RHEB Ras homolog enriched in brain
SCAP SREBP chaperone
SREBF sterol regulatory element binding transcription

factor
TFEB transcription factor EB
TPCN two pore segment channel
TSC tuberous sclerosis complex
V-ATPase vacuolar-type HC adenosine triphosphatase
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