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Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow
diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia
of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from
chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting
the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML,
research in MDS has been hindered by the lack of preclinical models that faithfully
replicate the complexity of the disease and capture the heterogeneity. The complex
molecular landscape of the disease poses a unique challenge when creating transgenic
mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in
vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In
recent years, progress has been made in the development of both transgenic and
xenograft murine models advancing our understanding of individual contributors to MDS
pathology as well as the complex primary interplay of genetic and microenvironment
aberrations. We here present a comprehensive review of these transgenic and xenograft
models for MDS and future directions.

Keywords: humanized mouse models, immunodeficient mouse models, transgenic mouse models, xenograft
animal model, myelodysplastic syndromes (MDS)
INTRODUCTION

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases
which have in common ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia
of hematopoietic cells. MDS is the most common myeloid malignancy in the United States, with a
median age at diagnosis of 72 years (1). The diagnosis needs to be supported by the presence of
persistent cytopenias (otherwise unexplained) of at least one lineage and morphologic dysplasia
of hematopoietic elements or the presence of certain genetic aberrations [del(5q)]. Genetic evidence
of clonal hematopoiesis can also contribute to the diagnosis, but as of today, this is not required
(Hasserjian, Pathobiology 2019).

The spectrum of genetic abnormalities identified in MDS is wide, ranging from chromosomal
abnormalities such as deletions/additions (del(5q), del(7q)), to specific mutations affecting the
spliceosome (SF3B1, SRSF2), epigenetic changes (TET2, ASXL1, DNMT3A) or transcription factors
(RUNX1, ETV6). While the mechanism by which some of these mutations lead to disease are not
fully understood, a number of them have important implications for diagnosis and prognosis
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(i.e., SF3B1 – ring sideroblasts), and can guide initial treatment
(del(5q) – lenalidomide, SF3B1 – luspatercept).

The course of the disease is variable, correlating with the risk-
category. Thus, low-risk MDS has an indolent course,
characterized by low-grade cytopenias, not requiring treatment
for a long time. On the other hand, high-risk MDS is an
aggressive disease characterized by profound cytopenias
requiring urgent treatment and increased progression to AML.
To some extent, high, and low risk MDS appear as two
biologically distinct entities. To this end, they also display
different combinations of somatic mutations. For instance,
SF3B1 are more likely to segregate with low-risk disease
(particularly SF3B1K700E), whereas other mutations (i.e.,
ASXL1, RUNX1, TP53, EZH2, ETV6 and SF3B1K666N) are
usually associated in high-risk MDS.

Currently, the therapeutic options in MDS are limited and
include supportive care (blood transfusions, antibiotics) and several
pharmacologic interventions. Erythropoietin and hypomethylating
agents, such as Azacitidine and Decitabine have been the main
therapeutic interventions for many years, and immunomodulating
agents, such as Lenalidomide are beneficial for patients with del
(5q). Most recently, luspatercept (a TGFb-pathway activin receptor
trap) was approved for the treatment of transfusion-dependent
MDS with ring-sideroblasts. Nevertheless, none of these treatment
options are curative, and in the absence of bone marrow
transplantation patients eventually succumb to cytopenias-related
complications (infections, hemorrhage) or progression to AML.
The exact mechanism by which specific therapeutic interventions
interact with downstream consequences of various mutations is
currently unknown (2).

As opposed to AML, research in MDS has been hindered by
the lack of preclinical models. First of all, the complex molecular
landscape of the disease poses a unique challenge when creating
transgenic mouse-models. In addition, primary MDS cells are
difficult to manipulate ex vivo resulting in a paucity of cell lines
and patient derived xenograft models. While high-risk MDS
models are probably closer to AML models, the aforementioned
challenges are especially difficult to overcome when modeling
low-risk MDS. However, in recent years, progress has been made
to develop both transgenic and xenograft strategies, with some
models reproducing the disease more closely than others.
MOUSE MODELS OF MDS

Murine models offer sophisticated tools to dissect unique aspects
of mammalian hematopoiesis from phenotype – function
relations in various compartments to complex interactions
between hematopoietic cells and their microenvironment
during ontogeny. More so, breeding strategies and the
development of pure genetic backgrounds has allowed the
scientific community to isolate and clearly define the impact of
genetic alterations on hematopoiesis.

In 2002 the Hematopathology subcommittee of the Mouse
Models of Human Cancers Consortium devised criteria for MDS
in mouse models to allow investigators to diagnose lesions as
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well-defined entities according to universally accepted criteria.
Using peripheral blood findings, cytologic features of
hematopoietic tissues, histopathology, immunophenotyping,
genetic features, and clinical course, they distinguished
nonlymphoid leukemias, nonlymphoid hematopoietic
sarcomas, myeloid dysplasia, and non-reactive myeloid
proliferations (3). These criteria have allowed the uniform
evaluation of models and have been particularly useful in
mouse models of MDS (Figure 1A).

Informed by Environmental Exposure
Initial efforts to model MDS in mice used exposure to genotoxic
agents to create the disease (4–6). These models provided insight
into adaptive physiological processes that are deployed in the
setting of bone marrow failure from MDS. Even though this
strategy resulted in complex genetic diseases, it was not suitable
to explore the contribution of individual gene mutations to the
development of MDS.

Informed by Gene Expression Data
Gene expression analysis resulting from microarray and more
recently RNA sequencing studies hinted towards recurrent
molecular patterns present in patients with MDS. Effort to
reproduce these patterns in mice took advantage of either
“transduction-transplantation” approaches or transgenic mouse
technology to create murine models of MDS. In 2010 Beachy
et al. provided a comprehensive review of mouse models
engineered to replicate alterations in gene expression identified
in patients with MDS, replicating some but not all aspects of
MDS (7). These models included combinations of Pten/Ship
deletions, Evi1 overexpression, Npm1 deletion, Dido deletion,
Nup98-Hoxd13 fusion, SALL4B overexpression, co-expression of
BCL-2 and mutant NRAS (NrasD12), over-expression of mutant
Runx1, deletion of Arid4a, and knock-in of mutant Polg. Though
an in depth discussion of each of these mice is beyond the scope
of this limited review, we will highlight three of these mouse
models to capture the diverse biology of MDS.

Overexpression of Nup98-Hoxd13 fusion under control of the
Vav1 promoter generated perhaps one of the most used
transgenic mouse models of MDS, NHD13. NUP98 encodes a
component of the nuclear pore complex that mediates nucleo-
cytoplasmic transport of RNA and protein. Translocations of this
gene have been identified in various hematologic malignancies
(MDS, AML, CML, pre-T LBL) and frequently the partner genes
encode homeodomain proteins belonging to the group of HOX
genes. As a result of expression of the NUP98-HOXD13 fusion
gene in all hematopoietic tissues, NHD13 mice developed MDS
with peripheral leukopenia, neutropenia, and anemia, while the
BM was normo- or hypercellular. More than half of the mice
eventually progressed to acute leukemia within 18 months (8).

SALL4 is a gene encoding a zinc-finger transcription factor
and has two isoforms – SALL4A and SALL4B. Its constitutive
expression may play a role in AML pathogenesis. Transgenic
mice constitutively expressing human SALL4B developed MDS-
like features such as increased number of immature blasts,
atypical and dysplastic WBCs, with hyper-segmented
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FIGURE 1 | (A) Genetic mouse models of MDS. Using various approaches, these animals allow modeling of MDS in immune competent hosts and in the presence
of the endogenous, often unmutated microenvironment. They also provide the analytical tools to study how various mutations impact stem cell function and clonal
dominance. Their major shortcoming is that they don’t capture the genetic heterogeneity of MDS. (B) Xenograft mouse models of MDS. Using patient-derived MDS
cells, these animals allow modeling of genetically complex disease and the study of clonal architecture and clonal evolution. Most recent humanized immunodeficient
mice can even model erythroid maturation, though limited generation of neutrophils and platelets are thus far a major limitation. Created with BioRender.com.
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neutrophils and pseudo-Pelger-Huet-like cells. Dysplasia was
also present in the other lineages, with binucleate erythroid
precursors and hypo-lobated megakaryocytes, as well as giant
platelets. In addition, around 50% of these mice eventually
progressed to AML. These changes were attributed to
activation of the Wnt/ß-catenin pathway by the constitutively
expressed SALL4B (9).

Even though genomic alterations are by far the most studied
events in the pathogenesis of MDS, there is increasing interest in
understanding if/how epigenetic events may contribute to
disease homeostasis. Such events may alter energy metabolism
or the microenvironment of hematopoietic cells and thus
promote disease initiation and maintenance. For instance,
ablation of the proof reading function of DNA polymerase
gamma (POLG), which is responsible for the replication of
mitochondrial (mt)DNA, resulted in mtDNA mutations. As a
result, Polg deleted mice showed various features of accelerated
aging. Starting at the age of 6 months, mutant mice showed
progressive macrocytic anemia suggestive of MDS, which
worsened rapidly after the age of 11 months. In addition, both
B and T lymphocyte counts were decreased. However, none of
these mice progressed to acute leukemia (10).

Informed by Recurrent Mutations
Over the last 15 years, there has been clear evidence that genetic
mutations in several conserved pathways are frequent in MDS
Frontiers in Oncology | www.frontiersin.org 4
and amenable to modeling in mice (Table 1). Of these, mutations
in transcription factors (e.g. RUNX1, ETV6, BCOR), epigenetic
modifiers (DNMT3A, TET2, EZH2, ASXL1), and most recently
splicing factors (SRSF2, U2AF1, SF3B1 and ZRSR2) have been
already reported in mouse models that offer insight into MDS
biology. Mutations in genes belonging to these categories alone
are generally insufficient to reproduce all clinical and biological
features of human MDS. These models and the mechanistic
understanding they have provided now offer the opportunity to
recreate the genetic heterogeneity and understand the mutations’
synergy in MDS either in silico or by generating models that
combine genetic mutations that frequently co-occur in patients.

Transcription Factors
RUNX1 or AML1 encodes a transcription factor with location on
chromosome 21q22 and is the most frequent target for
chromosomal translocation in leukemia. Mice transplanted with
bone-marrow cells infected with a retroviral vector harboring
mutant RUNX1 developed MDS-RAEB or MDS/AML with high
penetrance. Two types of mutations were used – one located in
the Runt homology domain (RUNX1D171N) and the other one
causing a frameshift leading to a C-terminal truncation
(RUNX1S291fs). While the first one led to leukocytosis and
hepatosplenomegaly in mice, the latter caused leukopenia.
Interestingly, in both cases multilineage dysplasia was present,
with Howell-Jolly bodies, red cell polychromasia, and
TABLE 1 | Mouse models of MDS.

Genetic aberrations Techniques Reference

Gene expression
Pten/Ship deletions Pten haploinsufficient, Ship knockout (11)
Evi1 overexpression Retroviral transduction (12)
Npm1 deletion Npm1 haploinsufficient (13, 14)
Dido deletion Knockout (15)
NUP98-HOXD13 fusion Transgenic expression (Vav promoter) (16–19)
SALL4B Transgenic expression (CMV promoter) (9)
Bcl2/mutant Nras Transgenic co-expression (tTA, MRP8 promoters) (20)
Arid4a Knockout (21)
Polg Knock-in of mutant (PolgA/A) (10)
MLL fusions Retroviral transduction (22)
Recurrent mutations
Transcription factors
RUNX1 Retroviral expression (D171N, S291fs) (23)
Bcor Loss-of-function mutation (24)
Epigenetic modifiers
Dnmt3a Mx1-Cre mediated ablation (25)
Tet2 Tet2:nlacZ/nGFP knockin, which results in nlacZ transcription (25)
Ezh2 Rosa26:Cre-ERT mediated ablation, followed by HSPC transplant (26)
Axsl1 Homozygous/heterozygous Asxl1:nlacZ/nGFP knockin (27)
Splicing factors
Srsf2 Mx1-Cre mediated heterozygous expression of Srsf2P95H (28)
U2af1 Doxycycline inducible heterozygous expression of U2af1S34F (29)
Sf3b1 Mx1-Cre mediated heterozygous expression of Sf3b1K700E (30)
Zrsr2 Mx1-Cre mediated ablation (28)
Chromosomal aberrations
del(5q) Deletion of Cd74-Nid67 interval (31)
BMME dysfunctions
Dicer1 Osx-Cre mediated ablation (32)
Sbds Osx-Cre mediated deletion (32, 33)
S100A9 Transgenic overexpression (34)
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poikilocytosis. Giant erythroblasts, karyorrhexis, and
macrocytosis were also detected. Pseudo-Pelger-Huët anomaly,
hyper-segmented neutrophils, and giant platelets were also seen
in mice harboring the RUNX1D171N mutation. As a result, MDS/
AML was diagnosed in the vast majority of mice in both groups,
while a small number of animals classified as MDS-RAEB. The
differences between the 2 phenotypes are likely due to the higher
expression of Evi1 found only in the RUNX1D171N mice. This is
supported by the fact that co-transduction of BM cells with Evi1
and RUNX1D171N, but not RUNX1S291fs, rapidly reproduced the
phenotype seen in the transgenic models (23).

EVI1 is a proto-oncogene that has been associated with
hematologic malignancies in both mice and men. The
transgenic Evi1 mouse showed defects in erythroid
hematopoiesis with a reduction in CFU-E derived colonies, but
without differences in CFU-G, CFU-GM and CFU-MK derived
colonies. More so, there were no other phenotypes observed in
the peripheral blood, bone marrow, and spleen of these mice. In
the transgenic line harboring the highest number of transgene
copies, the phenotype was more severe and showed an important
reduction in spleen size, complete absence of the red pulp and
erythroblasts, and neutrophil infiltration. Neutrophil infiltration
and reduction of erythroblasts were also seen in the bone marrow
of these mice. Although reticulocyte counts were decreased, the
number of circulating RBCs was normal. Interestingly, in this
transgenic line, the Evi1 transgene is X-linked, thus the described
phenotype is only present in males (35).

Epigenetic Modifiers
Up to 30% of patients with MDS show alterations in the Ten-
Eleven-Translocation-2 (TET2) gene, which is also involved in
othermyeloid malignancies, such asMPN, CMML, and AML. The
TET gene family epigenetically regulates gene expression by
opposing methylation-driven gene silencing, thus possibly acting
as a tumor suppressor gene. Several genetically engineered Tet2-/-

mice models were generated revealing that Tet2 deletion was
sufficient to initiate myeloid and lymphoid malignancies in mice
(36–39). They developed leukocytosis with monocytosis and
neutrophilia as early as two months of age. During aging, the
BM, spleen and liver became infiltrated with erythroblasts and
mature myeloid cells. Based on the Bethesda criteria, the
phenotype was heterogeneous and best defined as MDS with
erythroid predominance, CMML, or myeloid leukemia with
maturation (37). They showed hematopoietic stem cell
expansion and myeloid and lymphoid transformation (36, 38, 39).

Mice deleted for another epigenetic modifier gene, Dnmt3a,
revealed an aberrant phenotype affecting all hematopoietic cell
lineages. DNMT3A is a methyltransferase frequently mutated in
myeloid malignancies such as MPN, MDS and AML. The
knockout mice displayed marked myeloid and erythroid
dysplasia in their peripheral blood with increased myeloid
cells. Bone marrow cellularity was also increased displaying
multilineage dysplasia with impaired erythroid maturation.
Spleen and liver showed myeloid infiltration with increased
blasts, dysplastic megakaryopoiesis, and erythrophagocytosis.
These findings were consistent with a diagnosis of MDS/MPN
with extramedullary hematopoiesis (40).
Frontiers in Oncology | www.frontiersin.org 5
ASXL1, a member of the Polycomb group, is altered in various
myeloid malignancies (MDS, MPN, CMML, JMML, AML) and
generally associated with worse prognosis. The knockout (KO) of
both alleles of the gene in mice led to severe developmental
abnormalities, such as dwarfism and anophthalmia, and an 80%
embryonic lethality. The few surviving mice exhibited multiple
cytopenias and dysplastic features such as presence of hyper- and
hypo-segmented neutrophils, pseudo-Pelger-Huët anomaly,
increased numbers of polychromatophilic RBCs and Howell-Jolly
bodies. The BM of these mice was normo- or hypercellular, with
myeloid hyperplasia and erythroid hypoplasia, and
micromegakaryocytes with hypolobated nuclei. Furthermore, the
spleens were small due to reduced red pulp and smaller lymphoid
aggregates in the white pulp. As the majority of ASXL1 mutations
in patients are heterozygous, Asxl1 haploinsufficient mice were also
developed. Heterozygous KO mice recapitulated the phenotype
and also showed hyper- and hypo-segmented neutrophils, pseudo-
Pelger-Huët anomaly, frequent apoptotic, and hypogranulated
neutrophils and increased polychromatophilic RBCs. The spleen
architecture was also disrupted, and the BM showed an increased
proportion of myeloid cells and a decrease in erythroid islands. The
phenotype was more pronounced with age with some mice
developing profound anemia, thrombocytopenia, leukopenia, and
in some cases leukocytosis and monocytosis, suggesting disease
progression with aging (27).

Splicing Factors
After the discovery of recurrent mutations in key factors of the
splicing machinery in greater than 50% of patients with MDS
and in a subset of patients with MDS/MPN overlap syndromes
such as CMML and AML in SRSF2,U2AF1, SF3B1 and ZRSR2 by
Yoshida et al. and others (41, 42), several groups generated
inducible knockin [Srsf2 (28, 43), Sf3b1 (30, 44, 45)], transgenic
[U2af1 (29, 46)], or knockout [Zrsr2 (47)] mouse models. These
mouse models replicated the most common mutations identified
in patients. All models phenocopied aspects of MDS but to
varying degrees. One important question raised was whether
induction of mutations provided mutant stem cells with a
competitive advantage as seen in patients in whom splicing
factor mutations are almost always a part of the dominant
clone. Surprisingly, most models instead showed a competitive
disadvantage (Kim, Obeng, Shirai, Mupo, Seiler) for long-term
hematopoietic stem cells (LT-HSCs) even though some showed
robust initial engraftment when mutant cells were engrafted into
irradiated recipient mice to prove the cell-intrinsic nature of the
defect (44). Analysis of expression of the mutant versus the
wildtype splicing factor transcript in the obligatory heterozygous
models revealed expression levels closer to 30%, dependent on
the technology used to derive these inducible models. A second
Srsf2 P95H mutant model generated in 2018 by the Walkley
group achieved expression of mutant Srsf2 closer to 50% as found
in patients and exhibited the selective advantage of mutant HSCs
expected in MDS. For comprehensive review of the U2af1, Srsf2,
and Sf3b1 mutant mouse models we refer the reader to a
comprehensive review (48). Interestingly, both Srsf2 mutant
and Zrsr2 knockout mouse models showed stronger
phenotypes resembling MDS than U2af1 or Sf3b1 mutant
March 2022 | Volume 12 | Article 815037
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mice, which could be attributed to the binding preferences of
SRSF2 and ZRSR2. Exons bound by SRSF2 and introns bounds
by ZRSR2 as part of the minor (or U12) spliceosome (49) are
more highly preserved between human and mouse (50–52) than
intronic sequences bound by U2AF1 or SF3B1, resulting in
higher overlap of specific genes affected by the respective
mutant splicing factors.

Compound Mutant Mouse Models
Since generation of single mutant mice, compound mutant mice
have been generated, providing better understanding of the
progression from clonal hematopoiesis to MDS and to AML.
Examples include SRSF2/IDH2 co-mutant mice that exhibited
profound myelodysplasia and rapid progression to AML likely
via reduced expression of INTS3, a member of the integrator
complex (53). Similarly, NHD13 MDS mice exhibited
accelerated progression to acute leukemia when combined with
the Vav1 driven IDH2R140Q transgene, though the phenotype of
their leukemia resembled early T-cell precursor ALL rather than
AML (54). In contrast, SRSF2/TP53 co-mutant mice did not
show increased progression to AML (43) even though loss of
TP53 accelerated progression to AML of NHD13 MDS mice
(55). On the other hand, U2AF1/RUNX1 co-mutant mice
showed normal survival and did not progress to AML unless
exposed to alkylating agents (56).

Chromosomal Aberrations
The deletion of the long arm of chromosome 5 [del(5q)] is the
most common karyotype abnormality in de novo MDS and
defines its own subtype of MDS. While the underlying
mechanism of pathogenesis is not completely understood, the
loss of several genes located within the deleted region has been
identified as possible disease initiating events. Among these,
RPS14 (a ribosomal protein) (57), CSNK1A1 (a serine/
threonine kinase) (58), and two microRNAs – miR-145 and
miR-146a (59) are likely to play a role in the phenotype of del(5q)
MDS. In mice, the genes equivalent to the ones located in the 5q
region in humans, are located on chromosome 18. Therefore, a
mouse model was generated with a deletion of the cd74-nid67
region on chromosome 18 to better understand the pathogenesis
of the human 5q- syndrome. These mice developed pronounced
macrocytic anemia, thrombocytopenia, and granulocytopenia.
They also had a hypocellular bone marrow with a deficit in the
hematopoietic progenitor populations (31). Further analysis of
the bone marrow compartment showed an accumulation of
TP53 protein, cell cycle arrest and increased apoptosis.
However, when crossed with TP53-/- mice, the phenotype was
almost completely reversed, except for the low RBC counts
(present in the original TP53-/- mice as well) and the
macrocytosis. More so, activation of the TP53 pathway was
associated with loss of RPS14 and increased ribosomal
stress (60).

Bone Marrow Microenvironment (BMME)
Dysfunction in MDS Pathogenesis
The bone-marrow microenvironment was shown to play an
important role in different stages of MDS. Although its most
Frontiers in Oncology | www.frontiersin.org 6
prominent contribution is probably in disease maintenance and
progression, several studies have shown that deleting particular
genes in the microenvironment can actually initiate MDS.

Dicer1 is an RNase III endonuclease involved in the
processing of RNA and in microRNA biogenesis. The deletion
of this gene in mouse osteoprogenitor cells in the Osx-GFP-
Cre+Dicer1fl/fl mouse model resulted in impaired osteoblastic
differentiation and decreased calcified matrix deposition (61).
This alteration of the bone marrow niche led to myelodysplasia
in these mice. Leukopenia was present in all cases, while some
animals also displayed profound anemia and thrombocytopenia.
While the BM was normo- or hyper-cellular, no differences were
found in the hematopoietic stem and progenitor cells. However,
bone marrow of these mice showed dysplastic features such as
hyper-segmented nuclei in neutrophils, giant platelets, and
micro-megakaryocytes with hypo-lobulated, hyperchromatic
nuclei. Consistent with human MDS, B-cells and B-cell
progenitors were reduced in the BM in favor of an increased
frequency of myeloid cells. In addition, a small percentage of
these mice progressed to either AML or myeloid sarcomas. The
essential role of the microenvironment in disease initiation in
this model was highlighted by reciprocal transplantation
experiments in which the disease could not be reproduced in
wild type recipient mice. Microarray analysis of the
transcriptome of Dicer-/- osteolineage cells suggested that a
significant downregulation of the Schwachman-Diamond-
Bodian syndrome gene (SBDS) might be responsible for the
observed phenotype (32). This hypothesis was further
strengthened by the fact that deletion of the SBDS gene in the
same compartment in mice led to a similar phenotype by
activating the p53-S100A8/9-TLR inflammatory signaling axis,
thus driving genotoxic stress (33).

The role of the bone marrow microenvironment in MDS
maintenance was also clearly demonstrated in NHD13 mouse
models. Even though transgene expression is restricted to
hematopoietic cells via the Vav1 promoter-enhancer, these
mice showed characteristic MDS-induced alteration of the
bone marrow microenvironment including increased
endothelial cells and dysfunctional mesenchymal and
osteoblastic cellular populations (62, 63). They are, thus, a
model to study the interactions between the mutant
hematopoietic clone and the surrounding microenvironment
and the role of various chemo-/cytokines in the MDS phenotype.
XENOGRAFT MODELS OF MDS - WHY
ARE PATIENT DERIVED XENOGRAFT
(PDX) MODELS NEEDED?

Inherent Differences Between Mice
and Humans
Although the mouse models described above present with several
phenotypic features of MDS and allow for in depth
characterization of gene function and characterization of
mutations, they still have obvious limitations with respect to
their ability to recapitulate human MDS. While many gene
March 2022 | Volume 12 | Article 815037
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functions are preserved between mammalian species, some are
not and their targets may differ greatly when comparing human
and murine species. This has for example become particularly
obvious in murine models of splicing factor mutations, affecting
50% of patients with MDS; hallmarks of splicing factor mutant
MDS, such as ring sideroblasts in SF3B1 mutant MDS, are absent
in Sf3b1 mutant mice (30). Even in monogenic bone marrow
failure disorders such as Fanconi Anemia, mouse models fail to
recapitulate the human phenotype (64–66). In addition, murine
models generally do not replicate genetic complexity or clonal
evolution encountered in patients, especially under treatment
pressures, making it imperative to study these diseases in
primary human cells (Figure 1B).

Limited Availability of MDS Cell Lines
The study of primary human MDS poses a particular challenge
that continues despite several critical improvements over the past
several years. The MDS hematopoietic stem cell is defective,
reminiscent of stem cell dysfunction in the inherited bone
marrow failure syndromes such as Fanconi Anemia. While a
few human cell lines have been successfully generated from
patients whose bone marrow failure has transformed to
leukemia, cell lines that recapitulate the bone marrow failure
state are rare and limited in their genetic diversity [reviewed in
(67)]. Drexler et al. reviewed 31 candidate MDS cell lines and
classified them into three categories: (1) false (cross-contaminated)
cell lines and non-malignant cell lines; (2) malignant cell lines
established at the AML/MDS leukemic phase but not MDS phase;
and (3) MDS cell lines established during the MDS phase (67).
Among these cell lines, three cell lines were established during the
MDS phase of the diseases. In 1991, the MDS92 cell line was
derived from the bone marrow of a 52-year-old male with RARS
which developed into RAEB, but prior to leukemic
transformation. This cell line carries a complex karyotype,
including 5q- and -7, as well as a codon 12 mutation in NRAS.
The MDS92 cell line is cytokine-dependent (68, 69); a blastic
MDS-L subline was derived in 2000 (70) and shown to be
responsive to lenalidomide (71). In 1994, the M-TAT cell line
was established from the peripheral blood of a 3-year-old male at
relapse of RAEB-T. This cell line is also cytokine-dependent for
growth and responds to various cytokines with differentiation
down the erythroid or megakaryocytic lineages (72). The TER-3
cell line was established in 2002 from a male patient’s bone
marrow at time of progression from RA to RAEB. The complex
karyotype included monosomies 7 and 20 among other
aberrations. Like M-TAT, this cell line is constitutively cytokine-
dependent with potential to differentiate towards the erythroid
and megakaryocytic lineages (73).

Immunodeficient Mouse Models
Given the limited growth potential of primaryMDS cells in vitro and
the limitednumberandfidelityofMDScell lines,modelsarenecessary
that allow propagation of primary, patient- derived MDS to allow
study of the highly heterogeneous disease. The immunodeficient
murine host has become the ideal host to study human tumors in
vivo, from an ethical, practical, and cost standpoint.
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Historically, direct transplantation of human cells into
immune competent mice failed to give positive outgrowth due
to immune rejection by the recipient mice; sublethally irradiated
mice died without reconstitution of hematopoiesis (74). Since
then immunodeficient mouse models have undergone a long
evolution from a host lacking murine T- and B-cells to multi-
lineage immune-deficient models (T-, B- and NK-cells) with
additional modifications; identification and introduction of
mutations that enhance recognition of self across the murine-
human barrier (SIRPalpha); adaptation of the murine host to
express human proteins essential for human cell survival and
differentiation, such as cytokines; and introduction of human
cellular systems, such as mesenchymal stromal cells and entire
ossicles. A detailed review of these mouse models is beyond the
scope of this review and provided in detail by Martinov et al.
(75). Here we seek to provide a brief summary as it pertains
specifically to myeloid malignancies and in particular
MDS (Table 2).

Abrogation of Murine Adaptive Immunity
In the late 1970s the first attempt at PDX models of human acute
myeloid leukemia (AML) employed subcutaneous implantation
of patient AML cells into thymectomized, irradiated mice. In
these T-cell deficient, B-cell competent mice, AML cells could be
grown as discrete tumors under the skin. However the tumors
started regressing 6 days after inoculation without lasting tumor
cells (82). Over the next decade two physiologically more
relevant models were the bnx mouse which was generated via
combination of three mutations, beige, nude and xid, resulting in
deficiency of T-, NK- and so-called lymphokine activated killer
cells (83), and the severe combined immunodeficiency (SCID)
mouse that carries a single point mutation in the protein kinase
DNA-activated catalytic polypeptide (Prkdc) gene with impaired
T- and B-lymphocyte development but intact NK-cell function
and innate immunity (84, 85). While normal human
hematopoietic cells (86) and acute lymphoblastic leukemia
(ALL) cells (87) could be successfully transplanted into bnx or
SCID mice (88), primary AML cells still failed to reliably engraft
in either mouse model (89). Interestingly, if mice were treated
with the cytokine granulocyte-macrophage stimulating factor
(GM-CSF) and human mast cell growth factor (MGF) human
undifferentiated blast cells were identifiable in the murine bone
marrow (90). These studies suggested that remnant immunity in
the murine host compromised lasting engraftment of human
myeloid cells and that the murine environment lacked factors
relevant to human cell survival and proliferation. However, these
changes were not introduced until 2003.

In the following years, mouse models that combined T-, B-
and NK-cell deficiency, such as the nonobese diabetic (NOD)-
severe combined immunodeficiency (NOD/SCID) mice became
the main strain used for xenograft studies and supported
engraftment of ALL and a subset of AMLs (91–94). Discovery
that a polymorphism in the Sirpa gene in the NOD mouse strain
encodes a variant of the SIRPa receptor that cross-reacts with the
human CD47 ligand in part explained the improved engraftment
levels. Human cells can engage the CD47/SIRPa “don’t eat me”
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signal in NOD mice and are thereby at least partially protected
from phagocytosis by the murine host macrophages.

In regards to primary human MDS cells, in 2002, Nilsson
et al. injected 5q- deficient hematopoietic cells obtained from
seven MDS patients into NOD/SCID mice. Mice engrafted with
cells from one of these patients showed 12% human (CD45+)
engraftment and CD45+CD15+ cells proved to carry deletion of
5q. The mice did not exhibit symptoms and engraftment from 6
additional patients were unsuccessful (95). In another study,
Benito et al. transplanted bone marrow cells from MDS patients
into sub-lethally irradiated NOD/SCID mice. Human CD45+
cells were present in bone marrow and spleen of these mice,
albeit with significant delay when compared with healthy donor
cell engraftment. Of note, no clonal precursors were found in
these grafts validating the poor reconstitution of MDS HSC
derived hematopoiesis compared to remnant healthy HSC
derived hematopoiesis in the NOD/SCID environment (96).

Abrogation of Murine Innate Immunity
Despite the improvement affordedby theNod/Scidmodel, it became
clear that amore permissible host had to be identified to allowMDS
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HSCs to engraft. One approach was to eliminate residual NK cell
activity in the NOD/SCID mouse by elimination or inactivation of
the b2-microglobulin (b2m) gene (97–99) or by antibody-mediated
elimination of NK cells (100, 101). Indeed, Thanopoulou et al. (102)
reported that MDS cells from 4 of 7 MDS patients that included all
MDS subtypes engrafted inNOD/SCIDb2-microglobulin-deficient
mice (NOD/SCID-b2mnull). These grafts also taught the scientific
community about the biology of MDS: in contrast to healthy donor
transplants that first give rise to erythroid lineage predominance
followed by dominance of lymphoid engraftment, most MDS
transplants were myeloid predominant. Importantly, in 4 out of 4
MDS cases, the reconstituted cells carried the same cytogenetic
abnormalities, namely trisomy 8 and 5q-, as the original samples.
While these steps represented great advances, overall engraftment
levels remained low, < 1%. Another methodology to abrogate NK
cells in the Nod/Scid background was to delete the IL2 receptor
common gamma chain (IL2rg-/-) resulting in the since widely used
NOD-scid-IL2rg-/- (NSG)mice (103). Despite these improvements,
engraftment of low risk MDS in NSG mice remained largely
unsuccessful, while human AML samples showed robust
engraftment (104).
TABLE 2 | PDX mouse models of MDS.

Name Dysplastic
lineages

Cytopenias* Ring sideroblasts
as % of marrow

erythroid elements

BM and PB blasts Cytogenetics by
conventional

karyotype analysis

Engraftment Model

MDS with single lineage
dysplasia (MDS-SLD)

1 1 or 2 <15% or <5% if
SF3B1 mutant

BM <5%, PB <1%, no
Auer rods

Any, unless fulfills all criteria
for MDS with isolated del(5q)

MISTRG (76); NSG/NSG-S
(77); NSG (78); NOG (79)

MDS with multilineage
dysplasia (MDS-MLD)

2 or 3 1-3 <15% or <5% if
SF3B1 mutant

BM <5%, PB <1%, no
Auer rods

Any, unless fulfills all criteria
for MDS with isolated del(5q)

MISTRG (76); NSG/NSG-S
(77, 80); NSG (78)

MDS with ring sideroblasts (MDS-RS)
MDS-RS with single
lineage dysplasia (MDS-
RS-SLD)

1 1 or 2 ≥15% or ≥5% if
SF3B1 mutant

BM <5%, PB <1%, no
Auer rods

Any, unless fulfills all criteria
for MDS with isolated del(5q)

MISTRG (76); NSG/NSG-S
(77, 80); NSG (78, 81)

MDS-RS with
multilineage dysplasia
(MDS-RS-MLD)

2 or 3 1-3 ≥15% or ≥5% if
SF3B1 mutant

BM <5%, PB <1%, no
Auer rods

Any, unless fulfills all criteria
for MDS with isolated del(5q)

MISTRG (76); NSG/NSG-S
(77, 80)

MDS with isolated del
(5q)

1-3 1-2 None or any BM <5%, PB <1%, no
Auer rods

del(5q) alone or with 1
additional abnormality except
−7 or del(7q)

MISTRG (76); NSG/NSG-S
(77, 80)

MDS with excess blasts (MDS-EB)
MDS-EB-1 0-3 1-3 None or any BM 5%-9% or PB 2%-4%,

no Auer rods
Any MISTRG (76); NSG/NSG-S

(77, 80); NSG (78, 81);
NOG (79)

MDS-EB-2 0-3 1-3 None or any BM 10%-19% or PB 5%-
19% or Auer rods

Any MISTRG (76); NSG/NSG-S
(77); NSG (78); NOG (79)

MDS, unclassifiable (MDS-U) NSG (78); NSG/NSG-S (80)
with 1% blood blasts 1-3 1-3 None or any BM <5%, PB = 1% on 2

separate occasions; no
Auer rods

Any

with single lineage
dysplasia and
pancytopenia

1 3 None or any BM <5%, PB <1%, no
Auer rods

Any

based on defining
cytogenetic abnormality

0 1-3 <15% BM <5%, PB <1%, no
Auer rods

MDS-defining abnormality

Refractory cytopenia of
childhood

1-3 1-3 None BM <5%, PB <2% Any
March 2022 |
*Cytopenias defined as: hemoglobin, <10 g/dL; platelet count, <100 × 109/L; and absolute neutrophil count, <1.8 × 109/L. Rarely, MDS may present with mild anemia or
thrombocytopenia above these levels. PB monocytes must be <1 × 109/L.
Song et al. performed targeted exome sequencing to validate engraftment of clonal MDS.
Pang et al. and Muguruma et al. performed FISH for monosomy 7 to validate engraftment of clonal MDS.
Muguruma et al. and Meydouf et al. used autologous or allogenetic MSC to enhance MDS engraftment.
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Expression of Human Cytokines in the Murine Host
Clearly, combined abrogation of adaptive and partially innate
immunity proved insufficient for MDS engraftment suggesting
that signals that could support human hematopoiesis were
missing. Feurig-Buske et al. compared MDS engraftment in
NOD/SCID-b2mnull mice to NOD/SCID-b2m-/- mice
expressing human cytokines, specifically human interleukin-3
(IL-3), GM-CSF and Steel factor (SF) (NOD/SCID-b2mnull-3/
GM/SF) from a transgene that previously provided excellent
engraftment to AML (Feurig-Buske M, et al., Leukemia 2003).
Cytokine expression led to reconstitution from all 7 MDS
samples tested but with long-term engraftment documented
only from 2. Constitutive expression of huIL3, huGM-CSF and
huSCF, improved engraftment of primary human AML (105)
and enhanced normal human myelopoiesis (106). Nevertheless,
engraftment of MDS remained a challenge. In fact, of the MDS
cell lines described above, only the MDS-L subline has been
engrafted in immunodeficient mice, specifically in NSGS mice
(NSG transgenic expressing huIL3, huGM-CSF and huSCF)
(107) and employed in drug testing (108–110). While some
groups provided evidence that NSGS mice (~5-35%)
consistently showed higher engraftment of MDS than NSG
mice (~1-9%) (80) several groups have since confirmed that
while transient engraftment is enhanced, the constitutive nature
of expression of these cytokines is detrimental to normal and
MDS HSCs (111, 112).

Reconstitution of the Human Niche
As an alternative to transgenic cytokine expression, several
groups tested co-transplantation of mesenchymal stromal cells
(MSCs), either derived from immortalized cell lines or from
autologous or allogeneic BM derived MSC cultures. Such studies
showed mixed results. In one study cells from 6 MDS patients
were transplanted into NOD/SCID-b2mnull mice along with
human stroma-derived cell lines HS5 and HS27a with
improved but low engraftment levels (0.71-4.44%) (113).
Bone marrow CD34 cells from six patient were intrafemorally
injected into NOG mice along with human MSCs, resulting in
human CD45+ percentages in mouse BM between ~2% and 89%
interestingly at the expense of murine hematopoiesis (79). In
another study co-injection of autologous MSCs improved
engraftment in NSG mice from 1/7 patient samples to 14/20
patient samples with engraftment levels ranging from 1%-22%
(80). Interestingly, MSCs were detectable only about a week post
transplantation suggesting that their effect on MDS HSC
engraftment was transient. The exact mechanism by which
MSCs support MDS HSC engraftment remains to be
determined; an MSC effect could not be confirmed in several
carefully performed studies in NSG or NSGS mice (77, 114).

The most recently advanced strategy to add human
microenvironment for human HSPCs engraftment is using
human bone organoids (ossicles). Ossicles are created by
seeding of human BM-derived MSCs onto a 3D scaffold
composed of extracellular matrix (115) or generated by co-
injection of MSCs and matrix material under mouse skin; they
have provided a favorable niche for normal and leukemic
cells (116).
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Conditioning of the Niche
Routinely stem cell engraftment requires elimination of cells
occupying the stem and progenitor cell niche. This is typically
achieved via irradiation with doses adjusted to the host’s
tolerability. Alternatives include conditioning with busulfan (117,
118), attractive in mice with the scid mutation that confers a DNA
repair defect that sensitizes host tissues to irradiation. Other
alternatives that can be cost-prohibitive include administration of
antibody-drug conjugates (119). An attractive option would be a
murine host that carries a HSPC defect that would allow normal
hematopoiesis at steady state but a competitive disadvantage when
challenged with human cells. Indeed, mice bearingmutations in the
receptor tyrosine kinase Kit (KitW/Wv), the stem cell factor receptor
required for normal hematopoiesis, allow long-term engraftment of
injected wildtype HSPCs without conditioning (120). When
introduced into immunodeficient hosts (Rag2−/−gc−/−) various
mutations in Kit allow engraftment without irradiation (121) and
engraftment across the human-mouse barrier (122). Strikingly,
these mice displayed robust reconstitution of human erythropoiesis
and thrombopoiesis with terminal maturation in the bone marrow
(123). Nevertheless, introduction of the KitW41/W41 mutation into
NSGmice was insufficient to allow robust MDS engraftment (124).

Physiologic Expression of Critical Human Cytokines
Abrogation of murine T-, B-, and NK cells via abrogation of IL-
2Rg (Il2rg gene deletion or truncation), abrogation of V(D)J
recombination via the Prkdcscid mutation, or deletion of
recombination activating genes (RAG)-1 or RAG-2 (125, 126) in
combination with either the Sirpa polymorphism encountered in
the NOD strain or via introduction of the human SIRPA gene
results in optimal immunosuppression. Transgenic expression of
critical cytokines provided at least transient engraftment of MDS
HSCs. In 2014 Rongvaux et al. presented a novel mouse model
with knockin of critical cytokines that lacked cross-reactivity
between human and mouse (127). Knockin provided two
advantages: 1) expression of human cytokines was regulated by
the endogenous murine regulatory elements resulting in
physiologic expression of human cytokines and 2) deletion of
the murine cytokine provided a competitive disadvantage for the
murine host HSPCs, “opening” up the niche for human
xenografted cells. “MISTRG” mice, so named for the cytokines
replaced and the immunodeficient background strain express
human macrophage colony-stimulating factor (M-CSF), IL-3
and GM-CSF, and thrombopoietin (THPO) in the Rag2−/−,
IL2Rg−/− background. To provide phagocytic cross-tolerance
human signal regulatory protein alpha (SIRPa) was introduced
as transgene (127) and later also knocked in (128). MISTRG mice
have proved to be the most promising host for engraftment of
MDS patient samples to date (76). Cells from all MDS risk groups
efficiently engrafted in this strain; engraftment levels were
significantly higher especially for low-risk MDS. Unlike in NSG
mice, increasing numbers of CD34+ cells resulted in increasing
engraftment levels while engraftment levels in NSGmice remained
low, suggesting a lower threshold for engraftment in MISTRG
mice. While in NSG mice engraftment in female recipients was up
to 11-fold higher than in male recipients (129), engraftment in
MISTRG mice was not affected by the sex of the recipient mice.
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CD34+ cells from MDS bone marrow produced myeloid
predominant grafts that engrafted long-term and were
transplantable into secondary recipients. Additionally, engrafted
MDS cells in MISTRG mice gave rise to erythroid and
megakaryocytic lineages and replicated MDS heterogeneity,
myeloid dysplasia, and clonal complexity and evolution. MDS
PDXs replicated drug treatment responses such as cellular
differentiation in response to treatment with inhibitors of
mutant IDH2 (76). A shortcoming of MISTRG as for other
models was the absence of mature neutrophils, red blood cells,
and platelets in circulation, limiting full assessment of the myeloid
lineage maturation. This was overcome by humanization of the
murine liver, resulting in abrogation of murine complement
expression and enhanced red cell survival in circulation (130).

In summary, immunodeficient mouse models have
undergone rapid evolution over the past decade from bi-
lineage immunodeficiency to an intricate combination of
adaptive and innate immune tolerance. In addition,
humanization of cytokines and growth factors that are critical
for human hematopoietic stem and progenitor cell survival and
differentiation have transformed the murine environment into
one favoring human cell engraftment.
FUTURE DIRECTIONS AND CURRENT
OVERALL LIMITATIONS

Over the last decade, we have seen significant therapeutic
advances in AML resulting in a number of drugs being either
FDA approved or very advanced in their clinical development.
Unfortunately, drug development in MDS is still lagging behind.
This may be due to unique biological features of MDS compared
to AML, particularly the more complex mutational architecture
and perhaps higher interdependency between the dysplastic
clones and their surrounding immune and stromal
microenvironment. Nevertheless, the lack of preclinical models
of MDS compared to AML certainly contributed to the slow start
of drug development efforts in this disease. Fortunately, the
increased accessibility of transgenic technologies coupled with
our improved xenograft tools have closed the gap in providing
the much needed preclinical models of MDS. While we have
come a long way, some challenges remain.

In regard to the transgenic mouse models, we are just
beginning to explore the cell intrinsic interactions between
various mutations found in patients with MDS. Given the
genetic complexity of this disease, modeling all potential
interactions is a daunting task. Could information provided by
the phenotype of single mutations be integrated to generate
algorithms that predict how the combination of mutations would
behave? Even if successful, the cell extrinsic interactions between
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various mutant clones, these clones and residual “unmutated”
hematopoiesis or the “unmutated” immune and mesenchymal
microenvironment may not be accurately addressed by the
current transgenic mouse models. It is important to remember
that even if “unmutated”, the residual hematopoiesis and the
immune and stromal microenvironment of patients with MDS
are not wild type. Can we use transgenic mice to model
these interactions?

In regard to xenograft models, they all rely on hosts that have
no adaptive and partially compromised innate immunity and
once engrafted with human cells represent xenogeneic immune
chimera. Thus, at this point, it remains impossible to study the
role of immune senescence for instance in MDS homeostasis.
Could adaptive transfer of human B and T cells into some of the
most advanced xenograft models (i.e. MISTRG) model these
interactions, even for a short period of time? Cytopenias are the
root cause of much of the morbidity and mortality and lack of
quality of life experienced in MDS. We have made significant
progress towards generating xenograft models that allow full
maturation of several human hematopoietic cell lineages.
Nevertheless, these models continue to imperfectly recreate full
maturation and functionality of neutrophils and platelets and in
part red blood cells.
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