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Purpose: To develop a machine learning-based calculator to improve the accuracy of

IOL power predictions for highly myopic eyes.

Methods: Data of 1,450 highly myopic eyes from 1,450 patients who had cataract

surgeries at our hospital were used as internal dataset (train and validate). Another 114

highly myopic eyes from other hospitals were used as external test dataset. A new

calculator was developed using XGBoost regression model based on features including

demographics, biometrics, IOL powers, A constants, and the predicted refractions by

Barrett Universal II (BUII) formula. The accuracies were compared between our calculator

and BUII formula, and axial length (AL) subgroup analysis (26.0–28.0, 28.0–30.0, or

≥30.0mm) was further conducted.

Results: The median absolute errors (MedAEs) and median squared errors (MedSEs)

were lower with the XGBoost calculator (internal: 0.25 D and 0.06 D2; external: 0.29 D

and 0.09 D2) vs. the BUII formula (all P≤ 0.001). The mean absolute errors and were 0.33

± 0.28 vs. 0.45± 0.31 (internal), and 0.35± 0.24 vs. 0.43± 0.29 D (external). The mean

squared errors were 0.19 ± 0.32 vs. 0.30 ± 0.36 (internal), and 0.18 ± 0.21 vs. 0.27 ±

0.29 D2 (external). The percentages of eyes within ±0.25 D of the prediction errors were

significantly greater with the XGBoost calculator (internal: 49.66 vs. 29.66%; external:

78.28 vs. 60.34%; both P < 0.05). The same trend was in MedAEs and MedSEs in all

subgroups (internal) and in AL ≥30.0mm subgroup (external) (all P < 0.001).

Conclusions: The new XGBoost calculator showed promising accuracy for highly or

extremely myopic eyes.
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INTRODUCTION

Highmyopia has become a worldwide epidemic, with a predicted
prevalence of 10% of the world population by the year 2050 (1). It
often leads to significant visual impairment or even blindness (2).
Patients with high myopia also have a higher risk of developing
cataracts and undergo cataract surgeries at an earlier age (3–5).
Therefore, the accurate IOL power calculation for these eyes is an
important issue.

However, highly myopic eyes often experience hyperopic
refractive surprise after cataract surgery (6, 7), despite the
use of partial coherence interferometry, which could eliminate
biometric errors (8, 9). Therefore, choosing appropriate formulas
to reduce refractive errors becomes crucial in these eyes.

Fourth-generation formulas, such as the Barrett Universal
II (BUII) (10), Olsen, and Hill-Radial Basis Function (RBF)
formulas, offered promising outcomes for highly myopic eyes
(11, 12). In particular, the BUII formula may show the greatest
accuracy for myopic eyes (13–15). For eyes with ALs > 24.5mm,
the BUII formula presented the highest percentage of eyes within
±0.50 D of the prediction error (PE) (82.1% on average) (16).
However, the accuracy of the BUII formula decreased sharply
when we included more eyes with extreme myopia (AL >

28.0mm), as the percentage of eyes within ±0.50 D of the PE
decreased to 70%, and the percentage within ±0.25 D of the PE
was only 25% (17). Therefore, accurate prediction of IOL power
for eyes with high or extreme myopia remains challenging.

The purpose of this study was to develop a new calculator
using the XGBoost machine learning regression technique that
incorporates several clinical features, including the BUII formula
results, to improve the accuracy of IOL power prediction for
highly or extremely myopic eyes.

METHODS

Patients
The Institutional Review Board of the Eye and Ear, Nose,
and Throat (ENT) Hospital of Fudan University (Shanghai,
China) approved this study. The study adhered to the
tenets of the Declaration of Helsinki and was registered
at www.clinicaltrials.gov (accession number NCT02182921).
Signed informed consents for the use of their clinical data were
obtained from all participants before cataract surgery.

Data of 1,450 highly myopic eyes from 1,450 patients who
had uneventful cataract surgery at our hospital were collected
to develop and validate the models (internal dataset). Data from
the Shanghai Aier Eye Hospital and the Ninth People’s Hospital
of Shanghai Jiaotong University were collected as an external
test dataset, including another 114 highly myopic eyes from
114 patients.

The inclusion criteria were: (1) axial length (AL) >26.0mm;
(2) preoperative biometry obtained using IOLMaster 700
(version 1.80) or IOLMaster 500 (version 7.7, Carl Zeiss Meditec
AG, Jena, Germany); (3) uneventful cataract surgery with
credible postoperative (≥1month) manifest refraction outcomes;
and (4) best corrected distance visual acuity (BCVA) taken by
a Snellen chart at 2.5m more than 1 month after surgery.

The exclusion criteria were: (1) severe corneal opacity; (2)
severe maculopathy, which was defined the fundus photograph
(Optos-200Tx Ultra-Widefield Retinal Imaging System, Optos,
Dunfermline, United Kingdom) results reaching category 4
according to the international photographic grading system for
myopic maculopathy proposed by Ohno-Matsui et al. (18), or the
OCT exam (Spectralis OCT;Heidelberg Engineering, Heidelberg,
Germany) revealed severe lesions such as the macular hole,
choroidal neovascularization, atrophy, etc.; and (4) eyes with
ocular trauma or other diseases that may influence the accuracy
of manifest refraction.

The IOL models in the internal dataset included MCX 11 ASP,
Rayner, 409MP, HOYA, ZCB00, SN60WF, and ZMB00, while the
external dataset included MCX 11 ASP, SN60WF, and ErgomaX.

The A constants were obtained from the User Group for
Laser Interference Biometry website (ocusoft.de/ulib/index.htm)
for SRK/T formula, after which the constants were input
into the website of BUII formula and lens factors were
automatically generated.

Dataset Preparation
The project included three main parts: dataset preparation,
model design, and training and evaluation.

Data from our hospital were set as the internal dataset, while
20% of the eyes were split randomly into a test dataset, and the
remainders were used as the train and validation datasets. Data
from the other hospitals were set as an external test dataset.

Actual postoperative refraction measured more than 1 month
after cataract surgery was set as the training target, with others
listed below set as features of machine learning. The four
types of features were: (1) demographic information, which
was the patient age; (2) biometric data, which included AL,
corneal curvature (flattest and steepest K value, namely K1
and K2), steepest and flattest meridian, and anterior chamber
depth (ACD, measured from epithelium to lens). We also
included two additional parameters: 1

AL and 1
(K1+K2)

, by

feature transformation during preprocessing; (3) the power of
the implanted IOL model and its A constant; and (4) the
predicted refraction of the implanted IOL back-calculated using
the BUII formula.

Modeling
XGBoost is an algorithm in which new models are created that
predict the residuals of prior models and are then added together
to make the final prediction (19). Using an internal dataset,
the XGBoost model was compared with another two regression
models, including Random Forests (RF) (20), and linear support
vector machine (SVM) regressor (21), and the one with best
prediction outcomes was adopted for further analysis.

The clinical features in the training dataset were input into
the three machine learning models to predict the postoperative
refractions. Random search with 3-fold cross-validation was used
to determine the hyperparameters of the models, which were
randomly selected within a range. Through 500 repetitions,
the optimal hyperparameters with the highest validation scores
were chosen for our model. The hyperparameters used in our
study for XGBoost were learning_rate (0,0.1], n_estimator (300,
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FIGURE 1 | The flow diagram of the XGBoost model.

700), max_depth (2,3), gamma (1), subsample [0.7, 0.9], and
colsample_bytree [0.7, 0.9]; for RF were n_estimators [1,200],
min_samples_leaf [1,1000], and max_features (1, 12); for linear
SVM were epsilon [0,1] and C [0,10].

Evaluation
To evaluate the precision of the model, the trained and tuned
prediction model was used to predict postoperative refraction
using the internal and external test datasets. The PE was defined
as the actual postoperative refraction (spherical equivalent)
minus the predicted postoperative refraction (back-calculated
with the actually implanted IOL power). The median absolute
errors (MedAEs) (22), median squared errors (MedSEs), mean
absolute errors (MAEs), mean squared errors (MSEs), and the
percentages of eyes within ±0.25, ±0.50, ±0.75, and ±1.00 D of
the PE were calculated and compared between the new calculator
and the BUII formula. Furthermore, a comparison between the
new calculator and the RBF 2.0 formula was further conducted
with part of the data from the internal and external test datasets,
while only cases with −2.5 to 1 D refractive targets or AL <

35mm can be calculated with the RBF 2.0 calculator according
to its user guide (23).

The flow diagram of our model was demonstrated in Figure 1.
To validate the stability and generalizability of the model, the
training dataset and internal test dataset were randomly split
with a fixed proportion (80:20%) with 100 repetitions. In each
repetition, a new model was established based on the training
dataset and was evaluated using the same metrics and a separate
test dataset.

We also conducted subgroup analysis stratified by ALs (26.0–
28.0, 28.0–30.0, and ≥30.0mm) with both test datasets. Eyes
with AL ≥28.0mm were defined as extremely myopic eyes. The
accuracies of our calculator and the BUII formula were compared
in each subgroup using the evaluation metrics described above.

Application
A free website for our XGBoost calculator was developed for
online calculations (zhuformula.com, with user guide provided).

Statistical Analyses
Statistical analyses were performed with SPSS software (version
11.0, SPSS, Inc.). Continuous variables were described as the
mean ± standard deviation. The student’s t-test was used
to compare the continuous variables and the χ

2 test was
used to compare categorical variables. Outcome measurements
with abnormal distributions were compared with the Wilcoxon
signed-rank test (two groups) or the Kruskal-Wallis test (more
than two groups). Linear-by-linear associations (two groups)
and Kaplan-Merier test (more than two groups) were used to
compare the distributions of the PE. A P-value of < 0.05 was
considered statistically significant.

RESULTS

Demographics and Ocular Characteristics
The demographic data for the eyes in the internal and external
datasets are shown in Table 1. There were no statistically
significant between-group differences in age, sex, and laterality.
However, the external dataset had longer AL, larger K1, and
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TABLE 1 | Demographics of the internal and external datasets.

Parameters Internal dataset

(n = 1,450)

External dataset

(n = 140)

P-value

Age (y)

Mean ± SD 61.32 ± 9.25 62.61 ± 7.90 >0.05

Range 25–87 44–85

Female No. (%) 794 (54.8%) 80 (57.1%) >0.05

Eye (OD/OS) 760/690 62/52 >0.05

Axial length (mm)

Mean ± SD 29.36 ± 2.18 29.87 ± 2.13 0.043

Range 26.01–36.46 26.05–35.99

K1 (D)

Mean ± SD 43.00 ± 1.97 43.64 ± 1.50 0.002

Range 32.02–48.38 39.38–46.62

K2 (D)

Mean ± SD 44.16 ± 2.06 44.80 ± 1.55 0.002

Range 32.96–50.15 41.31–48.64

IOL power (D)

Mean ± SD 9.56 ± 5.61 7.12 ± 4.70 <0.001

Range −8.0 to 27.5 −4.0 to 17.0

SD, standard deviation; D, diopter.

Student’s t-test was used to compare the continuous variables and the χ
2 test was used

to compare categorical variables between the internal and external datasets.

K2, and lower implanted IOL power. Extremely myopic eyes
comprised 62.07% (180/290) of all eyes in the internal test dataset
and 79.82% (91/114) in the external test dataset.

Comparisons of Accuracy
Comparisons of three regression models demonstrated that the
XGBoost outperformed RF and linear SVM (P < 0.01, Table 2).
We then developed our XGBoost calculator and compared its
prediction results with the BUII formula in both test datasets. The
Bland-Altman plots with actual postoperative refraction against
the XGBoost or the BUII outputs were demonstrated in Figure 2,
and most points were within the agreement limits. The summary
of accuracy outcomes was demonstrated in Table 3. The mean
predicted refractions in the internal test dataset were −3.09 D
(range −6.88 to 0.37 D) by the XGBoost calculator, and −3.06 D
(range −8.29 to 0.58 D) by the BUII; while in the external test
dataset were −2.41 D (range −4.32 to 0.20 D) by the XGBoost
calculator, and −2.66 D (range −4.65 to −0.15 D) by the BUII.
The MedAEs and MedSEs were significantly lower with the
XGBoost calculator in two test datasets (internal: MedAE: 0.25
vs. 0.42 D and MedSE: 0.06 vs. 0.17 D; external: MedAE: 0.29 vs.
0.42 D and MedSE: 0.09 vs. 0.18 D; all P ≤ 0.001). The MAEs
with our XGBoost calculator vs. the BUII were 0.33 ± 0.28 vs.
0.45 ± 0.31 D in internal test dataset, and 0.35 ± 0.24 vs. 0.43
± 0.29 D in external test dataset. The MSEs were 0.19 ± 0.32 vs.
0.30 ± 0.36 D2 in internal test dataset, and 0.18 ± 0.21 vs. 0.27
± 0.29 D2 in external test dataset. As for the 100 times random
cross-validation analyses, the MAEs of our XGBoost formula

were consistently lower in all rounds of modeling and calculation
(Supplementary Figure 1).

The percentages of eyes within ±0.25, ±0.50, ±0.75, and
±1.00 D of the PE were greater with the XGBoost calculator
in the internal (±0.25 D: 49.66 vs. 29.66%; ±0.50 D: 78.28 vs.
60.34%; ±0.75 D: 90.69 vs. 84.14%; ±1.00 D: 97.24 vs. 93.45%;
P <0.001) and external dataset (±0.25 D: 43.86 vs. 35.96%;
±0.50 D: 72.81 vs. 58.77%; ±0.75 D: 92.98 vs. 85.09%; ±1.00
D: 99.12 vs. 97.37%; both P < 0.05) (Table 3 and Figure 3).
Furthermore, the new XGBoost calculator also outperformed
the RBF 2.0 calculator in the internal and external test datasets
(Supplementary Table 1).

Subgroup Analysis
Table 4 shows the results of the AL subgroup analysis. The
MedAEs and MedSEs were significantly lower with the XGBoost
calculator than the BUII formula in all subgroups in the internal
dataset (all P < 0.001) and in the AL ≥30.0mm subgroup in the
external dataset (P < 0.001). The mean absolute errors (MAEs)
with our XGBoost calculator vs. the BUII in three AL subgroups
in internal test dataset were 0.29 ± 0.24, 0.35 ± 0.30, and 0.36
± 0.30 D, respectively, vs. 0.42 ± 0.29, 0.48 ± 0.35, and 0.46 ±

0.29 D, respectively; while in the AL subgroups of the external
test dataset were 0.35 ± 0.26, 0.35 ± 0.24, and 0.34 ± 0.24
D, respectively, vs. 0.35 ± 0.24, 0.38 ± 0.27, and 0.51 ± 0.30
D, respectively. The mean squared errors (MSEs) in the AL
subgroups of the internal test dataset were 0.14 ± 0.21, 0.21 ±

0.40, and 0.22 ± 0.35 D2, respectively, vs. 0.26 ± 0.32, 0.35 ±

0.45, and 0.30± 0.33 D2, respectively; while in the AL subgroups
of the external test dataset were 0.18± 0.25, 0.18± 0.21, and 0.17
± 0.20 D2, respectively, vs. 0.18 ± 0.22, 0.21 ± 0.22, and 0.35 ±
0.33 D2, respectively.

DISCUSSION

Accurately predicting the IOL power for highly myopic eyes is
quite difficult, especially for extremely myopic eyes. Although the
BUII formula appears to be the most accurate formula currently
available for highly myopic eyes (8, 12, 24), its accuracy decreases
when it is applied to extremely myopic eyes (17). Moreover,
despite the promising outcomes of the BUII formula in terms
of the percentage of eyes within ±0.50 D of the PE (11, 12, 14,
24), the percentage of eyes within ±0.25 D of the PE remains
unsatisfied (25.0–38.3%) (14, 15, 17). Therefore, there is still
room for improving the BUII formula for extremely myopic eyes.
In this study, we developed a new XGBoost IOL calculator that
showed improved accuracy in highly myopic eyes. It performed
well in a dataset in which more than two-thirds of eyes were
extremely myopic, and it greatly improved the percentage of eyes
within ±0.25 D of the PE relative to the BUII formula using
the internal (49.66 vs. 29.66%) and external (43.86 vs. 35.96%)
test datasets.

In long eyes, the PE is generally attributable to two factors,
the ocular biometry and the calculation formula itself. In
terms of biometry, longer AL, greater ACD, the occurrence of
staphyloma (25, 26), and poor fixation stability can influence
the measurement of highly myopic eyes (27). However, the use
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TABLE 2 | Comparison regression models including the XGBoost, Linear Support Vector Machine, and Random Forest using the internal test dataset.

Parameters XGBoost Random Forest Linear SVM P-value

MedAE (D) 0.25 0.30 0.70 <0.01

MedSE (D2) 0.06 0.09 0.49 <0.01

MAE (D) ± SD 0.33 ± 0.28 0.38 ± 0.33 0.96 ± 0.90

MSE (D2) ± SD 0.19 ± 0.32 0.25 ± 0.50 1.74 ± 3.14

Eyes within PE (%) <0.01

±0.25 D 49.66% 45.17% 20.34%

±0.50 D 78.28% 75.17% 38.97%

±0.75 D 90.96% 88.97% 52.76%

±1.00 D 97.24% 94.14% 63.97%

SVM, support vector machine; MedAE, median absolute error; MedSE, median squared error; MAE, mean absolute error; SD, standard deviation; MSE, mean squared error; D, diopter;

PE, prediction error.

Kruskal-Wallis tests were used to compare the MedAE and MedSE results. Kaplan-Merier test was used to compare the percentages of eyes within ±0.25, ±0.50, ±0.75, and ±1.00

D of PE.

FIGURE 2 | The Bland-Altman plots with actual postoperative refraction against the XGBoost prediction in the internal (A) and external (C) test dataset or Barrett

Universal II formula (BUII) prediction in the internal (B) and external (D) test dataset.
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TABLE 3 | Summary of outcomes for the XGBoost calculator and the Barrett Universal II formula for the internal and external test datasets.

Parameters Internal test dataset (n = 290) External test dataset (n = 114)

XGBoost BUII formula P-value XGBoost BUII formula P-value

Mean predicted refraction [range] −3.09 [−6.88, 0.37] −3.06 [−8.29, 0.58] −2.41 [−4.32, 0.20] −2.66 [−4.65, −0.15, ]

MedAE (D) 0.25 0.42 <0.001 0.29 0.42 0.001

MedSE (D2) 0.06 0.17 <0.001 0.09 0.18 0.001

MAE (D) ± SD 0.33 ± 0.28 0.45 ± 0.31 0.35 ± 0.24 0.43 ± 0.29

MSE (D2) ± SD 0.19 ± 0.32 0.30 ± 0.36 0.18 ± 0.21 0.27 ± 0.29

Eyes within PE (%) <0.001 0.031

±0.25 D 49.66% 29.66% 43.86% 35.96%

±0.50 D 78.28% 60.34% 72.81% 58.77%

±0.75 D 90.69% 84.14% 92.98% 85.09%

±0.10 D 97.24% 93.45% 99.12% 97.37%

BUII, Barrett Universal II; MAE, mean absolute error; MedAE, median absolute error; SD, standard deviation; MSE, mean squared error; MedSE, median squared error; D, diopter.

Wilcoxon signed-rank tests were used to compare the MedAE and MedSE results, and linear-by-linear associations were used to compare the distributions of the refractive errors.

FIGURE 3 | Distribution of eyes within ±0.25 D, ±0.50 D, ±0.75 D, ±1.00 D, or ±1.25 D of the prediction errors in the internal test dataset.

of noncontact partial coherence interferometry can eliminate
measurement errors, thus errors from the selected formula itself
are of more concern (11, 28). Optimizing the constants of
the existing formulas is one solution (29–31), while improving
formulas that consider more characteristic variables for highly
myopic eyes might be another.

In recent years, several new formulas that incorporate
additional factors into the calculation have been developed, and
efforts have been made to determine the most accurate formulas
in eyes with ALs >26.0mm (8, 11, 12, 14, 15, 17). The BUII
formula seemed to show the best performance, and when used,
the percentage of eyes within ±0.50 D of the PE varies from
62.7 to 89.5% (11, 12, 14, 15, 17). However, its refractive errors
inevitably increase as AL increases (6). When we included more

eyes with extrememyopia in our previous study, only 70% of eyes
were within ±0.50 D of the PE using the BUII formula, with a
corresponding value of 60.34% in the current study (17). Apart
from that, the percentage of eyes within±0.25 D of BUII formula
was still unsatisfied in highly myopic eyes [25.0% (4), 34.7% (15),
or 38.3% (14)]. Therefore, the BUII formula can still be improved
for highly or especially extremely myopic eyes. On these grounds,
we used machine learning to develop a new calculator to improve
the BUII formula for long eyes.

Machine learning and data-driven approaches are becoming
more important in ophthalmology (32). The RBF formula is
another widely-used formula based on artificial intelligence.
Although 86.6% of highly myopic eyes were within ±0.50 D
of the PE using the latest version (24), their average AL of
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TABLE 4 | Summary of outcomes from axial length subgroup analyses comparing the XGBoost calculator and the Barrett Universal II formula in the internal and external

test datasets.

Subgroups/Parameters Internal test dataset (n = 290) External test dataset (n = 114)

XGBoost BUII formula P-value XGBoost BUII formula P-value

AXIAL LENGTH

26.0–28.0 mm

Number of eyes 110 23

MedAE (D) 0.23 0.40 <0.001 0.30 0.38 >0.05

MedSE (D2) 0.05 0.16 <0.001 0.09 0.14 >0.05

MAE (D) ± SD 0.29 ± 0.24 0.42 ± 0.29 0.35 ± 0.26 0.35 ± 0.24

MSE (D2) ± SD 0.14 ± 0.21 0.26 ± 0.32 0.18 ± 0.25 0.18 ± 0.22

28.0–30.0 mm

Number of eyes 82 37

MedAE (D) 0.25 0.41 <0.001 0.26 0.42 >0.05

MedSE (D2) 0.06 0.17 <0.001 0.07 0.18 >0.05

MAE (D) ± SD 0.35 ± 0.30 0.48 ± 0.35 0.35 ± 0.24 0.38 ± 0.27

MSE (D2) ± SD 0.21 ± 0.40 0.35 ± 0.45 0.18 ± 0.21 0.21 ± 0.22

≥30.0 mm

Number of eyes 98 54

MedAE (D) 0.35 0.44 <0.001 0.32 0.52 <0.001

MedSE (D2) 0.12 0.20 <0.001 0.11 0.27 <0.001

MAE (D) ± SD 0.36 ± 0.30 0.46 ± 0.29 0.34 ± 0.24 0.51 ± 0.30

MSE (D2) ± SD 0.22 ± 0.35 0.30 ± 0.33 0.17 ± 0.20 0.35 ± 0.33

XGBoost, new XGBoost calculator; BUII, Barrett Universal II; MedAE, median absolute error; MedSE, median squared error; MAE, mean absolute error; SD, standard deviation; MSE,

mean squared error; D, diopter; PE, prediction error.

Wilcoxon signed-rank tests were used to compare the MedAE and MedSE results.

the included eyes was 27.72mm (maximum: 32.36mm) (24),
indicating the validation of the RBF formula in extremely
long eyes was still inadequate. In our study, the average AL
was >29.00mm (maximum: 36.46mm), and more promising
accuracy of the XGBoost calculator was also found over the RBF
2.0 formula. Therefore, our XGBoost calculator may be more
reliable for extremely long eyes. Moreover, the RBF 2.0 formula
is only used in cases where the postoperative target outcome is
within −2.5 to 1 D (23). Its implementation is refined when <-
2.5 Dmyopic refractive targets were scheduled for extremely long
eyes. Compared with the RBF formula, our calculator might be
more useful for IOL power prediction in highly or extremely
myopic eyes.

In the present study, it is noteworthy that similar outcomes
were also found using the external test dataset, which contained a
greater proportion of extremely myopic eyes (79.82%), indicating
the generalizability potential of our calculator. Furthermore,
when the training and internal test datasets were subjected
to 100 rounds of random splitting, our calculator showed
high stability with more promising accuracy than the BUII
formula. Using our website, surgeons need only enter the
IOL power and the predicted refractions calculated with
the BUII formula, together with the other clinical feature
data required, to yield more accurate predictions of IOL
power, and thereby assist surgeons with surgical planning for
highly or extremely myopic eyes. Moreover, using the same
algorithm, we are willing to further include more data of

low or moderate myopic eyes to train the model, and thus
further expand the scope of application for our calculator in
the future.

In conclusion, we developed a new XGBoost machine
learning-based calculator, which demonstrated good accuracy for
IOL power prediction in highly and extremely myopic eyes.
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