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Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in
patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following
tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study
was conducted to assess the impact of tDCS on gene expressionwithin the rat cerebral cortex. Anodal tDCSwas applied at 3 different
intensities followed byRNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically
significant differences compared to the sham group. A variety of functional pathways, biological processes, andmolecular categories
were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show
that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal
peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were
most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities
while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression
profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity
applied.

1. Introduction

The number of publications about therapeutic and beneficial
effects of transcranial direct current stimulation (tDCS) on
the central nervous system has dramatically increased over
the past several years. One of the main reasons for the
attractiveness of tDCS as a tool to modify neuroplasticity
and neuronal activity [1] is that tDCS is a noninvasive
brain stimulation technique that is well tolerated and easily
employed with other peripheral therapies [2, 3]. Studies
have highlighted tDCS as an alternative treatment method
for schizophrenia [4], Alzheimer’s [5], major depressive
disorder [6, 7], stroke [8], and other neurological disorders.
Moreover, tDCS has shown potential for aiding cognitive

performance in healthy individuals with previous studies
showing improvement of sustained attention [9], enhanced
working memory [10], and enhanced functional connectivity
in spatial navigation networks [11].

Animal-based studies have been conducted to identify
underlying electrophysiological mechanisms by which tDCS
produces its beneficial effects on brain performance. Using
rodent models, studies have shown that tDCS increased
cortical excitability [12], modulated motor-evoked potentials
[13], stimulated synapticmechanisms [11], and enhanced hip-
pocampal synaptic plasticity [14]. These results suggest that
tDCS may be a potential therapeutic option for patients with
neurological and neuropsychiatric diseases and disorders. Of
interest, effects of tDCS were still observed following the
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cessation of stimulation and persisted for hours after tDCS
treatments [14–16].

Compared to the electrophysiological mechanisms, less is
known about the molecular and cellular pathways affected
by tDCS. Spezia Adachi et al. [17] reported that hip-
pocampal TNF-𝛼 levels were decreased by repeated stimu-
lation (20min/day for 8 days). Another rodent-based study
showed that tDCS reduced middle cerebral artery occlusion-
induced expression of hemichannel pannexin-1 in hippocam-
pal neurons in addition to preventing the occlusion-induced
decrease in dendritic spine density [18]. Another occlusion
study reported that tDCS affected MAP-2 and GAP-43
expression in some brain regions of cerebral ischemic rats
[19]. Overall, very few studies have been conducted to ana-
lyze tDCS-induced changes in protein and gene expression.
Therefore, the purpose of this study was to assess the impact
of anodal tDCS on whole transcriptomic profiles within the
cerebral cortex, on which an electrode was attached, and
provide insight into the molecular mechanisms of anodal
tDCS at various current intensities.

For this study, anodal tDCS was applied at several
different intensities (sham, 250𝜇A, 500𝜇A, and 2,000𝜇A).
Following stimulation, dissects of the cerebral cortex were
collected, RNA was extracted, and RNA-Seq analysis was
completed using next-generation sequencing (NGS) tech-
nology, obtained with the Illumina RNA-sequencing system.
Data from the sequencer was analyzed with the Tuxedo suite
tools to produce gene counts and fold changes, which were
analyzed using multiple bioinformatics databases. Results
show that different intensities of tDCS can modulate a mas-
sive number of genes representing a collection of functional
biological pathways.

2. Material and Methods

2.1. Animals. Male Sprague Dawley rats (9-10 weeks old)
were obtained fromCharles River Laboratories (Wilmington,
MA) and housed in the Wright-Patterson Air Force Base
(WPAFB) animal facility. Rats between 300 and 500 g were
used for these experiments, doubly housed with ad libitum
access to food and water, and maintained on a 12 : 12-
hour light-dark cycle. Rodents were randomly assigned to
Sham, 250 𝜇A, 500𝜇A, and 2,000 𝜇A tDCS groups (𝑛 = 7-
8 per group), and all experiments were performed during
the light cycle and done by 12 PM. All procedures were
approved by the WPAFB Institutional Animal Care and Use
Committee and performed in accordance with the National
Institute of Health standards and the Guide for the Care
and Use of Laboratory Animals (National Research Council,
2013).

2.2. Electrode Implantation Surgery and Transcranial Direct
Current Stimulation. Rodents were anesthetized with isoflu-
rane (Piramal, Shope Med Vet, Mettawa, IL) at an average of
2-3% andmaintained during the stimulation. A head incision
was made to expose the implantation area and a head elec-
trode (approximately 5 × 5mm, Axelgaard Manufacturing
Factory Ltd., Fallbrook, CA) was placed with the center on

the sagittal suture, 2.5mm caudal bregma.The head electrode
was cemented to the skull using Metabond Adhesive Luting
Cement (Parkell Inc., Edgewood, NY). Once the cement was
dry, acrylic (Stoelting Co. Fisher Scientific, Pittsburgh, PA)
was added over the cement to create a head cap. A head clamp
(AFRL, WPAFB, OH) was attached to the skull in order to
anchor the acrylic and maintain the integrity of the head cap.

2.3. Whole Transcriptome RNA-Sequencing Performance.
After anodal tDCS for 20min was completed, rats were
immediately euthanized and a portion of the cerebral cortex
under the anodal tDCS location was collected and frozen on
dry ice. Total RNA was extracted from the cerebral cortex
utilizing the RNeasy Mini Kit, following the manufacturer’s
protocol (Qiagen, Valencia, CA). RNA samples from two
animals were combined together for RNA-Seq analysis (𝑛 = 4
per group) to allow for sufficient volume of total RNA and,
then, overnight shipped to the Next Generation Sequencing
(NGS) facility at the UCLA, CA. At the NGS facility, the
library was constructed, and samples were multiplexed and
tagged with standard Illumina tags. Samples were sequenced
using Illumina next-generation RNA-sequencing.

2.4. Bioinformatic Analysis. Data was first obtained in .qseq
file format from the RNA sequencer, demultiplexed, and
stored in .fastq file format. Tophat (version 2.0.6) [20]
together with bowtie (version 0.12.8) [21] was used to align
reads to UCSC genome browser (rat genome assembly
RGSC5.0/rn5). The sequencing resulted in about 54 million
raw reads for each sample (mean ± SED: 54,905,147 ±
1,204,160, 𝑝 > 0.05) and more than 40 million of uniquely
mapped reads (mean ± SED: 44,790,986 ± 930,596, 𝑝 >
0.1). Only uniquely mapped gene reads (mean ± SED: 82% ±
0.25%) were kept. The gene reads were quantified by HTSeq
(version 0.5.3p9) [22] with Ensembl 75 gene sets. Differential
gene expression analysis was performed using DESeq2 (ver.
1.4.5) [23] and genes that had no gene reads across all samples
were discarded. As previously recommended [23], genes
with more than 1.2 log

2
fold change in expression and an

adjusted 𝑝 value of less than 0.1 were classified as significantly
differentially expressed.

DAVID Bioinformatics [24] and PANTHER Classifica-
tion System [25] were used to analyze differentially expressed
genes. These databases were used to classify the genes into
functional groups, providing information about their bio-
logical function. When using DAVID, the enrichment score
cutoff was set to be 1.3 (which corresponds to a corrected 𝑝
value of 0.05).

The PANTHER Classification System (http://PAN-
THERdb.org/) was also used to classify differentially ex-
pressed genes [26]. Lists of gene names were entered and
analyzed with the organism selection of Rattus norvegicus.
The PANTHER database recognized 418, 252, and 450 genes,
respectively, from the gene lists from 250, 500, and 2,000𝜇A
samples (at least 77% recognition rate). Genes recognized
by the PANTHER were classified according to pathway,
biological process, and molecular function. The PANTHER
database contains about 12,000 protein families, which are

http://pantherdb.org/
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also divided into more than 83,000 functionally distinct
protein subfamilies [25, 27].

2.5. Weighted Gene Coexpression Network Analyses
(WGCNA). Normalized expression values for genes from
DESeq data were used to construct signed coexpression
networks using the WGCNA package in R [28]. Low
expression genes were first excluded from the analyses
to remove noise (the number of total genes decreased
from 17,749 to 12,714). Network construction and module
detection were done based on the WGCNA package
manuals. Briefly, after the 1st step of data input and cleaning
was completed, the step-by-step construction of the gene
network and identification of modules was used to construct
a weighted gene network with a soft-thresholding power
of 5, for which scale-free topology fit index (SFT. 𝑅2) was
0.9250. A dissimilarity calculated based on the topological
overlap matrix transformed from the adjacency was used for
hierarchical clustering to produce a hierarchical clustering
tree of genes that was then used to identify the modules with
a set of the minimum module size as 30. The Dynamic Tree
Cut was used to identify similar modules; their eigengenes
were calculated, clustered based on their correlation, and,
then, merged into modules if their correlation was greater
than 0.75.This reduced themodule number from 40 dynamic
modules to 15 merged modules. An association of individual
genes in each module with our trait, tDCS current intensity,
was quantified by defining gene significance as the absolute
value of the correlation between the gene and the trait (see
Figure 6(a)). A correlation of the module eigengene and
the gene expression profile was calculated and defined as
a quantitative measure of module membership. Modules
that had a high significance for tDCS current intensity with
genes as well as high module membership were identified
and 2 modules with the top 2 highest correlations (𝑟 ≤ 0.7
with 𝑝 ≤ 0.005) were used to perform gene ontology (GO)
enrichment analysis (Table 4). The top 30 genes from the
highest module were visualized with VisANT 5.0 [29] for
gene connections (threshold of 0.35).

2.6. Statistical Methods. Results were analyzed both from
HTSeq-count’s list of names, 𝑝 values, and fold changes and
from the pathways indicated by DAVID and PANTHER.
The data were globally normalized before being run through
Tophat. Once Tophat and HTSeq-count were run on the
RNA-Seq data, log

2
fold changes (log

2
FC) and 𝑝 values

were determined to gauge the difference between sham and
experimental groups. Only those genes which fulfilled the
minimum requirements for significance (see Bioinformatic
Analysis for details) were considered for analysis.

3. Results

When log
2
FC were compared between sham animals and

those stimulated at 3 different currents, 947, 945, and 948
genes were identified from the groups of 250 𝜇A, 500 𝜇A, and
2000𝜇A, respectively. When the data were plotted (Figure 1),
there was a clear separation between those stimulated at 250
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Figure 1: Comparison of genes altered by various tDCS intensities.
For this plot, DESeq countable data was used to calculate log

10
mean

of counts and log
2
fold change. The 𝑥-axis is log

10
mean of counts

and the 𝑦-axis is log
2
fold change from sham group. For this plot, the

genes with an expression level ≥ 10 counts and 𝑝 value (one-tailed 𝑡-
test between each tDCS and shamgroup) less than 0.05were selected
to draw the plot. The greater distance from 0 log

2
FC represents a

larger change in gene expression levels from sham.

or 500𝜇A, and those stimulated at 2000𝜇A. The stimulation
at 2000𝜇A shows a marked overall increase in fold change.
On the other hand, genes induced by the 250 and 500 𝜇A
intensities of anodal tDCS were expressed more when stimu-
lated by the 2000𝜇A intensity of anodal tDCS.

3.1. Pathway Analysis of DAVID Bioinformatics. DAVID Bi-
oinformatics analysis was used to classify significantly
expressed genes into functional clusters [24] as shown in Fig-
ure 2. Overall, each tDCS group included unique genes and,
thus, unique functional clusters, which were not expressed in
any other group. It is also true that some genes were detected
in more than one group. Groups with a large number of
associated genes include transmembrane/signal peptide (22
genes) in the intersection of 250 and 500 but not 2000𝜇A,
humoral immune response (36 genes) in the intersection of
250 and 2000 but not 500 𝜇A, defense and immune response
(each with 6 genes) in the intersection of 500 and 2000 but
not 250 𝜇A, and cell adhesion/leukocyte activation (37 genes)
in the intersection of all 250, 500, and 2000𝜇A. A number of
clusters were unique to each tDCS current intensity: notably
ribosomal proteins with 28 genes in the 250𝜇A group, signal
peptides with 84 genes in the 2000𝜇A group, and, while not
as enriched as the other clusters, cell adhesion in the 500𝜇A
group. Interestingly, no functional cluster was detected from
the group 500𝜇A only with significant enrichment.

3.2. Pathway Analysis of PANTHER Classification. The PAN-
THER database was used to perform functional pathway
analysis on the selected differentially expressed genes, and
the data was consolidated into a heatmap (Figure 3). Several
similarities are readily evident by viewing the heatmap;
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Figure 2: Highly enriched terms from DAVID’s Bioinformatics functional clustering with total number of genes listed in parentheses. Listed
in parentheses is the number of genes induced by each current stimulation only (250 𝜇A only, 500 𝜇A only, and 2000 𝜇A only).

genes relating to inflammation mediated by the chemokine
and cytokine pathway fell into the largest or second-largest
functional pathways in some intersections and groups of
250𝜇A and 2000𝜇A. Another highly represented pathway
in the intersection of 250 and 500𝜇A, 250 and 2000𝜇A,
and all 250, 500, and 2000 𝜇A was T-cell activation, where
it was the largest or second-largest functional pathway. Other
large functional pathways included the interleukin signaling,
CCKR signaling map, apoptosis signaling, and EGF-receptor
signaling pathways in the 250 𝜇A group; cadherin signaling
and Wnt signaling pathways in the 500 𝜇A group; and
integrin signaling pathway in the 2000𝜇A group and the
intersection of 250, 500, and 2000𝜇A.Additionally, a number
of neurotransmitter functional pathways were affected by
tDCS, such as serotonergic, adrenergic, and dopaminergic
pathways.

PANTHERDB classification analysis was used to visualize
functional biological processes (Figure 4(a)) and molecular
protein categories (Figure 4(b)). In the functional biological
process categories, similarities were detected between groups.
In particular, for every intensity, the functional biological
processes with the greatest number of associated genes were
metabolic and cellular processes (Figure 4(a)). Immune
system process, response to stimulus, developmental process,
and localization were also categories showing a consistently
large number of genes, with the exception of immune system
processes in the 500 𝜇A group only.

In order to further explore the makeup of the largest
functional biological process categories, genes associated

with cellular (Figure 5(a)) and metabolic (Figure 5(b))
processes were listed and visualized with pie charts. Even
within categories, similarities between groups are evident. In
the cellular processes, cell communication dominates every
group, with over half of the genes associated with it. Likewise,
cell cycle and cellular component movement categories have
relatively large numbers of genes in all groups. The genes
associated with cellular communication, the largest category
in every group, are listed in Table 1.

Metabolic process groups were dominated by one partic-
ular category. In particular, primary metabolic processes had
more than half the genes in every group, often approaching
three-quarters of all the genes. Aside from this huge group,
phosphate-containing compoundmetabolic processes, nitro-
gen compound metabolic processes, and biosynthetic pro-
cesses were identified from the groups of 250 𝜇A, 500𝜇A,
and 2000𝜇A and the intersection of 250 and 500 𝜇A.
These processes frequently have relatively large numbers of
genes associated with them. Genes associated with primary
metabolic processes (the largest subgroup) are listed in
Table 2.

Consistent patterns can be found in the functional protein
categories shown in Figure 4(b). In all groups, receptor
proteins had the greatest number of associated genes. Beyond
this group, there is significantly more variation between
groups, but it is typical that phosphatase, defense/immunity
protein, signaling molecule, and transfer/carrier proteins
have a large number of genes associated with them.The genes
associated with receptors, the largest category of molecular
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Figure 3: Heatmap from PANTHER biological pathway analysis. Heatmap was made with Plotly (available online at https://www.plot.ly/)
with a white-to-blue color theme and drawn from RNA-Seq results from each group of 250𝜇A (A) only, 500 𝜇A (B) only, and 2000 𝜇A (C)
only in addition to the intersections of 250 & 500 𝜇A (ab), 250 & 2000 𝜇A (ac), 500 & 2000 𝜇A (bc), and all 3 current intensities (abc).

https://plot.ly/
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Figure 4: Results from PANTHER classification analyses. (a) Functional biological process categories. (b) Molecular functional protein
categories.
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Figure 5: Two largest categories of gene ontology (GO) functional biological process analyses. (a) Six subcategories were identified from the
cellular category. (b) Seven subcategories were identified from the metabolic process category.

functional proteins, are listed in Table 3. The PANTHER
analysis of our whole transcriptomic data showed that major
subgroups within the receptor protein class were G-protein
coupled receptors, cytokine receptors, ligand-gated ion chan-
nels, and protein kinase receptors.

3.3. Weighted Gene Coexpression Network Analyses
(WGCNA). To evaluate relationships between gene expres-
sion and tDCS intensities, we conducted WGCNA analysis.
A network heatmap plot (Figure 6(a)) was created by

WGCNA showing overall module-related gene branches in
hierarchical clustering dendrograms. WGCNA determined a
total of 15 merged modules. An eigengene network heatmap
(Figure 6(b)) showed the correlations among these 15
module eigengenes and tDCS intensities (indicated by black
arrows). As shown in Figure 6(b), tDCS current intensity is
significantly correlated with only the brown and dark grey
module eigengenes. Figure 6(c) shows their correlations
and 𝑝 values with the tDCS current intensity trait, and
only 2 modules showed absolute correlation values equal
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Table 1: Genes in the cell communication subcategory that were detected from RNA-Seq data sets.

Groups List of genes

250 𝜇A only Adap2, Blnk, Cd27, Cx3cr1, S1pr4, Igsf1, Lair1, Ltb, N𝜇Ak2, Osmr, P2ry14, Phkg2, Birc3, Ccdc88b, Efcab7,
Gem, Il10rb, Prkcd, Lrrc32, Nmi, S100a13, Slamf9, Tnfrsf14, Lck, Sik1, Stat1, Sucnr1, Tssk4

500 𝜇A only Ibsp, Clec4a2, Fzd6, Gabrg1, Gabrr3, Il10ra, Mc4r, Cd244, Ntf3, P2ry12, Pth2r, B3gnt4, Bmp8a, Dock2,
Gsg2, Pcdhb8, Pcdhga1, Pcdhgb7, Unc5cl, Rps6ka6, Myo1b

2000𝜇A only

Adamts1, Adamtsl4, Angpt2, Angptl2, Anxa1, Asgr1, Bmp5, C5ar2, Calcr, Calca, Cd40, Cxcl11, Cmklr1,
Cartpt, Col1a2, Cubn, Cxcl10, Fmod, Frzb, Lgals3bp, Gadd45g, Gdf15, Cxcl1, Igfbp2, Itgb4, Il1b, Prg4, Llgl2,
Mdk, Map3k8, Ogn, Pdgfrl, Pcolce, Pomc, Ptger2, Ptger4, Clec4a3, Col8a2, Csf2ra, Cyr61, Gpr31, Map3k19,
Msr1, Rab20, S100a11, S100a6, Ssc5d, Selp, Sfrp1, Slc6a20, Slc22a6, Socs1, Cd4, Tnfsf4, Tnf, Fes, Plau, Wisp2

Intersection of 250 𝜇A &
500 𝜇A

Angptl4, Asgr2, Ccr5, Cd48, Cp, Cxcl9, Csf3r, C1qb, Clec4a1, Drd4, Fgl2, Havcr2, Itgb2, Sell, Lcp2, Myo1f,
Prss12, Lcn2, Nfkbia, P2ry13, Pla2g2d, Plek, Btg2, Card11, Cfh, Dock8, Dtx3l, Gpr132, Gpr84, Rac2, Rhoh,
S100a9, Slamf8, Tlr3, Vav1, Tnfrsf1b, Tacstd2, Fgr, Hck, Lyn

Intersection of 250 𝜇A &
2000𝜇A

Il2rg, Abi3, Asgr2, Bcl2a1, C5ar1, Cp, Clic1, Csf3r, C1qb, Clec4a1, Tspan8, Cfb, Fgl2, Fbln2, Hcar2, Itgb2,
Ifi35, Lcp2, Mgp, Myo1f, P2ry6, Plek, Ptgds, Arhgdib, Btg2, Card11, Cfh, Dock8, Dtx3l, Gpr132, Gpr84,
Mlkl, Rac2, Rasal3, Rhoh, Slamf8, Tagap, Tlr3, Vav1, Ripk3, Socs3, Junb, Tgfb1, Tnfrsf1b, Tacstd2, Fgr, Hck,
Lyn

Intersection of 500 𝜇A &
2000𝜇A

Asgr2, Cnr2, Cp, Csf3r, C1qb, Clec4a1, Fgl2, Gpr183, Gna15, Itgb2, Lcp2, Myo1f, Ncf1, Nlrc4, Plek, Btg2,
Card11, Cfh, Dock8, Dtx3l, Fyb, Gpr132, Gpr84, Naip6, Pram1, Rac2, Rhoh, Slamf8, Tlr3, Vav1, Tnfrsf1b,
Tacstd2, Fgr, Hck, Lyn

Intersection of all current
intensities

Asgr2, Cp, Csf3r, C1qb, Clec4a1, Fgl2, Itgb2, Lcp2, Myo1f, Plek, Btg2, Card11, Cfh, Dock8, Dtx3l, Gpr132,
Gpr84, Rac2, Rhoh, Slamf8, Tlr3, Tnfrsf1b, Tacstd2, Fgr, Hck, Lyn

Table 2: Genes in the primary metabolic process subcategory that were detected from RNA-Seq data sets.

Groups List of genes

250 𝜇A only

Alox5ap, Nostrin, Rpl3l, Pdlim1, Hsd17b1, Pla2g7, Birc3, Cst7, RGD1564980, RGD1564138, LOC100360154,
Tmem176b, Slc27a2, Tgm2, Tinagl1, Prkcd, RGD1563220, N𝜇Ak2, Cbr3, Alx3, Ctss, Cyp2j4, Si,
RGD1562399, RGD1565048, Apol3, Ddx43, RGD1565844, Cmbl, Npc2, S100a13, Helz2, Phkg2, Vwf, Batf2,
Lypd8, Sik1, Parp12, Plat, Tssk4, Rpl39, Rpl30, Slamf9, Batf, Lck, Apoa5, Cx3cr1, Faxdc2, Rps15al2, Upp1,
Cst3, Mov10, Stat1, Trim21, Herc6, LOC100361854, Rpl35a

500 𝜇A only
Mcmdc2, Gsg2, Rad51c, Smyd1, Phox2a, Zfp711, Cnot6l, LOC100361079, Ftcd, Rps6ka6, Cd55, B3gnt4,
LOC102550734, Lgsn, LOC100360611, Gen1, Itih4, Zfp846, LOC100912373, Zfp961, Cd244, Napsa, Mgam,
Bmp8a, RGD1562923, Lipm

2000𝜇A only

Wfikkn2, Osr1, Asf1b, Fes, Pcolce, Cubn, Adgb, C3, Foxc2, Cmklr1, Cpz, Plau, Bmp5, Maff, Zmynd15,
Uba7, Fmod, Mybl2, Fut4, Aebp1, Enpp3, Ube2c, Ucp2, Srpx, Bhmt2, Cyp1b1, Selp, Nkx2-1, Dct, Tcea3,
Klc3, Ecel1, Adamtsl4, Pim1, Adamts1, Pdlim2, Pdgfrl, Mcm3, Ptgr1, Map3k8, Hk3, Ada, Mcm5, Pbk,
Ssc5d, Gdf15, Isg15, A2m, Hlx, Fmo3, Map3k19, Slc17a9, Abca4, Anxa1, Slc22a6, Slc5a5, Apol9a, Ogn,
Foxd1, Alas2, Lgals3bp, Tbxas1, S100a11, Twist1, Ppp1r3b, S100a6, Igf2, LOC100363469, Cfd, Cd68

250 𝜇A ∩ 500 𝜇A
St14, Ube2l6, F10, Vwa5a, Ciita, Sell, Fli1, Cp, Trim55, Aspg, Galns, Ggta1, Rnase6, RGD1563045, Cfh,
Ccr5, Rgs1, Fos, Lyn, Slamf8, Nlrc5, Tspo, Aga, Nfkbiz, Amy1a, LOC100361180, Rps6, Ptprc, Anxa3, Cd48,
Fgr, Lcn2, Pla2g2d, Irf8, Rhbdf2, S100a9, Dtx3l, Msh5, Nlrp3, Nfkbia, Hck, Prss12

250 𝜇A ∩ 2000𝜇A

Oas1a, St14, Anxa2, Ptpn6, Ube2l6, F10, Junb, Arpc1b, Ciita, Cp, Trim55, Aspg, Psme1, Ch25h, Ggta1,
Tgfb1, Tmem176a, Clic1, Cfh, Cfb, Oasl, Ptgds, Parp14, Hspb1, Ctsz, Rgs1, LOC297756, Fos, Lyn, Slamf8,
Laptm5, C1s, Ctsh, Oasl2, Mlkl, Nlrc5, A3galt2, Ptges, Tspo, Hpgd, Aga, Ifi30, Col6a3, Cd6, Slc7a8, Parp9,
Nfkbiz, Ptprc, Anxa3, Apold1, Fgr, Cpxm2, Irf8, Tmprss2, Rhbdf2, Spi1, Ctsc, Ripk3, Dtx3l, Hcls1, Bcl3,
Tap1, Nlrp3, Atf3, Parp10, Rasal3, Hck, Oas1k, Cebpd

500 𝜇A ∩ 2000𝜇A Hvcn1, St14, Ube2l6, F10, Ciita, Cp, Trim55, Aspg, Ggta1, Cfh, Nlrc4, Rgs1, Fos, Lyn, Slamf8, Nlrc5, Tspo,
Aga, Npas4, Nfkbiz, Ptprc, Anxa3, Fgr, Irf8, Rhbdf2, Apobec1, Dtx3l, Nlrp3, Hck, Naip6, Cebpd

250 𝜇A ∩ 500 𝜇A ∩ 2000𝜇A St14, Ube2l6, F10, Ciita, Cp, Trim55, Aspg, Ggta1, Cfh, Rgs1, Fos, Lyn, Slamf8, Tspo, Aga, Nfkbiz, Ptprc,
Anxa3, Fgr, Irf8, Rhbdf2, Dtx3l, Nlrp3, Hck

to or greater than 0.7 with 𝑝 values less than 0.01: the
brown module (𝑟 = 0.78, 𝑝 = 0.001) and dark grey module
(𝑟 = 0.7, 𝑝 = 0.005). Gene significance (an indicator for
biological significance) for tDCS current intensity was highly
and significantly correlated with module membership (an
indicator for gene connectivity with the module eigengene)

in the brown module (Figure 6(d)). Because the brown
module showed the highest level of interconnectedness, the
top 30 genes were pulled out from the brown module and
exported for visual analyses (Figure 6(e)). Among these top
30 genes, the 3 most highly connected genes were six2, cdh1,
and mpzl2 (red-colored balls).
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Table 3: Genes in the receptor subcategory that were detected from RNA-Seq data set.

Subcategory name
(accession) Groups (number of genes) List of genes

G-protein coupled receptor
(PC00021)

250 𝜇A only (4) Sucnr1, P2ry14, S1pr4, Cx3cr1
500 𝜇A only (7) Fzd6, Pcdhb8, Pcdhga1, Mc4r, Pth2r, P2ry12, Pcdhgb7
2000𝜇A only (10) Cmklr1, Calcr, Ptger2, Gprc5a, Sfrp1, Frzb, Ptger4, Mrgprf, Gpr31, C5ar2
Intersection of
250 𝜇A & 500 𝜇A (5) Ccr5, P2ry13, Gpr84, Gpr132, Drd4

Intersection of
250 𝜇A & 2000𝜇A (6) C5ar1, P2ry6, Gpr18, Gpr84, Gpr132, Hcar2

Intersection of
500 𝜇A & 2000𝜇A (4) Cnr2, Gpr84, Gpr132, Gpr183

Intersection of all current
intensities (2) Gpr84, Gpr132

Cytokine receptors
(PC00084)

250 𝜇A only (12) Igsf1, Tapbpl, Lair1, Il10rb, RT1-N3, Tnfrsf14, Il4r, Siglec1, Slamf9, Cx3cr1, Osmr,
Cd27

500 𝜇A only (4) Il10ra, Clec4a2, Cd244, Cd79b
2000𝜇A only (8) Cmklr1, LOC100364500, Clec4a3, Il21r, Cd4, Cd40, Asgr1, Csf2ra
Intersection of
250 𝜇A & 500 𝜇A (10) Csf3r, Clec4a1, Ccr5, Slamf8, Lag3, Csf2rb, Cd48, Havcr2, Tnfrsf1b, Asgr2

Intersection of
250 𝜇A & 2000𝜇A (9) Csf3r, Clec4a1, Cd33, Slamf8, Csf2rb, Tnfrsf1b, Cd22, Asgr2, Il2rg

Intersection of
500 𝜇A & 2000𝜇A (6) Csf3r, Clec4a1, Slamf8, Csf2rb, Tnfrsf1b, Asgr2

Intersection of all current
intensities (6) Csf3r, Clec4a1, Slamf8, Csf2rb, Tnfrsf1b, Asgr2

Ligand-gated ion channel
(PC00141) 500 𝜇A only (2) Gabrr3, Gabrg1

Protein kinase receptor
(PC00194) 2000𝜇A only (2) Pim1, Pdgfrl

Gene ontology (GO) annotation of the brown and dark
grey modules was used to identify the functional pathways
of genes in these modules (Table 4). The analysis determined
that the top 3 most highly ranked pathways in the brown
module were labeled: extracellular region, proteinaceous
extracellular matrix, and extracellular space. In the dark
grey module, the top 3 pathways were response to drug,
eosinophil chemotaxis, and eosinophil migration. Among
the top 20 ranked pathways in the combined brown and
dark grey modules, the pathways extracellular region (299
genes), response to organic substance (245 genes), tissue
development (178 genes), response to lipid (119 genes), and
extracellular space (116 genes) were found to have a great
number of genes.

4. Discussion

This study was conducted to investigate how anodal tDCS
affects whole transcriptome expression in the cerebral cortex
and to identify the functional biological pathways modulated
by brain stimulation. Overall, a series of bioinformatics
analyses of the RNA-Seq data demonstrated that tDCS
resulted in significant transcriptomic modifications in the
cortex and identified multiple biological pathways, such as
various receptor signaling, metabolism, cytokine/chemokine

signaling, cell adhesion, and transmembrane signaling. Addi-
tionally, our results also discovered that different current
intensities have various effects on transcriptomic expression
levels and, thereby, demonstrated that the patterns of gene
induction and the magnitude of the response are dependent
upon tDCS current intensity.

We first employed the DAVID pathways tool to iden-
tify functional clusters of genes and found 32 functional
clusters that were affected by tDCS at the different intensi-
ties. However, not all functional clusters were significantly
enriched across all intensities. Cluster analysis with DAVID
Bioinformatics resulted in 25, 12, and 21 clusters from the
groups of 250𝜇A, 500𝜇A, and 2000𝜇A, respectively (Fig-
ure 2). All intensities stimulated, to some degree, inflamma-
tory/immune pathways, such as the activation of immune
response (30 genes), cell adhesion/leukocyte activation (37
genes), and positive regulation of immune-regulation signal
transduction (16 genes). The stimulation at higher intensities
affected a greater number of functional clusters related to
inflammatory and immune responses (42%, 50%, and 57%
of clusters were related in the 250, 500, and 2000𝜇A groups,
resp.). Additionally, the inflammatory and immune pathways
were significantly more upregulated in the 500 and 2000𝜇A
groups. This result may be used to explain previous findings
showing that higher intensities induced negative effects (e.g.,
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Figure 6: Weighted Gene Coexpression Network Analysis (WGCNA). (a) Network heatmap plot. Each branch in the hierarchical clustering
dendrograms corresponds to each of 15 modules determined by the WGCNA. The color bars between the dendrograms and the heatmap
plot represent the color-coded eigengene-based connectivity. Progressively more red color indicates highly interconnected genes in each
module. (b) Heatmap plot of the adjacencies in the eigengene network including the trait tDCS current intensities. Each row and column in
the heatmap indicate one module eigengene and the last row and column represent the trait tDCS current intensities. Negative and positive
correlation are represented by green and red colors, respectively, as shown on the indicator (range: 0.0–1.0). (c) Module-trait (tDCS current
intensity) relationship. Each row corresponds to a module eigengene, and each cell contains the corresponding correlation (top) and 𝑝 value
(bottom in parentheses) calculated by the WGCNA package. (d) A scatterplot of gene significance (GS) for tDCS intensity versus module
membership (MM) in the brown module. A highly significant correlation between GS and MM in the brown module (correlation = 0.74; 𝑝
value = 8.2𝑒−186) was detected. (e)The network connections among themost connected genes in the brownmodule, generated by the VisANT
software (version 5.5).The plot shows network connectionswhose topological overlap is above the threshold of 0.35, and the red-colored genes
are the top 3 genes that have the greater number of connections.
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tissue damage) on the rodent cortex [30]. Our histology data
(unpublished) showed no visible lesion at or below 300 𝜇A,
but visible lesion on the cortex was greater when the intensity
was increased to 500 𝜇A.

A growing body of evidence suggests an antidepressant
effect of tDCS in humans [7] and rodents [31], and our data
may provide more evidence to support the antidepressant
effect of tDCS. It was reported that potential therapeutic
effects of tDCS on some psychiatric disorders, such as major
depressive disorder, were induced through the regulation of
GTP signaling pathways in the cerebral cortex [32].Themod-
ulation of GTP signaling also requires the activation of some
ion channels, especially calcium channels [33]. The results
of the DAVID functional clustering indicated that tDCS at
all intensities affected GTP signaling pathways. Moreover,
our data showed that, in particular, 250 and 500𝜇A inten-
sities affected more signaling pathways related to calcium
ion binding and transmembrane/signal peptide. Our results
suggest that tDCS could modulate calcium channel-to-GTP
signaling, providing a potential mechanism by which tDCS
could provide therapeutic and beneficial effects on some
psychiatric disorders. Additional studies should bewarranted
to clarify the interaction between tDCS, psychiatric disorder,
and these pathways, based upon the findings reported here.

DAVID Bioinformatic analysis was also able to detect
gene pathways relating to inflammation, and chemokine and
cytokine signaling were differentially expressed following
stimulation at different intensities.These pathways are impor-
tant formetabolism and intercellular communication and can
have effects on neuroplasticity, LTP, and the development of
new neural pathways [12]. These pathways can serve both as
indicators of the process by which neural plasticity might be
affected and as warning signs of neural damage when estab-
lishing safe parameters for current intensity and duration
of tDCS. Moreover, increased levels of neural inflammation,
as shown at the higher intensities, have been reported
to be related to cognitive impairment, reduced cognitive
performance, and depression, thus inducing negative behav-
ioral changes [34–37]. The upregulation of proinflammatory
cytokines and pathways correlated with observed lesioning
of the brain in our study but was also observable when no
visible lesions occurred. These pathways can indicate that
some damage is taking place, and the amount by which these
pathways are upregulated can indicate how risky a current
intensity might be for a subject.

We also analyzed our RNA-sequencing data by using
PANTHER database in addition to DAVID Bioinformatics.
The use of PANTHER database allowed for our data to be
analyzed using additional databases and allowed results to
be produced using slightly different bioinformatic methods
for interpreting the RNA-sequencing data. The PANTHER
database analysis revealed that tDCS modified about 90
different functional biological pathways, 13 biological pro-
cesses, and 26 protein molecule categories in the cortex. As
shown in Figure 4, the results showed similar patterns as
seen in the DAVID analysis, such as inflammatory/immune
signaling and intracellular signaling pathways.Many genes in
the intersection of 250 and 500𝜇A function as intracellular
signaling, whilemost of the genes detected in the intersection

of all intensities were classified as immune and inflamma-
tory signaling. As discussed above, literature [30] and our
unpublished data showed that tDCS at 2000 𝜇A induced
some degree of damage on the cortex (especially in the upper
layers). This, in addition to the data from DAVID functional
analysis, suggests that some of the gene expression changes
observed at 2000𝜇A are the result of tissue damage, induced
possibly by too high current intensity, and may be, thus,
confounding effects of increased current intensity.

The PANTHER pathway analysis showed that tDCS at
different intensities modified signaling pathways of some
neurotransmitter receptors, including serotonergic, adrener-
gic, GABAergic, dopaminergic, acetylcholinergic, glutamate,
and oxytocin receptors. These receptors, such as glutamate
receptors, are required to form synaptic plasticity with the
Ras signaling pathway, and our data discovered this signaling
pathway is affected by anodal tDCS. Interestingly, the 250𝜇A
intensity showed the greatest expression of Ras signaling
pathway-related genes, and as the current intensity was
increased, fewer genes were expressed. These findings may
suggest that neurotransmitter receptors related to synaptic
plasticity are affected at all levels of stimulation but that
signaling pathways related to synaptic plasticity are more
dependent upon stimulation current intensity.

As identified by the PANTHER biological analysis tool,
the two largest biological process categories modified by
tDCS at all current intensity levelswere cellular andmetabolic
processes (Figure 4(a)). When these categories were further
broken into subcategories (Figure 5), we found that most
genes in cellular and metabolic processes were subclassified
into cell communication and primary metabolic process
categories (at least more than 70% in each subcategory). The
detected genes of these subcategories are listed onTables 1 and
2. Briefly, genes related to intracellular signaling pathways,
receptors, and inflammatory response were detected in the
subcategory of cell communication and genes related to
transmembrane proteins, metabolic pathways, and intracel-
lular signaling pathways were detected in the subcategory of
primary metabolic process. These results indicate that tDCS
at all current intensity levels is effective to modify both cell
metabolism and communication.

PANTHER molecular protein analysis also produced
significant findings, as shown in Figure 4(b). The PANTHER
analysis showed that 20 molecular classes in the cortex were
affected by tDCS. The largest protein class designation was
“receptor” across all the groups, followed by nucleic acid
binding, signaling molecule, and enzyme modulator classes.
We further analyzed the largest protein category, receptor,
and found four subcategories: G-protein coupled receptor,
cytokine receptor, ligand-gated ion channel, and protein
kinase receptor. One of the largest subclasses within the
receptor category, G-protein coupled receptor, is known to
be related to neurotransmitter receptors,metabolic pathways,
and extracellular and intracellular signaling pathways. An
interesting finding from the receptor protein class was that
one of the largest protein subclasses affected was cytokine
receptors.This result, that is, tDCS significantly effects a vari-
ety of receptor pathways, may support the results obtained
from PANTHER analyses showing significant changes in
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cell communication. Future studies should be warranted to
elucidate underlyingmechanisms of tDCS-related expression
of these cytokine receptors and other receptors in the cortex.

To evaluate the effects of tDCS intensity on transcrip-
tomic expression, WGCNAs were calculated and from them,
15 modules were identified. Genes from the top 2 modules
had pathway analysis performed on them by GO annotation.
As shown in Table 4, some of the functional pathways
in given modules had already been detected as important
pathways by DAVID and PANTHERDB. In particular, the
functional pathways response to organic substance from the
brown module and heparin binding from the dark grey
module had been detected by the DAVID functional analysis
(Figure 2). While some of the pathways detected byWGCNA
were unique, for example, extracellular space, extracellular
region, tissue development, vasculature development, and
blood vessel development in the brown module, many other
pathways have clear analogues from the other bioinformatics
assays.The cytokine and chemokine signaling pathways were
detected by all three methods we conducted for this study.
These similarities between results obtained from WGCNA
and those from DAVID bioinformatics and PANTHER
database analyses highlight the result that tDCS induces
change in signaling pathways, especially involving cytokine
and chemokine receptors, which in turn have important
effects on how neural cells are communicating, metabolizing,
and structuring.

While several categories of genes, that is, those involved in
metabolism or immune response, were significantly upregu-
lated at all intensities, this does not indicate that modification
of gene expression by tDCS is not dose-dependent. Rather,
a single category of genes might be upregulated at all
intensities, but the specific genes belonging to that category
might be different from intensity to intensity. Indeed, some
particular pathways can be upregulated at all current inten-
sities yet have different outcomes depending on the presence
or absence of regulatory genes, genes which are demonstrably
dose-dependent. One notable example of a functional path-
way activated in an intensity-dependent manner, discovered
through DAVID analysis, is the NLRP3 inflammasome.
Involved in neurogenesis, inflammation, and neural plastic-
ity, the inflammasome leads to the production of IL-1𝛽, which
can further upregulate inflammatory pathways, polarizing
macrophages to the aggressive M1 phenotype, recruiting
other immune system cells, and leading to tissue damage.
At 250 and 500 𝜇A, this pathway was regulated by IL-10 and
DUSP1, and IL-1 𝛽 was not significantly upregulated from
the sham group. At 2000𝜇A, the picture is reversed: the
regulatory elements were similar to the sham group, and IL-
1 𝛽 showed 6-fold upregulation. Thus, the dose dependence
is clearly shown to be a factor in the change of expression
levels for some, but not all, of the genes significantly affected
by tDCS. Modulation in treatment should therefore involve
frequency stimulation, but only with acceptable parameters
for current intensity, determined through experiment.

Moreover, our findings may provide evidence to support
long-lasting effects of one-time anodal tDCS on brain perfor-
mance, such as neuroplasticity. One recent electrophysiologic
study [14] showed beneficial effects of one-time anodal tDCS

on neuronal plasticity and long-term potentiation (LTP), and
acute tDCS-induced changes were reported to last for hours
[12, 14, 38].This enduring effect of one-time brain stimulation
may be induced by changes in genes, thus protein, expression,
and pathways that play an important role in neuronal plastic-
ity and LTP. Althoughmore supporting evidence is warranted
to be provided, the current study shows that even one-time
anodal tDCS modified the expression of a variety of genes
and pathways and thus will suggest that enduring effects of
one-time anodal tDCS in the brain performance could be the
results of changes in transcriptomic expression. Additionally,
future studies investigating in greater detail the time course
of transcriptomic changes will be also necessary.

5. Conclusions

In this study, we revealed that anodal tDCS modified the
expression of a variety of genes in the cerebral cortex. Our
data provides transcriptomic evidence to explain the impor-
tance of the current intensity of anodal tDCS on the pattern
of gene induction.These results show an increased number of
transcriptomic changes that are related to neuronal function
and identified specified pathways that could contribute to
the beneficial effects of tDCS on brain performance. Thus,
noninvasive tDCS can be utilized to modulate gene expres-
sion within the brain and the pattern and magnitude of the
transcriptomic response to tDCS are dependent upon the
current intensity applied.
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