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3 Departmento de Matemática e Informática, Universidade Eduardo Mondlane, Maputo, Mozambique,

4 International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nation, Avenue,

Gigiri, Nairobi, Kenya

* spedro@icipe.org, sansaopedro@gmail.com

Abstract

Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15

years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and

occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which trans-

mit the virus to their eggs leading to disease persistence during unfavourable seasons. Here

we formulate and analyse a full stochastic host-vector model with two routes of transmis-

sion: vertical and horizontal. By applying branching process theory we establish novel rela-

tionships between the basic reproduction number, R0, vertical transmission and the

invasion and extinction probabilities. Optimum climatic conditions and presence of mosqui-

toes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our

model without seasonality and applying van Kampen system-size expansion techniques,

we provide an analytical expression for the spectrum of stochastic fluctuations, revealing

how outbreaks multi-year periodicity varies with the vertical transmission. Our theory pre-

dicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends

on the efficiency of vertical transmission. Our predictions are then compared to temporal

patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that

interaction between nonlinearity, stochasticity and vertical transmission provides a simple

but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we

argue that while rainfall might be the major determinant for the onset and switch-off of an

outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena

that is correlated to vertical transmission efficiency.

Author Summary

Rift Valley fever (RVF) is a relatively novel vector-borne zoonotic disease, with long and

irregular periods between outbreaks. Although outbreaks are highly correlated with

occurrence of abnormal rainfall and flooding regimes, there have been instances with
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above normal rainfall where no disease outbreaks were recorded. This suggests that while

rainfall might be the major determinant for the onset and switch-off of an outbreak, it

may not be the only factor responsible for the temporal characteristic pattern of RVF out-

breaks. We suspect that apart from influence of environmental conditions, disease out-

breaks result from build up phenomena that depend on vertical transmission efficiency.

Therefore, in this study we focus on formulating a stochastic host-vector model with two

routes of transmission (horizontal and vertical) without seasonality to investigate the role

of vertical transmission in the dynamics of the disease. First we apply branching process

theory to characterize the relationships between vertical transmission and invasion proba-

bility and between vertical transmission and extinction probability. Finally, we apply an

analytic approach, van Kampen’s system size expansion method to characterize disease

complex fluctuations that are simply a result of interaction between demographic stochas-

ticity, non-linearity and vertical transmission efficiency. Our results show that it is possi-

ble to reduce the frequency and intensity of RVF outbreaks by simply reducing the

efficiency of vertical transmission.

Introduction

Rift Valley fever (RVF) is an emerging zoonotic disease with pronounced health and economic

impacts, particularly to vulnerable African communities with low resilience to economic and

environmental challenges [1–3]. Studies have shown that the disease has two distinct cycles:

the epizootic/epidemic and the enzootic/inter-epidemic or endemic [4]. During the inter-epi-

demic cycle, disease transmission occurs at low levels in nature during periods of average rain-

fall. The virus is thought to be maintained through transovarial transmission from the female

Aedes mosquito to her eggs and by occasional amplification cycles in nearby livestock [5]. The

epidemic activities have been found to be highly correlated to heavy rainfall and flooding (in

particular in eastern and southern regions of Africa) that stimulate hatching of Aedes mosquito

eggs, resulting in a massive emergence of both uninfected and infected Aedes mosquitoes [4,

6]. The infected ones if feeding on nearby vulnerable ruminants/livestock, would then trigger

virus amplification, leading to an epizootic. An epizootic is mainly driven by the subsequent

elevation of various Culex mosquito populations, which serve as excellent secondary vectors if

immature mosquito habitats remain flooded for a long enough period [6, 7]. These disease epi-

demic activities occur at very irregular intervals of up to 15 years in the southern and eastern

regions of Africa as well as in the horn of Africa [1, 3].

This characteristic temporal pattern of disease outbreaks adds an additional complication

towards efforts for understanding and predicting occurrence of outbreaks. Findings from a

pioneering empirical study in Tanzania on the subject of disease temporal and spatial patterns

[7] suggest that continuous endemicity of Rift Valley fever virus (RVFV) may lead to periodic

disease outbreaks. Similar observations have also been reported in Kenya [3] and South Africa

[8, 9]. Although correlation between RVF outbreaks and the warm phase of El Niño/Southern

Oscillation (ENSO) phenomena which lead to abnormal rainfall has been reported [10], there

have been instances where no outbreaks were recorded following seasons of exceptionally

above normal rainfall [7]. Moreover, in some Sub-Saharan regions, such as West Africa RVF

outbreaks are not known to be correlated with above average rainfall [2]. In Senegal, it is

reported that disease outbreaks have occurred during drought and normal rainy seasons [11,

12], and have been attributed to human-induced movement of livestock and trade and loss of

herd immunity over time [11, 13]. However, a common situation could be the mechanism that
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lead to virus endemicity during dry season which is also suspected to be through transovarian

transmission in Aedes vexans female mosquitoes [11]. The inter-epidemic period in Senegal is

estimated to be 5-7 years, a time length thought to closely correspond to the time it takes for

renewal of a domestic herd of ruminants [12]. This suggests that while rainfall might be the

major determinant factor for the onset and switch-off of an outbreak, it is likely to not be the

only factor responsible for this temporal characteristic pattern of disease outbreaks. Although

consensus is yet to be achieved, studies have suggested that causal association between local

environment factors, livestock density and movement, and encroachment of mosquitoes into

new geographical area might be responsible for modifying temporal patterns of RVF outbreaks

[14–16]. Findings by recent studies [7, 17] suggested that once RVFV had been introduced to a

new geographical area, it becomes endemic and also pointed out that these newly established

endemic areas constitute a source for future outbreaks once favourable environmental condi-

tions are satisfied. Clearly, here the role of transovarial transmission cannot be neglected

because it is essential for infection reactivation and scale of virus transmission in response to

climatic conditions. This leads to a suspicion that apart from environmental conditions and

other factors disease outbreak may be a result of a build up phenomena that depend on the effi-

ciency of vertical transmission. Therefore, the present research study aims to investigate fac-

tors underlying the characteristic temporal patterns of RVF outbreaks and explore possibilities

of predicting these outbreak patterns based on disease inter-epidemic activities.

Over the past decades mathematical models have been used to translate assumptions con-

cerning transmission and spread of RVF at population level. From the pioneer RVF models by

Favier et al. [18] and Gaff et al. [19], several models have been formulated and analysed using

deterministic compartmental modelling approach [20–28]. Although these models have

potential for examining factors underlying dynamics of the disease, they fail to capture

observed fluctuations on the occurrence of RVF outbreaks. Nevertheless, extending these

models to include seasonality yielded rich dynamics including chaotic behaviour [28]. Chitnis

et al. [24] suggested that seasonality combined with mosquito vertical transmission and/or

introduction of new infected individuals after immunity wanes was necessary for the survival

of RVF and inter-epidemic persistence. On the other hand a study in [29] used a seasonally

forced deterministic model to explore different scenarios of infection persistence including

vertical transmission and alternate wildlife hosts, and concluded that RVF persistence is a deli-

cate balance between numerous species of susceptible hosts, mosquito species, vertical trans-

mission and environmental stochasticity. In these situations such dynamics are attributed to

climatic variations disregarding the fact that interaction between the deterministic dynamics

and demographic stochasticity is central for explaining realistic disease patterns [30]. Deter-

ministic models are typically assumed to be reasonable approximations for infinitely large

homogeneous populations, and arise from the analysis of mean field stochastic models, such

that if one considers finite populations which is the case of livestock, stochastic interactions

even within a well-mixed system may introduce new phenomena [31]. Therefore, it is more

likely that these disease characteristic temporal patterns could be captured by fully stochastic

models [31, 32], which are known to show large oscillations caused by the stochasticity exciting

the system’s natural frequency [33, 34]. Stochastic effects are known to show major impacts

whenever the prevalence of infection in either the host or vector population, or both are low

and can be highly significant during the period immediately after the introduction of infection

into a population [35].

In this study we formulate a full host-vector stochastic model which takes into account

mechanisms of vertical transmission on the vector population. Our aim is to examine the

impact of stochastic effects and virus endemicity on the invasion and persistence of the disease.

Stochastic effects can also lead to disease extinction during endemic settings [36]. To
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investigate these situations we employ branching process theory [37–39], which has been suc-

cessfully applied in vector-borne epidemic models (for more details see [35, 40]). Here we

extend the analysis presented in [35] to include vertical transmission while implementing

infection rates that depend on the sizes of both host and vector populations. Our objective is to

examine the impacts of mosquito biting behaviour and host efforts to avoid the biting on the

invasion and persistence of the disease in the presence of vertical transmission. Although sto-

chasticity can cause large departures from equilibrium, potentially allowing the number of

infectives to fall to low levels [35], it could act passively to kick the system between different

deterministic states [41], as well as interacting with the non-linearity to excite the transients

[32], leading to either periodic or non-periodic oscillations. Using power spectra analysis we

investigate the periodicity of fluctuations of RVF outbreaks as was undertaken for avian influ-

enza in [31]. This is accomplished by formulating the model as a master equation which is

then studied using van Kampen’s system size expansion [42], to provide a prediction for the

dominant period of disease oscillations. Since the macroscopic dynamics can then be viewed

as a sum of a deterministic and a stochastic part, this approach provides a unique opportunity

to investigate the effects of stochasticity on disease endemicity and outbreaks. The approach

has been successfully applied while investigating the effects of stochastic amplification [34, 43]

and seasonal forcing [32, 44, 45] on disease outbreaks in particular in childhood diseases and

more recently on avian influenza [31]. Our objective here is to test ideas about whether the

oscillatory patterns of disease outbreaks can be predicted by simply looking at disease inter-

epidemic activities. Based on historical data of occurrence of disease outbreaks in particular in

Kenya, Tanzania and South Africa, we suspect vertical transmission and chance events to

influence the observed characteristic pattern of disease outbreaks. This analysis provides pre-

diction of the dominant period of disease fluctuations depending on the efficiency of vertical

transmission. The results highlight the role of continuous RVFV endemicity driven by vertical

transmission on mosquitoes, on the periodicity of disease outbreaks which agree with findings

from empirical studies [3, 7, 9]. Therefore, it is reasonable to argue that it could be possible to

reduce the frequency and intensity of RVF outbreaks by controlling transovarial transmission

efficiency.

Methods

RVF stochastic host-vector model with vertical transmission

To analytically investigate temporal dynamics of a RVF model by means of stochastic pro-

cesses we formulate a simple but realistic stochastic host-vector model that captures all impor-

tant features of RVF dynamics. The present study does not use primary data (medical records

or public records), rather during model development we calibrate the model towards temporal

characteristic patterns of RVF epidemic and inter-epidemic activities observed in East Africa

and Southern Africa. In particular, the data used reflect patterns observed in Kenya, Tanzania

and South Africa (see [3, 7, 9, 46, 47] and references therein). A description of all model

parameters and their respective values, ranges and sources is given in Table 1.

We investigate both disease epidemic and inter-epidemic activities in a livestock population

where the transmission of the infection is intermediated by Aedes mosquitoes only. Thus,

neglecting the presence of Culex species which are known to be the secondary vectors of the

disease as in [24]. Aedes mosquitoes are responsible for both initial spread and persistence of

the disease since the female can transmit the virus transovarially to her eggs [2, 48]. The mos-

quito sub-model is an SI type model, that is, with only two compartments: susceptible and

infectious. This way we ignore the exposed class and mosquitoes once infected remain infected

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns
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for life. The livestock sub-model is an SIR type model, that is, susceptible, infectious and

recovered.

Animal hosts enter the susceptible class through birth at a constant rate, μ2. When an infec-

tious Aedes mosquito bites a susceptible animal, there is a finite probability, β21 that the animal

becomes infected. Once an animal host is successfully infected by an infected vector, it moves

from susceptible class S2 to infectious class I2. After some time, the infectious animal host

either recovers at rate �2 and moves to recovered class, R2 or dies naturally at per capita rate of

μ2. Female Aedes mosquitoes (we do not include male mosquitoes in our model because only

female mosquitoes bite animals for blood meals) enter the susceptible class through birth at

rate, b1. The term birth for mosquitoes accounts for and is proportional to the egg-laying rate;

and survival of larvae [24]. Since most density-dependent survival of mosquitoes occurs in the

larvae stage, we assume a constant emergence rate that is not affected by the number of eggs

laid; that is, all emergence of new adult mosquitoes is limited by the availability of breeding

sites [24]. Susceptible vectors, S1 are infected when they bite an infected animal with probabil-

ity β12 and depending on the ambient temperature and humidity [49] the mosquitoes move

from S1 to the infectious class, I1. To reflect the vertical transmission in Aedes mosquitoes a

proportion of infected, q1 newly hatched mosquitoes joins class I1. Mosquitoes leave the popu-

lation through a per capita natural death rate, μ1. Although births and deaths are intrinsically

distinct events, we assume, for simplicity, that the vector birth and death rates have the same

values, which means that the total population size N1 = S1 + I1 is kept constant. A key feature

of the model is that the rate at which new infections occur in both host and vector is propor-

tional to both host and vector population. That is, the total number of bites varies with both

the host and vector population sizes. This allows more realistic modelling of situations where

there is a high ratio of mosquitoes to livestock and where livestock availability to mosquitoes is

reduced through control intervention as well as the efforts a host takes to prevent mosquito

bites (such as swishing its tail) [24, 28]. Thus, the force of new infections in livestock is

l21 ¼
a1a2b21I1

a1N1þa2N2
and the force of new infections in mosquitoes is l12 ¼

a1a2b12I2
a1N1þa2N2

, where α1 is the

number of times one Aedes mosquito would want to bite a host per day, if livestock were freely

available (for details on their derivation see supplementary material section A). This is a func-

tion of the mosquitoes gonotrophic cycle (the amount of time a mosquito requires to produce

Table 1. The parameters for the RVF model for high rainfall and moderate temperature (wet season) for model in Table 2 with values, range and ref-

erences. Note that all parameter units are days. The parameter α1 is a function of the mosquito’s gonotrophic cycle (the amount of time a mosquito requires to

produce eggs) and its preference for livestock blood, while α2 is a function of the ruminant’s exposed surface area, the efforts it takes to prevent mosquito

bites (such as swishing its tail), and any vector control interventions in place to kill mosquitoes encountering cows or prevent bites [24].

Parameter Description Units Baseline Range Reference

1/μ1 Mosquito life span Days 20 10-30 [24, 50]

1/μ2 Livestock life span Days 2190 360-3600 [19]

q1 Probability of vertical transmission 0.1 0-1 [51]

α1 Number of times a mosquito would like to bite a host Days−1 0.33 0.1-0.5 [24, 52]

α2 Number of bites a host can sustain Days−1 19 0.1-50 [24]

α Biting rate Days−1 0.71 0.1-0.8 [53]

β21 Probability of successful infection in livestock 0.21 0.001-0.54 [2, 24, 49]

β12 Probability of successful infection in mosquitoes 0.51 0.3-0.9 [2, 24, 49]

1/�2 Infectious duration in livestock Days 4 1-7 [24, 52, 54, 55]

m0 The ratio female mosquitoes to hosts 1.5 0-5 [56]

doi:10.1371/journal.pntd.0005167.t001
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eggs) and its preference for livestock blood. α2 is the maximum number of mosquito bites a

host can sustain per day. This is a function of the hosts exposed surface area, the efforts it takes

to prevent mosquito bites (such as swishing its tail), and any vector control interventions in

place to kill mosquitoes encountering hosts or preventing bites [24]. This formalism allow us

to evaluate how mosquito biting behaviour and vertical transmission in Aedes female mosqui-

toes impact both the probabilities of disease invasion and extinction and disease fluctuations.

The former is accomplished by employing branching process theory which is central for deter-

mining critical epidemic behavioural thresholds [35], and for the later we used system-size

expansion technique [57] and Fourier analysis. However, a standard incidence function used

in mosquito transmitted diseases usually assumes that mosquitoes bite a particular host at a

constant rate irrespective of the number of available hosts. Therefore, for very large N2 the

above forces of infection can be approximated by the following standard incidence functions

l
0

21
¼ b21am0

I1
N1

and l
0

12
¼ b12a

I2
N2

as the model forces of infections. In this case α is the mos-

quito biting rate, such that α/N2 is the rate at which a particular host is bitten by a particular

mosquito, m0 = N1/N2 is the ratio female mosquitoes to hosts and β21 and β12 are the probabili-

ties of successful transmission per bite [58, 59]. All the transitions of the host and the vector

associated with their corresponding rates are illustrated graphically in Fig 1.

Setting the livestock population size to remain constant, we can omit the equation contain-

ing R2, since it can be obtained when S2 and I2 are known. Therefore, the basic ingredients of

our new model framework are susceptible livestock S2, infected livestock I2 and infected Aedes
mosquitoes I1. Unlike in deterministic models the numbers in these classes are no longer

treated as continuous varying quantities [35], but instead as integers since individual-based

stochastic models consider movements of individuals between classes to be discrete [60]. To

be precise, these transitions are assumed to take place in a small time interval (t, t + Δt) with

Fig 1. Flow diagram of RVF model with both vertical and horizontal transmission. Susceptible

livestock, S2, acquire infection and move to compartment I2 when they are bitten by an Aedes infectious

mosquito I1. They then recover with a constant per capita recovery rate to enter the recovered compartment,

R2, class. Susceptible mosquito vectors, S1, become infected when they bite infectious livestock and progress

to class I1. The solid lines represent the transition between compartments and the dashed lines represent the

transmission between different species.

doi:10.1371/journal.pntd.0005167.g001
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inflows and outflows of magnitude unity. If we denote the numbers in each class as s2, i2 and i1
respectively, the general state of the system is then written as σ = (s2, i2, i1). Thus, T(σ0|σ) repre-

sents the transition probability per unit time from state σ to the state σ0. Note that we character-

ize the events taking place in the system into three distinct groups:

1. Infection

Tðs2 � 1; i2 þ 1; i1js2; i2; i1Þ ¼ b21a
0m0

i1
N1

s2;

Tðs2; i2; i1 þ 1js2; i2; i1Þ ¼ b12a
0
i2
N2

ðN1 � i1Þ;
ð1Þ

2. Birth/Death

Tðs2 þ 1; i2; i1js2; i2; i1Þ ¼ m2N2;

Tðs2 � 1; i2; i1js2; i2; i1Þ ¼ m2s2;

Tðs2; i2; i1 � 1js2; i2; i1Þ ¼ m1i1:

ð2Þ

3. Recovery

Tðs2; i2 � 1; i1js2; i2; i1Þ ¼ ð�2 þ m2Þi2: ð3Þ

where a0 ¼
a

1
a

2

a
1
m

0
þa

2

for general forces of infections λ21 and λ12, and α0 = α for standard

forces of infections l0
21

and l0
12

.

For better illustration we summarize all of the processes taking place in the system and

their corresponding rates and probabilities of occurrence in Table 2. Note that these rates are

the conditional instantaneous stochastic rates of individuals entering or leaving each compart-

ment at time t and also depend on the sizes of each compartment.

Using the probabilities in Table 2, we can now construct the master equation in its general

form [34, 42, 61], describing temporal evolution of the probability distribution of determining

Table 2. Stochastic model for vector-host disease system. The parameter m0 = N1/N2 is the ratio mosquitoes to hosts, and a0 ¼
a1a2

a1m0þa2
is for general forces

of infections λ21 and λ12, and α0 = α is for standard forces of infections l
0

21
and l

0

12
.

Event Transition Rates of occurrence Probability in [t, t + dt]

Birth of uninfected Aedes S1! S1 + 1 μ1(N1 − q1I1) μ1(N1 − q1I1)dt

Infected Aedes birth I1! I1 + 1 b1q1I1 b1q1I1dt

Infection of susceptible Aedes from infectious host S1! S1 − 1, I1! I1 + 1 b12a0
I2
N2
S1 b12a0

I2
N2
S1dt

Death of susceptible Aedes S1! S1 − 1 μ1S1 μ1S1dt

Death of infectious Aedes I1! I1 − 1 μ1I1 μ1I1dt

Birth of susceptible host S2! S2 + 1 μ2S2 μ2S2dt

Infection of susceptible host from infectious Aedes S2! S2 − 1, I2! I2 + 1 b21a0m0

I1
N1
S2 b21a0m0

I1
N1
S2dt

Infectious host recovery I2! I2 − 1, R2! R2 + 1 �2I2 �2I2dt

Death of susceptible host S2! S2 − 1 μ2S2 μ2S2dt

Death of infectious host I2! I2 − 1 (m2 + μ2)I2 (m2 + μ2)I2dt

Death of recovered host R2! R2 − 1 μ2R2 μ2R2dt

doi:10.1371/journal.pntd.0005167.t002
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the system in state σ at time t.

dPðs; tÞ
dt

¼
X

s0 6¼s

Tðsjs0ÞPðs0; tÞ �
X

s0 6¼s

Tðs0jsÞPðs; tÞ; ð4Þ

where σ = (s2, i2, i1) represents the state of the system, P(σ, t) is the probability of the system in

the state σ at time t. This can also be referred to as the forward Fokker-Planck (or forward Kol-

mogorov) equation, which is a differential equation for the probability density function P(σ, t)
of determining the system in σ at time t and it cannot be solved exactly. An alternative analyti-

cal approach can be the derivation of the moments of the distribution of the state σ. However,

for the purpose of our study we analyse the master equation using van Kampen’s system-size

expansion [42], see Section C.2 of S1 Methods. In the following sections we determine both

the probabilities of a major outbreak and extinction after introduction of a single or few infec-

tives into a population that is otherwise susceptible.

Estimating the probability of a major outbreak

In any disease model, a question of fundamental interest is to determine conditions under

which a disease if introduced into a community with no immunity will develop into a large

outbreak, and if it does, conditions under which the disease may become endemic. For this

purpose, a key threshold parameter called the basic reproduction number, R0 is derived and

analysed usually in deterministic epidemic models. In this context it is defined as the average

number of secondary cases produced by a single infected individual during his or her entire

infectious period, in a population which is entirely susceptible. In this regard, it is soon clear

that when R0 < 1 each infected individual will produce less than one infected case and the

probable result is that the disease will die out. On the contrary, if R0 > 1 each individual will

produce more than one case and eventually the infection will invade the population. However,

in the stochastic models, invasion of an infection into a susceptible population is not guaran-

teed by having R0 > 1: stochastic extinction can occur during the period immediately follow-

ing introduction, when there are few infective individuals [35]. Thus, rather than the major

outbreak that would be expected based on the behaviour of the deterministic model, only a

minor outbreak might occur. During this early stage after the introduction of the pathogen, lit-

tle depletion of susceptibles will have occurred and so probabilities of major outbreaks can be

derived using the linear model that arises by assuming that the populations are entirely suscep-

tible [62–64]. Thus, in the resulting model, the number of infectives can be approximated

through a multi-type linear birth-death process [62]. In a multi-type branching process, indi-

viduals in the population are categorised into a finite number of types and each individual

behaves independently [35]. An individual of a given type can produce offspring of possibly all

types and individuals of the same type have the same offspring distribution [65, 66]. In our

model the disease is spread via two modes of infection transmission: vertical and horizontal.

Thus, an infectious mosquito produces an infected animal, and a proportion q1 of infectious

mosquitoes produce infectives of the same type while an infected animal produces an infected

mosquito. Therefore, by assuming that secondary infections arise independently and at a con-

stant rate over the infectious period of each infective, then the distribution of secondary infec-

tions follow geometric distributions [35], with means R11
0
;R21

0
and R12

0
for mosquito-to-

mosquito, mosquito-to-animal and animal-to-mosquito transmission respectively (for more

details see subsection B.2 of S1 Methods).

In this settings, for horizontal transmission the probability generating functions (PGF) for

the joint distribution of the dynamic variables when a single infected mosquito was introduced

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns
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at time 0 can be obtained and it is given by

GiðsÞ ¼ E
Y2

j¼1

sXij
j

" #

: ð5Þ

For vertical transmission the PGF is simply G2
1

[67]. Note that {Xij, i, j = 1,2} is the number of

infectives of type j produced by an infective of type i. G(s) is the probability generating function

of the distribution of secondary infections and Eq (5) can be solved to find the extinction prob-

ability if there is initially one infective individual present. Extinction in the linear model is

most likely to occur early in the process, so this corresponds to the occurrence of minor out-

breaks in the nonlinear model, whereas non-extinction in the linear model corresponds to a

major outbreak in the nonlinear model [35]. Eq (5) can be expanded to obtain the following

formula [35],

Giðs1; s2Þ ¼
X

k1 ;k2

sk1
1 sk2

2 PðXi1 ¼ k1;Xi2 ¼ k2Þ ¼
1

1þ
X2

j¼1

Rjið1 � sjÞ
ð6Þ

where i is equal to 1 or 2. An infective animal only directly give rise to secondary infections in

the vector population. Thus, we have that P(X21 = j, X22 = k) is equal to P(X21 = j) when k = 0

and zero otherwise. Consequently the generating function G2(s1, s2) is a function of s1 alone,

G2ðs1; s2Þ ¼
1

1þ R12ð1 � s1Þ
: ð7Þ

However, when effects of vertical transmission are included, infective mosquitoes not only

give rise to secondary infections in the animal population but also to secondary infection in

the mosquito population through transmission from mother to eggs. Therefore, the generating

function G1(s1, s2) is a function of s1 and s2,

G1ðs1; s2Þ ¼
1

1þ R11ð1 � s1Þ þ R21ð1 � s2Þ
: ð8Þ

Extinction probabilities can be calculated by solving the pair of equations,

G1ðG2ðs1; s2ÞÞ ¼ s1 and G2ðG1ðs1; s2ÞÞ ¼ s2; ð9Þ

resulting from composition of functions in Eqs (7) and (8). The pair (s1, s2) = (1, 1) is always a

solution. If R0� 1 it is the only solution, whereas for R0 > 1 there is another solution with

both s1 and s2 being less than unity [38], where R0 ¼
q1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1
þ 4R12R21

p
with R12 ¼

1

�2þm2þm2

a1a2b12

a1N1þa2N2
S0

1
being the number of new infections in Aedes mosquitoes generated by single

infected animal and R21 ¼
a1a2b21

a1N1þa2N2
S0

2
1

m1
the number of new infections in animals generated by

single infected Aedes mosquito.

System size expansion of the stochastic host-vector model

So far we have formulated a fully stochastic host-vector model with both horizontal and verti-

cal transmission, under well-mixed conditions and constructed the master Eq (4). To analyse

the model we apply two methods: one is to simulate the system using the Gillespie algorithm

[68], which gives the exact realization of temporal disease evolution. The other is analytical

and consists of performing van Kampen’s system-size expansion [34, 42] of the master equa-

tion, which allows for quantitative prediction of the power spectrum of the time fluctuations of

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns
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each of the system variables, and, therefore, of the dominant period of disease outbreaks [31].

Full details of van Kampen’s system size expansion are discussed in Section C of S1 Methods.

This method allows us to derive analytical approximate solutions which involves making the

following substitutions,

s2 ¼ N2�1 þ
ffiffiffiffiffiffi
N2

p
x1;

i2 ¼ N2�2 þ
ffiffiffiffiffiffi
N2

p
x2;

i1 ¼ N1cþ
ffiffiffiffiffiffi
N1

p
x3;

where ϕ1, ϕ2, ψ are fractions of the susceptible livestock, the infected livestock and infected

Aedes mosquitoes respectively, with xl(l = 1, 2, 3) describing the stochastic corrections to the

variables s2, i2, i1. This expands the master equation in powers of N � 1=2

1 and N � 1=2

2 , such that the

probability distribution P(s2, i2, i1; t) can be written in terms of the new variables x1, x2, x3.

Then, in comparison to the leading order, yield the following deterministic system in terms of

fractions as follows:

d�1

dt
¼ � b21a

0m0c�1 þ m2ð1 � �1Þ;

d�2

dt
¼ b21a

0m0c�1 � ð�2 þ m2Þ�2;

dc

dt
¼ b12a

0�2ð1 � cÞ þ m1q1c � m1c:

ð10Þ

When integrating the above deterministic Eq (10) with respect to t we obtain trajectories of the

mean behaviour which show damped oscillations tending to a fixed point see Fig 2. This is

eventually the expected long-term behaviour for realistic parameter values for host-vector

models. This further confirm the results of system stability analysis.

The stability of the steady state of this system is tractable, and can be obtained by deriving

the deterministic limit (see subsection D of S1 Methods). It is easy to verify that these equa-

tions have a trivial fixed point, named the disease-free equilibrium E0:

�
0

1
; �

0

2
; c

0
;

and a unique non-trivial fixed point named the endemic equilibrium E�:

�
�

1
¼

aþ m2R0

ðaþ m2ÞR0

; �
�

2
¼

m1m2ð1 � q1ÞðR0 � 1Þ

bðaþ m2Þ
; c

�
¼

m1m2gð1 � q1ÞðR0 � 1Þ

aðbm2 þ m1gð1 � q1ÞÞ
;

Fig 2. Realization of the RVF host-vector stochastic model and its deterministic counterpart. The trajectories of the deterministic counterpart are

generated by integrating the mean field Eq (10). The values of the parameters in years are as follows: q1 = 0.2, μ1 = (1/20) � 360, μ2 = 1/8, β12 = 0.194, β21 =

0.128, �2 = (1/4) � 360, α0 = α = 256, m0 = 1.5 and R0 = 1.8809, and their description and sources is given in Table 1.

doi:10.1371/journal.pntd.0005167.g002

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005167 December 21, 2016 10 / 26



where a = β21α
0 m0, b = β12α

0
, g = �2 + μ2 and R0 ¼

1

1� q1

b21a0m0

m1

b12a0

�2þm2
is the basic reproductive num-

ber. From the stability’s analysis in Section D of S1 Methods, we know that when R0 < 1, the

disease-free equilibrium point E0 is stable while when R0 > 1, the endemic equilibrium point

E� exists and is stable.

Periodicity of the stochastic host-vector model

A fundamental question is whether the existence of a stable fixed point in the deterministic

system generates oscillations and multi-year periodicity in the corresponding stochastic system

[34]. In order to investigate this and describe the stochastic fluctuations of the system by an

analytical method, we introduce step operators which allow us to express the master Eq (4) in

a more compact form which further facilitate the expansion of the system. Details are given in

Section C.2 of S1 Methods, where it is shown that the resulting master equation can be written

in a power series of N � 1=2

1 and N � 1=2

2 and the step operators in terms of the fluctuation variables

x1, x2 and x3. Then, at next-to-leading order of the newly formed master equation (??) we

obtain a linear Fokker–Planck equation for the fluctuation variables xl(l = 1, 2, 3),

@P

@t
¼ �

X3

k;l¼1

Akl
@ðxlPÞ

@xk
þ

1

2

X3

k;l¼1

Bkl
@

2
P

@xk@xl
: ð11Þ

This is equivalent to a set of Langevin equations [42] for the stochastic corrections to the deter-

ministic Eq (10) having the form

dxk

dt
¼
X3

l¼1

Aklxl þ xkðtÞ; ðk; l ¼ 1; 2; 3Þ; ð12Þ

where ξk(t)(k = 1, 2, 3) are Gaussian white noises with zero mean and a cross-correlation func-

tion given by hxkðtÞxlðt 0Þi ¼ Bkldðt � t 0Þ. Note that system Eq (12) combines both the deter-

ministic and stochastic contributions. Given that we are interested in evaluating fluctuations

of the system trajectories around the non-trivial fixed point of the deterministic system, we

evaluate the entries of the Jacobian matrix Akl and Bkl of the noise covariance matrix at this sta-

ble fixed point. Explicit expressions for these two matrices are given in subsection C.2 of S1

Methods.

The Langevin Eq (12) describe temporal evolution of the normalized fluctuations of vari-

ables around the equilibrium state. By Fourier transformation of these equations, we are able

to analytically calculate the power spectral densities (PSD) that correspond to the normalized

fluctuations, independent of community sizes N1 and N2. By taking the Fourier transform of

Eq (12), we transform them into a linear system of algebraic equations, which can be solved.

After taking averages, in the three expected power spectra of the fluctuations of susceptible

livestock, infected livestock and infected Aedes mosquitoes around the deterministic stationary

values we obtain:

PS2
ðoÞ ¼ hj~x1ðoÞj

2
i ¼

B11o
4 þ GS2

o2 þ wS2

jDðoÞj2
;

PI2
ðoÞ ¼ hj~x2ðoÞj

2
i ¼

B22o
4 þ GI2

o2 þ wI2

jDðoÞj2
;

PI1
ðoÞ ¼ hj~x3ðoÞj

2
i ¼

B33o
4 þ GI1

o2 þ wI1

jDðoÞj2
;

ð13Þ

The complete derivation of these PSDs and detailed descriptions about the way the functions
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χi, Bkl, Γk and DðoÞ depend on model parameters are discussed in subsection C.3 of S1

Methods.

Results

Probability of a major outbreak in the absence of vertical transmission

In the absence of vertical transmission, that is, R11 = 0 the solutions of the equations G1(s1, s2)

= s1 and G2(s1, s2) = s2 are provided in [35] and for the case of introduction of a single infec-

tious vector, it is reproduced here as follows:

To obtain the extinction probability requires determining the smallest non-negative root of

s1 ¼
1

1þ R21 1 �
1

1þ R12ð1 � s1Þ

� � ;
ð14Þ

which is obviously given by

1þ R12

R12ðR21 þ 1Þ
: ð15Þ

Note that this is smaller than 1 if and only if the product R12R21 = R0,H is greater than 1. Conse-

quently, when R0,H� 1, the relevant solution is 1 and so a major outbreak can never happen

[35, 63]. For R0,H> 1, both the probability of extinction and of a major outbreak, are found by

swapping the roles of R12 and R21 in the preceding elaboration. An interesting observation in

host-vector systems is that R0,H can be greater that one even if either R12 or R21 is less than

unity. This leads to an asymmetry relationships between either with the probability of extinc-

tion or invasion and the reproductive numbers which may stem from the disparity between

the sizes of the host and vector populations [35]. To further investigate this phenomenon we

compute the probability of extinction and invasion while varying the biting ability of the vector

when host ability to avoid a mosquito bite is taken into account. This is accomplished by vary-

ing the parameters α1 (number of bites that a mosquito would like to bite a host) and α2 (num-

ber of bites a host would sustain) when plotting the extinction and invasion probabilities. This

is possible since in our approach we generalized the mosquito biting rates so that they can be

applied to wider ranges of population sizes. Instead of letting the total number of mosquito

bites on livestock depend on the number of mosquitoes as in [35], we set the total number of

bites to vary with both the livestock and mosquito population sizes. Results from Fig 3(c) and

3(d) further rephrase the roots of the observed asymmetry highlighting that although the high

ratio of mosquitoes to livestock is a major factor, any form of intervention to reduce livestock

availability to mosquitoes can lead to such disparity. And disease extinction is only possible if

the ratio mosquitoes to livestock is kept at a very low level resulting in values of α1 less than 0.1

see Fig 3(c). This explains why when environmental conditions are satisfied, that is, during

rainy seasons disease outbreaks are expected as a result of the presence of massive numbers of

potential vectors, implying large values of α1. From Fig 3(d) we see that for α1 around 0.5 inva-

sion probabilities are close to 0.8. Hence, if mosquito biting activities are much more frequent

disease invasion is expected but it is dependent on the availability of hosts. An interesting fea-

ture is that for α1� 1 invasion probability is zero regardless of the availability of hosts. This

indicates that any intervention aimed at reducing the appetite of mosquitoes to bite might be a

viable control strategy. Note also that the above observation may imply that infection does not

die out merely because there are few susceptible hosts but because the number of infective vec-

tors have reduced. Moreover, without virus reservoirs in either host or vector population or

virus introduction from the outside even in the presence of optimal climatic conditions,
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disease activities are almost impossible. Therefore, in the following section we examine the

relationships of disease persistence, extinction and spread when effects of vertical transmission

efficiency are taken into consideration.

Probability of a major outbreak in the presence of vertical transmission

In the presence of vertical transmission, determining the probability of extinction requires

solving one of the equations in Eq (9) when R11 6¼ 0. In this regard, the extinction probability

following the introduction of a single infectious mosquito is given by the smallest non-negative

root [63] of

s1 ¼
1

1þ R11ð1 � s1Þ þ R21 1 �
1

1þ R12ð1 � s1Þ

� � :
ð16Þ

After rearranging the above equation we obtain

R11R12ð1 � s1Þ
2s1 þ ðR11 þ R12 þ R12R21Þð1 � s1Þs1 � R12ð1 � s1Þ þ s1 � 1 ¼ 0; ð17Þ

which is a cubic polynomial in s1. Note that for R11 = 0 this equation reduces to quadratic

Eq (14). It is evident that s1 = 1 is a solution to Eq (17) and the remaining solutions are found

by solving the quadratic equation

R11R12s2
1
� ðR11 þ R12 þ R11R12 þ R12R21Þs1 þ R12 þ 1 ¼ 0: ð18Þ

Denoting A = R11R12, B = R11 + R12 + R11R12 + R12R21 and C = R12 + 1, there exist a unique

Fig 3. Solution of Eq (14) when the product R12 × R21 is greater than unity. The curves in (a) and (b) are contours in the plane (R12,

R21), along which the probabilities of extinction and invasion respectively, after an introduction of a single vector is constant. In (c) and (d)

we plot probabilities of extinction and invasion respectively, when varying parameters α1 and α2. The values of the remaining parameters

in days are as follows: μ1 = 1/30, μ2 = 0.00046, β12 = 0.676, β21 = 0.28, �2 = 0.25, m0 = 10.

doi:10.1371/journal.pntd.0005167.g003
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feasible solution to Eq (18) given by

s1 ¼
B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
;

for more details see section B.3 of S1 Methods.

Studies have shown that in the absence of vertical transmission in mosquitoes RVFV dies

out when R0 < 1 and becomes endemic when R0 > 1. However, in the presence of vertical

transmission the disease may persist even for R0 < 1 [24, 27, 28]. This situation stems from the

fact that in host-vector systems, R0 results from a complete cycle of host-vector-host or vector-

host-vector transmission and does not reflect the average number of secondary infections of a

specific population type [69]. For instance, R0 = 0.75 may result from a product of host repro-

ductive number R12 = 5 and vector reproductive number R21 = 0.15. Nevertheless, in each gen-

eration, the number of host infections is proportional to the number of infected mosquitoes,

and decreases proportionally to the vertical infection efficiency. However, if the host reproduc-

tive number is high it is likely to boost up new vector infections in future generations. Fig 4

shows the dependency of probability of disease invasion on R12, R21 and vertical transmission

efficiency R11. The invasion probability increases linearly with increments on vertical trans-

mission efficiency with significant impact when vertical infection efficiency exceeds 20%.

Other studies have found that it is only from such levels of vertical transmission efficiency that

time of viral persistence is observed [69, 70]. Another interesting relationship is that as the

invasion probability increases with vertical infection efficiency the horizontal transmission

R0,H = R12 × R21 tends to decrease highlighting an asymmetric relationship with R12 and R21 as

highlighted in the previous section. Since one of the main confounding factors to such

Fig 4. The curves represent contours in the plane (R12, R21), with varying vertical transmission efficiency, along which the

probability of invasion after an introduction of a single vector is constant. These probabilities are obtained from the solutions of

Eq (18).

doi:10.1371/journal.pntd.0005167.g004
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asymmetric relationship is the ratio female mosquitoes to hosts, we further investigate this

phenomena by examining how both vertical transmission efficiency and ratio mosquitoes to

hosts impact both the invasion and extinction probabilities. This is depicted in Fig 5 where we

also provide a plot for both numerical and analytical solution of the extinction probability Eq

(18) when varying vertical transmission efficiency. The results show that the invasion probabil-

ity increases exponentially with respect to the ratio mosquitoes to hosts but increases linearly

with respect to vertical transmission efficiency, Fig 5(a). However, it saturates when the ratio

mosquitoes to hosts is close to α2, the number of bites a host would sustain, see Fig 5(b). This

indicates that any adequate intervention aimed at preventing ruminants from being bitten is a

viable control strategy regardless of the ratio mosquitoes to hosts. Since, Eq (18) is a polyno-

mial of degree two its numerical and analytical solutions overlap and the extinction probability

decreases quasi-linearly with respect to vertical infection, with the invasion lying above 0.5

Fig 5(c). This stems from the fact that the horizontal basic reproductive number, R0,H is greater

than unity, meaning that there are sustained host-to-vector and vice versa transmission cycles

regardless of the efficiency of vertical transmission. A clear effect of the ratio mosquitoes to

hosts is observed in Fig 5(b) where for very low vertical transmission efficiency and m0 = 1.0

the extinction probability is almost certain. This suggests that in the absence of vertical trans-

mission, if every mosquito is for only one ruminant then there is a high probability that the

disease will die out. This result from the fact that in such settings the chance of a ruminant

being bitten twice in quick succession (once to catch the infection and once to pass it before

Fig 5. (a) and (b) A surface plot for the invasion probability when varying both vertical transmission, q1 and mosquitoes to hosts ratio, m0. (c) Numerical

and analytical solution of the extinction probability Eq (18) when varying vertical transmission efficiency. (d) Analytical solutions of the extinction probability

Eq (18) when varying vertical transmission efficiency for different values of the ratio female mosquitoes to hosts. The values of the remaining parameters

in days are as follows: μ1 = 1/20, μ2 = 1/(8 � 360), β12 = 0.55, β21 = 0.22, �2 = 0.25 and α1 = 0.33, α2 = 19, m0 = 1.5 as baseline values.

doi:10.1371/journal.pntd.0005167.g005
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recovery) is very small [59]. This is also depicted in (a) where for m0� 1 the invasion probabil-

ity is almost null regardless of the efficiency of vertical transmission, but for q1 ⋙ 0:8 invasion

would be possible. More interestingly is the fact that for high ratios of female mosquitoes to

hosts the level of vertical infection necessary for invasion decreases substantially Fig 5(b).

Temporal patterns of Rift Valley fever in Sub-Saharan Africa

RVF is known to be endemic in Sub-Saharan Africa [14] with some differences in temporal

patterns. In general it is emphasized that outbreaks occur at irregular intervals of up to 15

years in eastern and southern regions of the continent [7]. However, a closer look at temporal

patterns of disease outbreaks in Tanzania and Kenya (East Africa) and South Africa (Southern

Africa) shows existence of some possible differences in the temporal characteristic patterns of

disease outbreaks. Fig 6 depicts temporal characteristic patterns of disease outbreaks from

1930 to 2007 in Tanzania [7], from 1951 to 2007 in Kenya [3] and from 1950 to 2011 in South

Africa [9]. The prevalence shown for Kenya and South Africa is artificial, it is only for repre-

sentation purposes since real information regarding prevalence of the disease at each year is

not available. Although data regarding reported cases for each outbreak during the recent

years may exist, it is not complete [2, 7]. For instance, in Tanzania, data for the years 1960,

1963 and 1968 is missing. The plots in Fig 6 are based on data reported in [3] for Kenya, in [9]

for South Africa and in [7] for Tanzania. According to Pienaar and Thompson [9] during this

period South Africa experienced only three major outbreaks (1950-1951, 1974-1976 and 2010-

2011) and the remaining are considered smaller or isolated outbreaks. Interestingly the 1974

outbreak lasted for 3 consecutive years, a situation which can be compared to the 1960 out-

break that occurred in Kenya which continued until 1964 [3]. From the time series Fig 6(b) we

observe that after each major outbreak including the outbreak in 1985-1986 in South Africa

there are subsequent outbreaks occurring nearly each year. According to findings by Murithi

et al. [3] during the period 1950-2007 only 11 large scale outbreaks were recorded in Kenya

with an average inter-epizootic period of 3.6 years (range 1-7 years). However, for Tanzania an

average inter-epizootic period of 7.9 years (range 3-17 years) is reported [7]. These disease

post-epidemic activities in ruminants are known to occur without clinical cases and can only

be detected where active surveillance is carried out [47, 71]. Could it be that these differences

in temporal patterns are results of a deficit of surveillance system to cover all remote regions

that are vulnerable to the disease or are due to differences in the ecology of the vector? This

question takes us to another question which is the driving force of this study. Could it be possi-

ble that smaller or sporadic RVF outbreaks occur every year after major outbreaks without

noticeable outbreaks or clinical cases due lack of active surveillance? Could the prevalence of

Fig 6. Temporal history of RVF outbreaks in some countries of Sub-Saharan Africa. In (a) and (b) the circles represent years of outbreaks occurrence in

Kenya and South Africa [3, 9] and the prevalence indicated in the figure is not real, it is just for representation only since data on prevalence is not available. In

(c) the circles represent the prevalence of disease outbreaks in Tanzania [7].

doi:10.1371/journal.pntd.0005167.g006
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these outbreaks show multi-year periodicity? If disease prevalence data could be available we

would apply techniques of wavelet analysis which performs a time-scale decomposition of a

time signal to estimate spectral characteristics of the signal as a function of time [31, 72]. This

would allow us to predict the dominant period of outbreak fluctuations when varying some

model parameters in particular, vertical transmission which is known to be the driving force

behind the continuous disease endemicity in these regions [7]. Since reliable information is

not available, in the following section we theoretically estimate the power spectra of disease

oscillations taking into account effects of demographic stochasticity and vertical transmission.

Effects of stochasticity and vertical transmission on disease outbreaks

Fig 7 (first row) depicts the power spectrum density (PSD) for fluctuations of the total number

of susceptible livestock, infected livestock and infected mosquitoes as derived in Eq (13), when

using the standard or simplified version of the forces of infection. Our derivation of exact

expressions for the power spectrum of the stochastic variables around the endemic equilib-

rium, see (Eq (13)) gives additional benefits. Using the expression for the power spectrum den-

sity (PSD) for variable I2 we examine how changes in female Aedes vertical transmission

efficiency affects the periodicity of RVF outbreaks. In Fig 8(a) we observe that an increase in

vertical transmission efficiency causes a significant increase in the frequency of disease out-

breaks. To better illustrate this phenomenon, we show that for vertical transmission of q1 =

0.05 the dominant period of disease outbreaks is about 10 years while for q1 = 0.5 the dominant

period is about 1 year. These results suggest that with low efficiency of vertical transmission

there is a high probability of disease extinction after a major outbreak, followed by a long

period without outbreaks. This stems from the fact that the mosquito life cycle is relatively

short and vertically acquired infections are multiplicatively diluted with every generation such

that the virus is rapidly lost unless there is regular amplification in the host population. This

could be only possible if renewal of susceptible livestock would happen with high frequency.

Fig 7. Theoretical prediction of the power spectrum density (PSD) (Eq (13)) for fluctutions of the total number of susceptible livestock, infected

livestock and infected mosquitoes. (First Row) The theoretical prediction using the simplified force of infection. The values of the parameters used in years

are as follows: q1 = 0.05, μ1 = (1/16) � 360, μ2 = 1/8, β12 = 0.170, β21 = 0.116, �2 = (1/4) � 360, α0 = α = 256 and m0 = 1.5. This gives R0 = 1.0066. (Second Row)

Comparison between theoretical predictions of PSD under the simplified and complex versions of the forces of infection. For the complex force of infection the

new parameters are α1 = 0.33, α2 = 19, m0 = 9.45 and a0 ¼
a1a2

a1m0þa2
, and R0 = 1.0074. Note that description and sources of all model parameters are given in

Table 1.

doi:10.1371/journal.pntd.0005167.g007
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Since the PSD Formula (13) describes components of the deterministic model we can examine

effects of the nature of the basic reproduction number R0 on outbreaks periodicity. If R0 is less

than or equal to unity, with a high probability the disease outbreak is relatively small. This is

the reason why most studies would rather concentrate on the complementary case. However,

our analysis (see Fig 8(b) and 8(c)) shows that the most important and interesting case is

where R0 is near unity. We see that as R0 moves away from unity the PSD surface becomes flat-

ter, indicating that more frequencies are involved in the stochastic fluctuations. This simply

means that when increasing R0, the dominant period decreases (the dominant frequency

increases), however for larger values (R0 > 2) the PSD becomes totally flat. In this region

‘coherence resonance’, that is, a phenomenon in which random fluctuations sustain nearly

periodic oscillations around the deterministic endemic equilibrium is lost and becomes white

noise. Furthermore, we examine the PSD surface for nearly extreme values of vertical trans-

mission efficiency q1 = 0.05 and q1 = 0.5. For larger values of vertical transmission the fre-

quency of system fluctuation tends to increase, resulting in continuous endemicity of the

disease as has been observed in some of the endemic regions [7]. While for small values of ver-

tical infections the frequency of outbreaks is significantly reduced.

Discussion

We have explored the use of analytical tools to measure and examine effects of demographic

stochasticity in host-vector models with two routes of transmissions. Host-vector models are

designed to explain the dynamics of diseases in which transmission of the pathogen is medi-

ated by a vector. For our study case which is Rift Valley fever (RVF), the vector is a mosquito

of genus Aedes with special ability of transmitting the virus to its offspring transovarially. In

disease dynamics, this leads to two modes of transmission: horizontal and vertical. The later is

of great epidemiological significance for it allows for investigating the contribution of this

mode of transmission to disease spread and endemicity. The analytical tools applied are:

branching process theory to examine the impact of stochastic effects on the invasion and per-

sistence of RVF infection when vertical transmission is taken into account and the van Kam-

pen method to investigate effects of mosquito vertical transmission on the characteristic

temporal patterns of multi-year periodic disease outbreaks. Using branching process theory

we have determined novel relationships among vertical infection, host-to-vector and vector-

to-host reproductive numbers with both the invasion and extinction probabilities. These hori-

zontal basic reproductive numbers are found to exhibit an asymmetric relationship with the

probabilities of a major outbreak and extinction. Previous studies on host-vector models,

using this technique highlighted that the existing asymmetry relationship between the disease

transmission potentials from hosts to vectors and from vectors to hosts could stem from the

Fig 8. Power Spectra Density (PSD) for the variable I2 (Eq (13)). a) Effects of vertical transmission efficiency on the PSD. Three-dimensional

representation of the PSD when varying R0 and the frequency for q1 = 0.05 and q5 = 0.5 in b) and c) respectively. Model parameter values used are as follows:

β12 = 0.170, β21 = 0.116, �2 = (1/4) � 360, α0 = α = 256, μ2 = 1/8, m0 = 1.5, μ1 = (1/16) � 360.

doi:10.1371/journal.pntd.0005167.g008
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fact that the disease invasion probability starting from a single infective host and the invasion

probability starting from a single infective vector can differ significantly, even though the over-

all basic reproductive number of the infection is the same in both cases [35]. This asymmetry

can lead to a situation where the overall basic reproduction number is greater than unity while

either the vector or host reproductive number is less than unity, resulting in dramatic implica-

tions for disease control efforts. Unlike in previous models, we set the forces of infections to

vary according to the sizes of both the host and vector populations. In this settings we further

investigated the implications of this asymmetry relationships to disease control strategies by

computing the invasion and extinction probabilities when varying the mosquito biting ability

α1 and the host ability to avoid mosquito bites α2. Our model predictions suggest that although

the ratio of mosquitoes to livestock is a major factor, any form of intervention to reduce live-

stock availability to mosquitoes can lead to such disparity.

Previous studies have shown that in the absence of vertical transmission in mosquitoes Rift

Valley fever virus (RVFV) dies out when R0 < 1 and becomes endemic when R0 > 1. However,

in the presence of vertical transmission the disease may persist even for R0 < 1 [24, 27, 28]. To

further investigate the role played by this mode of transmission, for the first time using

branching process theory we derive both the invasion and extinction probabilities on a host-

vector model that includes vertical transmission. It has been shown for host-vector models

without vertical transmission that in regard to invasion probability the two transmission

potentials can show complex relationships, causing the invasion probability to remain almost

constant as a given model parameter is varied. However, it is not the case of our model which

has two routes of infection transmission. Our results suggested that invasion probability

increases linearly with increments on vertical transmission efficiency with significant impact

when vertical infection efficiency exceeded 20% as found in other studies of vector-borne dis-

eases [69, 70]. Adams and Boots [69] found that vertical infection could only be important in

dengue ecology, if the efficiency in nature is substantially greater than that found in empirical

studies. On the contrary, vertically acquired infections are multiplicatively diluted at every

mosquito life-cycle generation, such that, the virus is rapidly lost unless there is regular ampli-

fication in the host population. However, regular amplification of the virus in the host popula-

tion is not certain for several factors. Recovered ruminants from RVF infection are immune

for several days if not months [73], and vaccinated animals may produce a high level of neu-

tralizing antibodies, making them protected against subsequent RVF viral infections [74].

However, how long do these neutralizing antibodies persist and other immune responses such

as innate, humoral and cell mediated are not known with good degrees of certainty and require

further investigation [2]. Another interesting factor is livestock renewal either through birth or

migration, and the livestock viraemic phase whose intensity and duration may vary according

to the inoculated dose, the virus strain and the degree of natural susceptibility of the infected

ruminant [2]. Also, a factor that could serve as a constraint to regular amplification of the dis-

ease during the inter-epidemic period is the ratio mosquitoes to hosts (m0). For the first time

we derived an explicit solution translating both the probability of major outbreak or extinction

in a stochastic host-vector model with both horizontal and vertical transmissions. Our results

showed that for m0� 1 the invasion probability is almost zero indicating that if mosquitoes

are fewer compared to livestock, it is almost impossible for the infection to invade the commu-

nity because sustained transmission may be impossible. An interesting pattern was observed

when vertical transmission efficiency was in the range q1� 0.8, the disease could invade even

for m0� 1. This finding suggest that the interplay between the two is also a determinant factor

for disease spread and if not persistence. This interplay was more paramount for m0 > 1 where

the levels of vertical transmission efficiency decreased substantially. This is another interesting

finding in this paper, which highlights how interaction between the ratio mosquitoes to hosts
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and vertical infection efficiency influence both the invasion and extinction probabilities. In the

case m0 > 1 there is a clear indication that during outbreak situation effects of vertical infec-

tion are easily diluted at every generation and this mode of transmission becomes more signifi-

cant mostly at early stage of the epidemic. However, the invasion probability saturated for m0

close to α2 (host availability). Highlighting that if preventing measures targeting the host popu-

lation are in place, the spread of infection will eventually saturate even for m0� 1 and higher

level of vertical infection.

Results from experimental studies have indicated that depending on the host’s innate sus-

ceptibility or resistance the infection may be classified as: severe acute lethal infection, delayed

onset of complications or mild to asymptomatic infection [75–77]. Low level asymptomatic

circulation and host re-introduction from external reservoir populations are also likely to be

important factors [24, 28, 69]. Chamchod et al. [27] concluded that re-introduction of suscep-

tible animals from external sources (either through movement or buying) may lead to a certain

probability of some subsequent outbreaks if the renewal takes place every year. Certainly in

such a situation if vertical transmission is very low we are likely to observe long intervals with

no outbreaks just like the situation in Tanzania (see Fig 6(a)); while for high values of vertical

transmission we are likely to observe frequent waves of disease outbreaks as compared to the

situation in South Africa Fig 6(b). Our results in Fig 4 further indicated that although invasion

probability increases with vertical infection efficiency, the horizontal transmission reproduc-

tive number tends to decrease, highlighting an asymmetric relationship between the host and

vector reproductive numbers. This further highlights the role of vertical transmission effi-

ciency in inducing complex behaviours in the dynamics of RVF outbreaks. Such complex

dynamics may partially be explained from the fact that effects of vertical infection are further

compounded by effects of the diapause phenomena in Aedes mosquitoes [69], and the ratio

female mosquitoes to livestock. In summary, our analysis reveals that higher values of vertical

transmission or vertical infection efficiency increase the frequency of disease outbreaks and

highlights the importance of the interplay between horizontal and vertical transmission [19,

24, 27, 28] in the spread and persistence of the disease.

Previous RVF modelling studies [24, 27, 28] have relied on the use of seasonal type func-

tions in order to explain periodicity or subsequent waves of RVF outbreaks in endemic regions

as well as characterizing the nature of the resulting oscillations when mosquito population var-

ies according to seasons or climatic conditions [24, 27, 28]. This is the standard paradigm in

the framework of deterministic models [31], where seasonal and/ or climatic extrinsic forcing

and intrinsic host-pathogen dynamics are both used in order to understand the nature of dif-

ferent types of disease oscillations and system’s attractor structures [78]. However, more

recently, it has become clear that the interaction between the deterministic dynamics and

demographic stochasticity is fundamental to understand realistic patterns of disease outbreaks

[30]. To the best of our knowledge this is the first time a non seasonal full stochastic host-vec-

tor model is used to explain the temporal characteristic patterns of disease multi-year periodic-

ity depending on vertical transmission efficiency. This was accomplished by performing van

Kampen [57] system size expansion, which allows us to derive an approximate analytical solu-

tion of the model. This method enables us to further view the population-level dynamics as

being composed of a deterministic part and a stochastic part, where the spectrum of stochastic

fluctuations is intimately related to the stability of the deterministic level dynamics [32].

Through power spectra analysis we were able to calculate the power spectrum of the stochastic

fluctuations analytically and by comparison with simulations we can gain general insights into

mechanisms underlying the peaks. Our analysis predicts complex fluctuations with a domi-

nant period of 1 to 10 years for acceptable parameter values, which essentially depends on the

efficiency of vertical transmission. Moreover, this dominant period was found to be
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significantly sensitive to the ratio mosquitoes to hosts and mosquitoes lifespan. These findings

are in good agreement with observations, which indicate that in endemic areas RVFV is

known to circulate continuously and outbreaks occur at irregular intervals of up to 15 years [3,

79], or 10-15 or even 3-7 years [3, 80]. Note however, that these periods of disease outbreaks

are not known with exact details due to lack of appropriate infrastructure and active disease

surveillance.

Although, we do not reproduce the exact known patterns of RVF outbreaks fluctuations in

every country or region, we provide a plausible explanation, showing that the interplay

between the stochastic component and vertical transmission is central to our understanding of

the erratic patterns of disease outbreaks characterized by a dominant period of 1 to 10 years.

Our results indicated that an increase in the vertical transmission efficiency increases the fre-

quency of disease outbreaks, hence reducing the periodicity of outbreaks to nearly a dominant

period of one year. This further confirms our findings through branching process theory as

discussed above. When vertical infection efficiency is higher RVFV is likely to circulate every

year with virus amplification at every rainfall season leading to yearly sporadic cases of disease

outbreaks. This situation can be compared with the observation of disease outbreaks in South

Africa as shown in Fig 6(b). According to a review by Pienaar and Thompson [9] since the

first outbreak in 1950, South Africa has experienced only three major outbreaks (1950-1951,

1974-1976 and 2010-2011), with sporadic or isolated outbreaks in between. Two interesting

temporal patterns can be discussed: (1) the post-epidemic disease activities or disease activities

between two major outbreaks are of one year cycle; (2) the second major outbreak lasted for

three consecutive years. Could it be that the efficiency of vertical transmission in South Africa

is relatively higher, sustaining continuous endemicity patterns? Our analysis provides a simple

but one of the most relevant explanations for this situation. An increase in vertical transmis-

sion efficiency leads to low frequency of disease outbreaks of nearly one year cycle which is in

good agreement with findings from empirical studies [8, 9]. The epidemic continued through

the winter, spilling over into the next rainfall season. It is believed that such spillover was possi-

ble due to warm temperatures and wet conditions during winter, which are conductive for

reproduction of mosquitoes maintaining infection through winter. However, other dynamical

factors such as susceptible livestock recruitment (or movement), mosquito seasonal abundance

and livestock immune responses could play a role on fluctuations of RVF outbreaks [24, 27,

28]. Perhaps a combination of these factors was responsible for the 1974-1976 and 1960-1964

outbreaks in South Africa and Kenya respectively, which lasted for at least three consecutive

years [3, 9]. Such ‘long-lasting’ consecutive outbreaks are not common and their underlying

factors are not yet fully understood.

On the other hand, our model predicts that for low levels of vertical transmission the fre-

quency of outbreaks becomes very low resulting in a dominant period of disease outbreaks of

10 years and above. These findings suggest that when efficiency of vertical transmission is very

low the virus may require a long period of time to build up and eventually trigger an initial

phase of the outbreak. This is a reasonable explanation for why there have been instances with

no records of outbreaks following seasons of exceptionally above normal rainfall. This is likely

to be the situation in East Africa, for example Tanzania (see Fig 6(a)). In this part of the conti-

nent outbreaks occur at irregular intervals followed by long periods (inter-epidemic period)

without records of disease outbreaks, however, RVFV activities have been detected but with

no clinical signs in the mammalian host [46, 47, 71]. During this inter-epidemic period (IEP)

the virus exists but it fails to further amplify within the host during every wet season. Our

explanation is that since the mosquito life cycle is very short, in the absence of regular amplifi-

cation of the virus in the mammalian host population, vertically acquired infections can be

rapidly lost. Low virus activities result in lower immunity in the host population and create
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conditions for large outbreaks whenever the virus may have sufficiently built up. In summary,

for low vertical infection efficiency we expect long intervals without outbreaks. This is another

contribution of this paper highlighting how our understanding of RVF ecology and epidemiol-

ogy has been advanced by the work undertaken.

For a long time entomological studies have highlighted the relationship between abnormal

rainfall and RVF outbreaks [3, 4, 10, 81]. However, optimum climatic conditions and the pres-

ence of mosquitoes have not completely explained the epidemiology of RVF outbreaks [82].

For instance, abundant rainfall, which normally correlates with increased number of mosqui-

toes in East Africa, was not often associated with RVF outbreaks in West Africa [2], and even

in East Africa there have been instances where no outbreaks were recorded following seasons

of exceptionally above normal rainfall [7]. These observations suggest that while rainfall might

be the major determinant factor for the onset and switch-off of an outbreak [7], it is likely to

not be the only factor responsible for the characteristic pattern of disease outbreaks. Other fac-

tors such as causal association between local environmental factors, livestock density and

movement, encroachment of mosquitoes into new areas and livestock immune responses

could be responsible for the observed characteristic pattern of disease outbreaks [7]. However,

in this study we maintain the focus on the role of vertical transmission, ratio female mosqui-

toes to livestock and chance event on the oscillation of disease outbreaks and endemicity as we

expect our results to be valid even when the above factors have been taken into account. Never-

theless, effects of livestock immune responses and livestock re-introduction or movement

deserve their own further investigation.
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Senegal, 2003. Emerging Infectious Diseases. 2005; 11:1693–1700. doi: 10.3201/eid1111.050193

PMID: 16318720

15. LaBeaud AD, Muchiri EM, Ndzovu M, Mwanje MT, Muiruri S, Peters CJ, et al. Interepidemic Rift Valley

fever virus seropositivity, northeastern Kenya. Emerging Infectious Diseases. 2008; 14(8):1240–1246.

doi: 10.3201/eid1408.080082 PMID: 18680647

16. Pfeffer M, Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasites &

Vectors. 2010; 3(1):1. doi: 10.1186/1756-3305-3-35 PMID: 20377873

17. Munyua P, Murithi RM, Wainwright S, Githinji J, Hightower A, Mutonga D, et al. Rift Valley fever out-

break in livestock in Kenya, 2006-2007. American Journal of Tropical Medicine and Hygiene. 2010; 83

(2 SUPPL.):58–64. doi: 10.4269/ajtmh.2010.09-0292 PMID: 20682907

18. Favier C, Chalvet-Monfray K, Sabatier P, Lancelot R, Fontenille D, Dubois MA. Rift Valley fever in West

Africa: the role of space in endemicity. Tropical medicine & international health: TM & IH. 2006; 11

(12):1878–1888. doi: 10.1111/j.1365-3156.2006.01746.x

19. Gaff HD, Hartley DM, Leahy NP. An epidemiological model of rift valley fever. Electronic Journal of Dif-

ferential Equations. 2007; 2007:1–12.

20. Mpeshe SC, Haario H, Tchuenche JM. A Mathematical Model of Rift Valley Fever with Human Host.

Acta Biotheoretica. 2011; 59(3-4):231–250. doi: 10.1007/s10441-011-9132-2 PMID: 21611886

21. Gaff H, Burgess C, Jackson J, Niu T, Papelis Y, Hartley D. Mathematical Model to Assess the Relative

Effectiveness of Rift Valley Fever Countermeasures. International Journal of Artificial Life Research.

2011; 2(2):1–18. doi: 10.4018/jalr.2011040101

22. Niu T, Gaff HD, Papelis YE, Hartley DM. An epidemiological model of rift valley fever with spatial dynam-

ics. Computational and Mathematical Methods in Medicine. 2012; 2012. doi: 10.1155/2012/138757

PMID: 22924058

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005167 December 21, 2016 23 / 26

http://dx.doi.org/10.1017/S0950268810001020
http://www.ncbi.nlm.nih.gov/pubmed/20478084
http://dx.doi.org/10.4269/ajtmh.2010.09-0289
http://dx.doi.org/10.4269/ajtmh.2010.09-0289
http://www.ncbi.nlm.nih.gov/pubmed/20682905
http://dx.doi.org/10.1017/S0022172400062434
http://www.ncbi.nlm.nih.gov/pubmed/2862206
http://dx.doi.org/10.1093/jmedent/28.2.293
http://www.ncbi.nlm.nih.gov/pubmed/1676073
http://dx.doi.org/10.1371/journal.pone.0088897
http://dx.doi.org/10.1371/journal.pone.0088897
http://www.ncbi.nlm.nih.gov/pubmed/24586433
http://dx.doi.org/10.1371/journal.pntd.0001808
http://www.ncbi.nlm.nih.gov/pubmed/22953020
http://dx.doi.org/10.4102/ojvr.v80i1.384
http://www.ncbi.nlm.nih.gov/pubmed/23718815
http://dx.doi.org/10.1126/science.285.5426.397
http://www.ncbi.nlm.nih.gov/pubmed/10411500
http://dx.doi.org/10.1111/j.1865-1682.2009.01083.x
http://www.ncbi.nlm.nih.gov/pubmed/19548898
http://dx.doi.org/10.3201/eid1111.050193
http://www.ncbi.nlm.nih.gov/pubmed/16318720
http://dx.doi.org/10.3201/eid1408.080082
http://www.ncbi.nlm.nih.gov/pubmed/18680647
http://dx.doi.org/10.1186/1756-3305-3-35
http://www.ncbi.nlm.nih.gov/pubmed/20377873
http://dx.doi.org/10.4269/ajtmh.2010.09-0292
http://www.ncbi.nlm.nih.gov/pubmed/20682907
http://dx.doi.org/10.1111/j.1365-3156.2006.01746.x
http://dx.doi.org/10.1007/s10441-011-9132-2
http://www.ncbi.nlm.nih.gov/pubmed/21611886
http://dx.doi.org/10.4018/jalr.2011040101
http://dx.doi.org/10.1155/2012/138757
http://www.ncbi.nlm.nih.gov/pubmed/22924058


23. Xue L, Scott HM, Cohnstaedt LW, Scoglio C. A network-based meta-population approach to model Rift

Valley fever epidemics. Journal of Theoretical Biology. 2012; 306:129–144. doi: 10.1016/j.jtbi.2012.04.

029 PMID: 22564391

24. Chitnis N, Hyman JM, Manore CA. Modelling vertical transmission in vector-borne diseases with appli-

cations to Rift Valley fever. Journal of biological dynamics. 2013; 7(1):11–40. doi: 10.1080/17513758.

2012.733427 PMID: 23098257

25. Fischer EA, Boender GJ, Nodelijk G, De Koeijer AA, Van Roermund HJ. The transmission potential of

Rift Valley fever virus among livestock in the Netherlands: A modelling study. Veterinary Research.

2013; 44(1). doi: 10.1186/1297-9716-44-58

26. Mpeshe SC, Luboobi LS, Nkansah-Gyekye Y. Modeling the impact of climate change on the dynamics

of rift valley Fever. Computational and mathematical methods in medicine. 2014; 2014:627586. doi: 10.

1155/2014/627586 PMID: 24795775

27. Chamchod F, Cantrell RS, Cosner C, Hassan AN, Beier JC, Ruan S. A modeling approach to investi-

gate epizootic outbreaks and enzootic maintenance of rift valley Fever virus. Bulletin of mathematical

biology. 2014; 76(8):2052–72. doi: 10.1007/s11538-014-9998-7 PMID: 25102776

28. Pedro SA, Abelman S, Ndjomatchoua FT, Sang R, Tonnang HEZ. Stability, bifurcation and chaos anal-

ysis of vector-borne disease model with application to rift valley Fever. PloS one. 2014; 9(10):e108172.

doi: 10.1371/journal.pone.0108172 PMID: 25271641

29. Manore C, Beechler B. Inter-Epidemic and Between-Season Persistence of Rift Valley Fever: Vertical

Transmission or Cryptic Cycling? Transboundary and emerging diseases. 2015; 62(1):13–23. doi: 10.

1111/tbed.12082 PMID: 23551913

30. Rohani P, Keeling MJ, Grenfell BT. The interplay between determinism and stochasticity in childhood

diseases. The American naturalist. 2002; 159(5):469–481. doi: 10.1086/339467 PMID: 18707430

31. Wang RH, Jin Z, Liu QX, van de Koppel J, Alonso D. A simple stochastic model with environmental

transmission explains multi-year periodicity in outbreaks of avian flu. PLoS ONE. 2012; 7(2). doi: 10.

1371/journal.pone.0028873 PMID: 22363397

32. Black AJ, McKane AJ. Stochastic amplification in an epidemic model with seasonal forcing. Journal of

Theoretical Biology. 2010; 267(1):85–94. doi: 10.1016/j.jtbi.2010.08.014 PMID: 20723547

33. Bartlett MS. Measles periodicity and community size. J R Stat Soc A. 1957; 120:48–70. doi: 10.2307/

2342553

34. Alonso D, McKane AJ, Pascual M. Stochastic amplification in epidemics. Journal of the Royal Society,

Interface / the Royal Society. 2007; 4(14):575–582. doi: 10.1098/rsif.2006.0192 PMID: 17251128

35. Lloyd AL, Zhang J, Root AM. Stochasticity and heterogeneity in host-vector models. Journal of the

Royal Society, Interface / the Royal Society. 2007; 4(16):851–863. doi: 10.1098/rsif.2007.1064 PMID:

17580290

36. Bartlett MS. Deterministic and stochastic models for recurrent epidemics. In Proc Third Berkeley Symp

Mathematical statistics and probability, Berkeley, CA: University of California Press. 1956; 4:81–109.

37. Athreya KB, Vidyashankar AN. Branching processes; 2001.

38. Athreya KB, Ney PE. Branching Processes. vol. 39; 2004.

39. Donald LS. Branching processes in biology. vol. Volume 96; 2007. Available from: http://www.

sciencedirect.com/science/article/B7CSX-4PWJ47G-D/2/4d1b1fee906e4416f39d69b0a4def5a6

40. Allen LJS. An Introduction to Stochastic Epidemic Models. Mathematical Epidemiology. 2008; 1945

(3):81–130. doi: 10.1007/978-3-540-78911-6_3

41. Schwartz IB. Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epi-

demic models. Journal of mathematical biology. 1985; 21(3):347–361. doi: 10.1007/BF00276232

PMID: 4031698

42. Van Kampen NG. Stochastic Processes in Physics and Chemistry; 2007. Available from: http://www.

sciencedirect.com/science/article/pii/B9780444529657500076

43. Simões M, Telo da Gama MM, Nunes a. Stochastic fluctuations in epidemics on networks. Journal of

the Royal Society, Interface / the Royal Society. 2008; 5(22):555–566. doi: 10.1098/rsif.2007.1206

44. Black AJ, McKane AJ. Stochasticity in staged models of epidemics: quantifying the dynamics of whoop-

ing cough. Journal of the Royal Society, Interface / the Royal Society. 2010; 7(49):1219–1227. doi: 10.

1098/rsif.2009.0514 PMID: 20164086

45. Rozhnova G, Nunes A. Stochastic effects in a seasonally forced epidemic model. Physical Review E—

Statistical, Nonlinear, and Soft Matter Physics. 2010; 82(4). doi: 10.1103/PhysRevE.82.041906

46. Owange NO, Ogara WO, Affognon H, Peter GB, Kasiiti J, Okuthe S, et al. Occurrence of rift valley fever

in cattle in Ijara district, Kenya. Preventive veterinary medicine. 2014; 117(1):121–8. doi: 10.1016/j.

prevetmed.2014.08.008 PMID: 25217406

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005167 December 21, 2016 24 / 26

http://dx.doi.org/10.1016/j.jtbi.2012.04.029
http://dx.doi.org/10.1016/j.jtbi.2012.04.029
http://www.ncbi.nlm.nih.gov/pubmed/22564391
http://dx.doi.org/10.1080/17513758.2012.733427
http://dx.doi.org/10.1080/17513758.2012.733427
http://www.ncbi.nlm.nih.gov/pubmed/23098257
http://dx.doi.org/10.1186/1297-9716-44-58
http://dx.doi.org/10.1155/2014/627586
http://dx.doi.org/10.1155/2014/627586
http://www.ncbi.nlm.nih.gov/pubmed/24795775
http://dx.doi.org/10.1007/s11538-014-9998-7
http://www.ncbi.nlm.nih.gov/pubmed/25102776
http://dx.doi.org/10.1371/journal.pone.0108172
http://www.ncbi.nlm.nih.gov/pubmed/25271641
http://dx.doi.org/10.1111/tbed.12082
http://dx.doi.org/10.1111/tbed.12082
http://www.ncbi.nlm.nih.gov/pubmed/23551913
http://dx.doi.org/10.1086/339467
http://www.ncbi.nlm.nih.gov/pubmed/18707430
http://dx.doi.org/10.1371/journal.pone.0028873
http://dx.doi.org/10.1371/journal.pone.0028873
http://www.ncbi.nlm.nih.gov/pubmed/22363397
http://dx.doi.org/10.1016/j.jtbi.2010.08.014
http://www.ncbi.nlm.nih.gov/pubmed/20723547
http://dx.doi.org/10.2307/2342553
http://dx.doi.org/10.2307/2342553
http://dx.doi.org/10.1098/rsif.2006.0192
http://www.ncbi.nlm.nih.gov/pubmed/17251128
http://dx.doi.org/10.1098/rsif.2007.1064
http://www.ncbi.nlm.nih.gov/pubmed/17580290
http://www.sciencedirect.com/science/article/B7CSX-4PWJ47G-D/2/4d1b1fee906e4416f39d69b0a4def5a6
http://www.sciencedirect.com/science/article/B7CSX-4PWJ47G-D/2/4d1b1fee906e4416f39d69b0a4def5a6
http://dx.doi.org/10.1007/978-3-540-78911-6_3
http://dx.doi.org/10.1007/BF00276232
http://www.ncbi.nlm.nih.gov/pubmed/4031698
http://www.sciencedirect.com/science/article/pii/B9780444529657500076
http://www.sciencedirect.com/science/article/pii/B9780444529657500076
http://dx.doi.org/10.1098/rsif.2007.1206
http://dx.doi.org/10.1098/rsif.2009.0514
http://dx.doi.org/10.1098/rsif.2009.0514
http://www.ncbi.nlm.nih.gov/pubmed/20164086
http://dx.doi.org/10.1103/PhysRevE.82.041906
http://dx.doi.org/10.1016/j.prevetmed.2014.08.008
http://dx.doi.org/10.1016/j.prevetmed.2014.08.008
http://www.ncbi.nlm.nih.gov/pubmed/25217406


47. Sumaye RD, Geubbels E, Mbeyela E, Berkvens D. Inter-epidemic Transmission of Rift Valley Fever in

Livestock in the Kilombero River Valley, Tanzania: A Cross-Sectional Survey. PLoS Neglected Tropical

Diseases. 2013; 7(8). doi: 10.1371/journal.pntd.0002356 PMID: 23951376

48. M MB, G JP. Epidemiolological aspects of Rift Valley fever in South Africa with reference to vectors, in:.

Swartz TA, Klinberg MA, Goldblum N, Papier CM (Eds), Contributions to epidemiology and biostatistics:

Rift Valley fever, S Karger AG, Basel. 1981; p. 92–99.

49. Turell MJ, Rossi CA, Bailey CL. Effect of extrinsic incubation temperature on the ability of Aedes tae-

niorhynchus and Culex pipiens to transmit Rift Valley fever virus. American Journal of Tropical Medicine

and Hygiene. 1985; 34(6):1211–1218. PMID: 3834803

50. Kasari TR, Carr DA, Lynn TV, Weaver JT. Evaluation of pathways for release of Rift Valley fever virus

into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United

States. Journal of the American Veterinary Medical Association. 2008; 232(4):514–529. doi: 10.2460/

javma.232.4.514 PMID: 18279085

51. Romoser W, Oviedo M, Lerdthusnee K, Patrican L, Turell M, Dohm D, et al. Rift Valley fever virus-

infected mosquito ova and associated pathology: possible implications for endemic maintenance.

Research and Reports in Tropical Medicine. 2011; 2:121–127. doi: 10.2147/RRTM.S13947

52. Ba Y, Diallo D, Kebe CMF, Dia I, Diallo M. Aspects of Bioecology of Two Rift Valley Fever Virus Vectors

in Senegal (West Africa): <I>Aedes vexans</I> and <I>Culex poicilipes</I> (Diptera: Culicidae). Journal

of Medical Entomology. 2005; 42(5):739–750. doi: 10.1093/jmedent/42.5.739

53. Canyon D, Hii J, Muller R. The frequency of host biting and its effect on oviposition and survival in

Aedes aegypti (Diptera: Culicidae). Bulletin of Entomological Research. 1999; 89(01):35–39. doi: 10.

1017/S000748539900005X

54. Bird BH, Ksiazek TG, Nichol ST, MacLachlan NJ. Rift Valley fever virus. J Am Vet Med Assoc. 2009;

234(7):883–893. doi: 10.2460/javma.234.7.883 PMID: 19335238

55. Martin V, Chevalier V, Ceccato P, Anyamba A, De Simone L, Lubroth J, et al. The impact of climate

change on the epidemiology and control of Rift Valley fever. Revue scientifique et technique (Interna-

tional Office of Epizootics). 2008; 27(2):413–426. PMID: 18819669

56. Gupta S, Swinton J, Anderson RM. Theoretical studies of the effects of heterogeneity in the parasite

population on the transmission dynamics of malaria. Proceedings of the Royal Society B: Biological Sci-

ences. 1994; 256(1347):231–238. doi: 10.1098/rspb.1994.0075 PMID: 7914705

57. Van Kampen NG. Stochastic processes in physics and chemistry. vol. 11; 1992. Available from: http://

books.google.com/books?hl = en&lr=&id=3e7XbMoJzmoC&pgis=1

58. Anderson RM. Population dynamics of infectious diseases: theory and applications. Population dynam-

ics of infectious diseases: theory and applications. 1982; 368. doi: 10.1007/978-1-4899-2901-3

59. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. vol. 47; 2007. Available

from: http://www.modelinginfectiousdiseases.org/

60. Bartlett MS. Stochastic population models. London,UK: Methuen. 1960;.

61. McKane A, Newman T. Stochastic models in population biology and their deterministic analogs; 2004.

62. Ball F. The threshold behaviour of epidemic models. J Appl Prob. 1983; 20:227–242. doi: 10.2307/

3213797

63. Bartlett MS. The Relevance of Stochastic Models for Large-Scale Epidemiological Phenomena. Journal

of the Royal Statistical Society Series C (Applied Statistics). 1964; 13(1):2–8. doi: 10.2307/2985217

64. Griffiths DA. A bivariate birth-death process which approximates to the spread of a disease involving a

vector. J Appl Prob. 1972; 9:65–75. doi: 10.1017/S0021900200094699

65. Jagers P. Branching processes with biological applications. New York: Wiley. 1975;.

66. Karlin S, Taylor H. A first course in stochastic processes. New York: Academic Press. 1975; 2nd ed.

67. Singh S, Schneider DJ, Myers CR. Using multitype branching processes to quantify statistics of disease

outbreaks in zoonotic epidemics. Physical Review E. 2014; 89. doi: 10.1103/PhysRevE.89.032702

PMID: 24730870

68. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of Computational Physics. 1976; 22(4):403–434. doi: 10.1016/0021-9991

(76)90041-3

69. Adams B, Boots M. How important is vertical transmission in mosquitoes for the persistence of dengue?

Insights from a mathematical model. Epidemics. 2010; 2(1):1–10. doi: 10.1016/j.epidem.2010.01.001

PMID: 21352772

70. Pedro SA, Tonnang HEZ, Abelman S. Uncertainty and sensitivity analysis of a Rift Valley fever model.

Applied Mathematics and Computation. 2016; 279:170–186. doi: 10.1016/j.amc.2016.01.003

Stochastic Host-Vector Model of RVF Inter-epidemic Activities and Outbreak Patterns

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005167 December 21, 2016 25 / 26

http://dx.doi.org/10.1371/journal.pntd.0002356
http://www.ncbi.nlm.nih.gov/pubmed/23951376
http://www.ncbi.nlm.nih.gov/pubmed/3834803
http://dx.doi.org/10.2460/javma.232.4.514
http://dx.doi.org/10.2460/javma.232.4.514
http://www.ncbi.nlm.nih.gov/pubmed/18279085
http://dx.doi.org/10.2147/RRTM.S13947
http://dx.doi.org/10.1093/jmedent/42.5.739
http://dx.doi.org/10.1017/S000748539900005X
http://dx.doi.org/10.1017/S000748539900005X
http://dx.doi.org/10.2460/javma.234.7.883
http://www.ncbi.nlm.nih.gov/pubmed/19335238
http://www.ncbi.nlm.nih.gov/pubmed/18819669
http://dx.doi.org/10.1098/rspb.1994.0075
http://www.ncbi.nlm.nih.gov/pubmed/7914705
http://books.google.com/books?hl=en&amp;lr=&amp;id=3e7XbMoJzmoC&amp;pgis=1
http://books.google.com/books?hl=en&amp;lr=&amp;id=3e7XbMoJzmoC&amp;pgis=1
http://dx.doi.org/10.1007/978-1-4899-2901-3
http://www.modelinginfectiousdiseases.org/
http://dx.doi.org/10.2307/3213797
http://dx.doi.org/10.2307/3213797
http://dx.doi.org/10.2307/2985217
http://dx.doi.org/10.1017/S0021900200094699
http://dx.doi.org/10.1103/PhysRevE.89.032702
http://www.ncbi.nlm.nih.gov/pubmed/24730870
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/j.epidem.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21352772
http://dx.doi.org/10.1016/j.amc.2016.01.003


71. Lichoti JK, Kihara A, Oriko Aa, Okutoyi LA, Wauna JO, Tchouassi DP, et al. Detection of rift valley

Fever virus interepidemic activity in some hotspot areas of kenya by sentinel animal surveillance, 2009-

2012. Veterinary medicine international. 2014; 2014:379010. doi: 10.1155/2014/379010 PMID:

25202470
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