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Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise
differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model
hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is
increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent
publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most
knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols
for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better
disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells,
organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases
independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of
pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for
organoid-based platforms.

1. Introduction

Recent advances in stem cell research have resulted in a mul-
titude of new tools for superior disease modeling of both
hereditary diseases and cancer development. The incidence
rates of pancreatic diseases such as diabetes and pancreatitis
are rising and prognosis of pancreatic cancer is poor [1–
3], resulting in a high demand for new technologies that
will advance knowledge and improve future therapeutic
approaches. While a few recent studies have utilized
human fetal pancreas for gene expression studies, the
majority of knowledge regarding the complex signaling
interplay in pancreatic development is derived from mouse
models [4–6]. This reveals the unmet need to optimize
in vitro differentiation protocols for the development of
functional human endocrine and exocrine pancreatic cells
essential for disease modeling or drug development [7].

The introduction of induced pluripotent stem cell (iPSC)
technology represented a huge step in advanced in vitro

modeling and disease-specific drug screening for inherited
diseases. Takahashi et al. and Takahashi and Yamanaka
demonstrated that the enforced expression of OCT4,
SOX2, Klf4, and c-Myc in fibroblasts was able to reprogram
these cells to a pluripotent stem cell state [8, 9]. These iPSCs
exhibit key features of embryonic stem cells isolated from
the inner cell mass of the blastocyst, e.g., the expression of
transcription factors (OCT4, SOX2, and NANOG) and cell
surface markers (SSEA-3 and SSEA-4) [8, 9].

Patient-specific iPSCs as well as embryonic stem cells
(ESCs) harbor hallmarks of pluripotency as they are charac-
terized by their limitless ability to self-renew as well as to
differentiate into any cell type in the body [10]. Therefore,
they may serve as a source for in vitro differentiation into
different cell types of the pancreatic lineage. Protocols aim
to recapitulate embryonic development with stage-specific
modulation of particular signaling including Wnt, Notch,
Sonic hedgehog (SHH), and bone morphogenetic protein
(BMP) leading to the sequential induction of the definitive
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endoderm (DE), gut tube endoderm (GTE), pancreatic
endoderm (PE), and pancreatic progenitor (PP) stages [7,
11–15]. Combined use of small molecules and growth fac-
tors efficiently generates multipotent pancreatic progenitors
[13–17], subsequently differentiating into ductal, acinar,
and endocrine lineages [18]. However, the signaling net-
works leading to both specification and maturation of all
pancreatic cell types are still not fully understood [19].

Organoids represent an important step forward in the
functional in vitro modeling of the pancreatic tissue. 3D
organoid cultures with functional and structural properties
of the adult pancreas can be derived from pluripotent stem
cells or organ-restricted stem cells [20] and therefore are
useful for analyzing basic gene functions and cellular pro-
cesses. In addition, this technology might be helpful in trans-
lational medicine and modeling of hereditary diseases and
carcinogenesis as well as in regenerative medicine [20, 21].

This review summarizes recent progress in the establish-
ment of pancreatic lineage derivatives from PSCs and pro-
vides an overview of the potential application of organoids
as model systems for hereditary pancreatic diseases, diabetes,
and pancreatic cancer.

2. Main Text

The pancreas is a compound gland with an exocrine com-
partment comprised of acinar and ductal cells and an
endocrine compartment containing alpha, beta, gamma,
epsilon, and PP cells which are organized in Langerhans
islets [22–24]. Various diseases affect the pancreas arising
from defects in different compartments. Diabetes mellitus
(DM) represents the most frequent endocrinologic disease
accompanied with an increasing prevalence in all industri-
alized countries [25, 26]. While different subtypes of DM
show different facets of extrapancreatic metabolic dysregu-
lation, they all exhibit intrapancreatic β-cell dysfunction as
a key component. DM type 1 is characterized by a loss of
insulin-producing β-cells due to autoimmune destruction
or dysfunction, whereas type 2 is triggered by insulin resis-
tance and lower insulin secretion. Moreover, other forms
of DM can be caused by gene mutations affecting pancre-
atic development or function. In vitro differentiation of
PSCs increases our understanding of pancreatic develop-
ment and disease as underlying mechanisms can be stud-
ied chronologically in a highly defined manner.

2.1. Regulation of Pancreatic Differentiation. ESCs harbor a
complex and tightly regulated signaling network to main-
tain the proliferative and undifferentiated state in vivo.
Transcription factors OCT4 and SOX2 as well as NANOG
control the expression of pluripotency factors and suppres-
sion of lineage-specific genes [27–29]. These intrinsic stem
cell regulators are connected with highly interactive signal-
ing pathways facilitating self-renewal in response to extrin-
sic factors such as FGF or TGFβ [30, 31]. In order to
promote and maintain this pluripotent state artificially
in vitro, ESCs and iPSCs are cultured on feeder cells such
as murine or rat embryonic fibroblasts providing a matrix
for cellular attachment and essential signaling cues for

survival and proliferation, requiring additional supplemen-
tation with basic FGF and serum (or serum replacement)
[32, 33]. Alternatively, feeder cells can be replaced by
extracellular matrix components and culture medium
substituted with multiple growth factors supporting
in vitro cell growth [34].

For further in vitro differentiation, PSCs can recapitulate
embryonic development generating pancreatic cells. In vivo,
pluripotent cells of the inner cell mass form the three pri-
mary germ layers of the embryo with endo-, meso-, and
ectoderm [35]. The first branch towards pancreatic lineage
commitment is the specification into DE originating from
the most anterior primitive streak region by modulated
Wnt, Nodal, and BMP signaling [36, 37]. In vitro, this sig-
naling is mimicked with Wnt3A or GSK3β inhibition and
TGFβ ligand Activin A, inducing the expression of typical
cellular DE markers SOX17, FOXA2, CXCR4, and c-Kit
[11, 38]. After gastrulation, the DE forms the primitive gut
tube followed by the anterior-posterior patterning resulting
in organ specification, where a dorsal and ventral pancreatic
bud is formed at the posterior foregut domain [36, 37].
Besides intrinsic signaling of endodermal cells, the pattern-
ing is also mediated by extrinsic signaling from surrounding
extracellular matrix and mesodermal cells such as pancreatic
mesenchyme, notochord, and dorsal aorta [39]. In vitro,
these processes are recapitulated with FGF signaling and
subsequent treatment with retinoic acid with parallel BMP
signal inhibition through Noggin or LDN193189 [11, 12,
15, 38, 40]. Moreover, SHH signaling is blocked with
SANT-1 leading to the cellular expression of PDX1, PTF1A,
HNF6, and FOXA2, when pancreatic endoderm stage is
reached [12, 15, 41]. In vivo, the pancreatic buds are com-
posed of multipotent pancreatic progenitor cells that during
subsequent morphogenesis give rise to more committed
pancreatic cell types. Further expansion of the pancreatic
progenitor pool is mediated by FGF10-induced proliferation
with expression of PDX1, NKX6.1, SOX9, CPA1, PTF1A,
and FOXA2 at the pancreatic progenitor stage [41–43]. Also,
Notch signaling plays an important role at multiple stages;
however, the precise regulation during pancreatic develop-
ment in humans is not fully understood. In mice, differential
Notch signaling in the early pancreatic endoderm is thought
to serve as a gatekeeper between progenitor amplification
and differentiation preventing premature differentiation of
exocrine and endocrine cells and maintaining pancreatic
progenitors [44, 45]. Moreover, Notch signaling seems to
be involved in duct specification providing an extensive
cue in the determination of different cell types [45].

For analysis of more mature stages in vitro, pancreatic
progenitor cells can be further differentiated to obtain
β-cells. Nevertheless, current endocrine differentiation pro-
tocols for monolayer/2D cultures are not very efficient and
yield only an immature or mixed population of polyhormo-
nal endocrine cells [41]. Moreover, insulin secretion in
response to glucose stimulation, a prerequisite of β-cells, is
absent [40, 41]. However, transplantation of these cells into
immunodeficient mice gives rise to mature β-cells suggest-
ing a premature in vitro phenotype [12, 46]. Figure 1 depicts
the different stages of stepwise in vitro pancreatic endocrine
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differentiation with exemplary images of the human ESC
line HUES8 (Figure 1(a)). For this cell line, we adapted the
differentiation protocol from the Nostro lab [7, 17] resulting
in polyhormonal cells (Figure 1(b)).

New in vitro differentiation protocols including a 3D cul-
ture step are promising as they result in glucose-responsive
β-like cells. The three current and most promising protocols
for pancreatic β-cell differentiation will be compared (see
also Table 1): while the protocols adapted from Pagliuca et al.
[13] and Russ et al. [15] describe a suspension culture system
with spinner flasks and orbital shaker, respectively, Rezania
et al. [14] start differentiation in monolayer cells and changes
to an air-liquid interphase culture at the pancreatic endo-
derm stage. The various stage-specific signaling pathways
modulated by the differentiation regimens of these most
recent protocols [13–15] are summarized in Figure 2, which
also depicts the respective transcription factors and cellular
markers expressed during in vitro differentiation [5, 47, 48].
Moreover, Figure 3 gives a summary of stage-specific growth
factors and small molecules and points at the slightly differ-
ent nomenclatures of the different stages during pancreatic
endocrine differentiation.

Induction of the definitive endoderm and primitive gut
tube by modulation of the commonly used Activin and
Wnt signaling followed by the FGF family protein FGF7 is
employed in all three protocols. In addition, the Kieffer pro-
tocol applied vitamin C at early stages (d3-10); SHH and
BMP inhibitors, PKC (protein kinase C) activator, and reti-
noic acid after the primitive gut tube stage and supplements
the media with thyroid hormone, EGFR ligand betacellulin,
heparin, and Notch inhibitors at later stages for the genera-
tion of functional β-cells. The differentiation protocol of the
Melton lab includes similar growth factors and small mole-
cules as shown in the Kieffer protocol. Additionally, Notch
inhibition is used after the PP2 stage. In the Hebrok lab,

DE is induced similarly followed by FGF signaling in combi-
nation with the inhibition of TGFβ signaling. Furthermore,
after reaching the gut tube stage, retinoic acid is added for
only three days followed by the stimulation of EGF signaling
and FGF signaling until cells become pancreatic progenitors.
This stage is followed by the inhibition of BMP signaling, the
activation of PKC, and the continued FGF signaling for dif-
ferentiation to endocrine progenitors. The final maturation
to functional β-cells is carried out in the media without
any additional growth factors.

For all three protocols, the optimization of differentia-
tion conditions leading to the generation of a high number
of PDX1+/NKX6.1+ double-positive pancreatic progenitors
seems necessary for the increased endocrine differentiation
leading to more functional β-cells. Whereas Hebrok pro-
vides a short protocol of 3 weeks, Kieffer and Melton differ-
entiate the ESCs for 4-5 weeks to induce functional β-like
cells. Overall, all protocols lead to a high percentage of
NKX6.1+/PDX1+ cells, and at least 25% of cells are double
positive for PDX1 and C-peptide or insulin. Moreover,
β-like cells secreted insulin after glucose challenge in vitro,
and after transplantation into mice, human C-peptide was
detected within 2 weeks supporting a more mature stage of
β-like cells than observed in 2D differentiation culture.

These new pancreatic differentiation protocols show that
3D culture conditions promote maturation and improve the
function of in vitro-generated β-cells. In vitro pancreatic dif-
ferentiation of PSCs provides a promising alternative to dia-
betes treatment with cadaveric islets in regenerative
medicine. For instance, the use of pancreatic endoderm cells
derived from an hESC line as a type 1 diabetes therapy is
currently being tested in a clinical trial in the USA
(NCT02239354) [49]. Although in vitro pancreas differenti-
ation seems promising to model pancreatic diseases, limita-
tions need to be overcome for use in regenerative
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Figure 1: Stages of in vitro pancreatic development generating endocrine cells. (a) Stepwise differentiation of the human ESC line HUES8
with representative phase contrast images of the respective pancreatic lineage with 2D culture from the PSC stage until the PP stage,
sphere culture at β-cell stage. (b) Immunofluorescence staining of cells from β-cell stage for C-peptide (β-cell marker, green) and
glucagon (α-cell marker, red).
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medicine. So far, current protocols are lacking standardiza-
tion for multiple cell lines and only result in premature
β-cells. Moreover, scaling up the process as well as maintain-
ing β-cells in a culture would be useful to meet the need in
therapy. However, the novel technology of encapsulating
insulin-producing cells in microdiscs combined with
in vitro-generated β-cells will advance the treatment of type
1 diabetic patients [50].

2.2. PSCs to Model Pancreatic Inherited Diseases and
Diabetes. Better protocols not only provide tools to generate
β-like cells but also contribute a valuable platform to model
pancreatic diseases and development and to characterize the
stage-specific role of certain genes. Additionally, genome
editing by CRISPR/Cas9-mediated knockout, correction of
a gene of interest [51, 52], or the generation of
disease-specific iPSCs [9] combined with the organoid tech-
nology are accompanied by many potential applications [53,
54]. Based on the previously mentioned differentiation

protocol, β-cells were generated from iPSCs of type 1 diabe-
tes (T1D) patients to study functionality as well as their
response to antidiabetic drugs [55]. Although T1D β-cell
function is similar to nondiabetic β-cells, the developed stress
model might prove useful for drug screening and as a discov-
ery platform. Recent work from Shi et al. used CRISPR/Ca-
s9-edited hPSCs to investigate multigenic human traits
associated with neonatal and adult-onset diabetes [56]. Loss
of one GATA6 allele was shown to affect pancreatic differen-
tiation and formation of glucose-responsive β-cells. More-
over, this model revealed a complex genetic interaction
with GATA4 expanding the application to characterize
genetic modifiers in diseases such as T2D and to identify
novel therapeutic targets. Similarly, iPSCs from a pancreatic
agenesis patient harboring a GATA6 mutation were differen-
tiated to investigate the pancreatic developmental defect
revealing that GATA6 plays an important role during endo-
derm formation and function of β-cells [57]. McGrath et al.
investigated the role of neurogenin3 (NGN3) in human
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Figure 2: Schematic outline of endocrine lineage commitment in vitro. Overview of stepwise and stage-specific modulation of cellular
signaling pathways during in vitro differentiation summarizing the main protocols. For each pancreatic lineage, specific transcription
factors and cellular markers are shown. ∗According to the Nostro protocol [17].

Table 1: Comparison of in vitro pancreatic endocrine differentiation protocols.

Kieffer (Rezania et al.) Melton (Pagliuca et al.) Hebrok (Russ et al.)

Culture system
Monolayer followed by air-liquid

interphase
Suspension in spinner flasks Suspension on orbital shaker

Cell lines H1, iPSC line HUES8, 2 iPSC lines Mel1 InsGFP/W

Divergent
conditions

Vitamin C from PGT stage to PE stage;
protein kinase C (PKC) activator TPB

after the PGT and PFG stages;
SHH/BMP inhibition after the PGT
stage; thyroid hormone, heparin, and

EGFR ligand after the PE stage;
vitamin E analog, AXL inhibitor, and
N-Cys at the β-cell stage; total 27-43

days

Media change every other day after d2;
PKC activator PdBU after the PGT
stage; Notch inhibition and EGF
signaling after the PP2 stage; total

27-34 days

TGFβ-inhibitor after the DE stage; RA
analog only in high glucose medium
after the GT stage; EGF after the PP1

stage; BMP inhibition and FGF
signaling after the PP2 stage; no
growth factors after the EP stage;
shortened time intervals (total 21

days)

Efficiency PP
70% NKX6.1+/PDX1+ (PP), 76%

(immature β-cells)
>55% NKX6.1+/PDX1+ (PP2) 80% NKX6.1+/PDX1+ (d9)

Efficiency beta
cells

40% PDX1+/INS+ (maturing β-cells)
33% PDX1+/C-peptide+ (functional

β-cells)
25% PDX1+/C-peptide+ (β-like cells)

In vivo
transplantation
(mouse)

Human C-peptide within 2 weeks after
transplantation, ameliorates
hyperglycemia after d40
posttransplantation

Human C-peptide within 2 weeks after
transplantation, ameliorates
progressive hyperglycemia

Human C-peptide within 7-10d after
transplantation, reduces STZ-induced

hyperglycemia
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pancreatic endocrine development [58]. In mice, NGN3 is
essential for the development of endocrine cell types; how-
ever, patients with NGN3mutations reported to be amorphic
still develop a functional pancreas. The complete knockout of
NGN3 in hESCs resulted in differentiation towards pancre-
atic progenitor cells but not endocrine cells. In hESCs with
siRNA-mediated knockdown, the remaining NGN3 was suf-
ficient for the generation of endocrine cells suggesting that
mutations in patients lead to decreased NGN3 protein activ-
ity and development of functional endocrine pancreas.
Moreover, developing novel approaches to differentiate
hPSCs towards β-cells in microfluidic devices will help to
provide automated and high-throughput systems for drug
screening and patient-specific therapy [59].

For more functional analyses, organoids from PSCs allow
the study of biological processes and tissue-specific
responses. Recently, iPSCs from cystic fibrosis (CF) patients
were used to characterize the impact of cystic fibrosis trans-
membrane conductance regulator (CFTR) on pancreatic
commitment and to model pancreatic aspects of the disease
[54]. Induced PSCs from CF patients showed unaltered
pancreatic development; however, CF pancreatic organoids
mirrored the defective CFTR function typical for these
patients. As a proof of concept, these CF organoids were
used to screen for CFTR correctors and activators provid-
ing a novel platform for PSC-based drug screening and
testing of therapeutic procedures.

2.3. Pancreatic Ductal Adenocarcinoma. Pancreatic ductal
adenocarcinoma (PDAC) represents one of the most lethal
malignancies [60]. Pancreatic precursor lesions such as pan-
creatic intraepithelial neoplasia (PanIN) promoted by
chronic pancreatitis give rise to PDAC development [61].
Both high mortality and increasing incidence of PDAC
require more efficient therapies and a better understanding
of pathobiology. However, suitable ex vivo models of the
pancreas are missing. Since transformed cell lines cannot

recapitulate the complexity of a native organ and develop-
mental, genetic, and physiological differences in animal
models exhibit their limitations [53, 62], PSCs provide a
valuable tool for disease modeling further elucidating the
cellular and molecular mechanisms underlying the disease.

2.4. Tumor-Derived Organoids in PDAC Research. Pioneer-
ing work in establishing intestinal organoid systems was car-
ried out by the group of Hirsch et al. and Yui et al. [63, 64].
After an initial determination of an intestinal stem cell
marker (Lgr5), the group transferred this finding to the pan-
creas: under physiological conditions, Lgr5 is not expressed
in the pancreas, but under conditions caused by mechanical
damage, Lgr5 positive cells appear as a cradle of regeneration
effort. Vice versa, Huch et al. were able to demonstrate that
Wnt-agonistic R-spondins do not only induce Lgr5 expres-
sion in cell cultures from primary murine pancreatic tissue
but also contribute to maintain pancreatic organoid growth
from adult murine ductal cells in a 3D matrix [65, 66].

For PDAC, various model systems, based either on dis-
tinct tumor cell line genetically engineered mouse models
(GEMMs) or on xenograft models, have been established
over the last years. Research on all these platforms increased
our understanding of basic genetics of tumorigenesis, tumor
progression, and formation of metastases. However, all of
them imply relevant limitations regarding the extent of accu-
racy for patient-specific disease modeling and therapeutic
drug screening. Any prior tumor models fail to mimic tumor
heterogeneity but also lack the tumor- and patient-specific
microenvironment that represents a major impediment for
therapeutic response. Thus, model systems of lower com-
plexity are not able to predict therapeutic responses for indi-
vidual patients, whereas more sophisticated systems like
patient-derived xenografts need up to 12 months until a suf-
ficient maturation is reached [67–69]. For PDAC, a relevant
proportion of patients will not survive until this individual
therapeutic screening platform can be established. On the
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other hand, GEMMs are able to imitate key features of
human PDAC, especially tumor-initiating complexes like
PanIN lesions [70]. Although GEMMs led to an amplifica-
tion of our understanding of the key features of PDAC and
disease-specific characteristics in drug delivery, this
approach of disease modeling does not incorporate aspects
of personalized medicine.

To overcome these limitations, organoids from human
PDAC tumor tissue were successfully generated. Organoids
can be derived from mature, healthy tissue types such as
the intestine, prostate, liver, and pancreas [65, 66, 71, 72]
as well as from transformed cancer tissue [73–75]. A key
feature in organoid cultures is their defined growth under
circumvention of attachment on unphysiological surfaces
resulting in a 3-dimensional culture that comprises stem
cell-driven self-renewal and self-organization. Organoids
can even contain different cell types, thus presenting a
complex organ structure [76]. Organoids derived from
mature primary tissues do not contain connective tissue
types (stromal or mesenchymal cell types). Therefore, this
deficit has to be compensated with an extracellular base-
ment membrane-like matrix containing laminin, collagen,
and proteoglycans. In contrast to organoids derived from
healthy tissue, those generated from PDAC samples
(human tumor-derived organoids, hTOs, see Figure 4)
mostly resemble PanIN lesions under 3D culture condi-
tions even at the time of organoid initiation [75]. In order
to generate pancreas 3D organoids, tumor or healthy tis-
sue is disintegrated mechanically and/or with collagenase
followed by embedding in a collagen or matrigel matrix.
For sustained growth, organoids have to be supplemented
with growth factors and modulators such as epidermal
growth factor, fibroblast growth factor 10, Noggin, Wnt3A,
gastrin, nicotinamide, N-acetylcysteine, R-spondin, and an
Alk inhibitor [75]. Other protocols include insulin, hydrocor-
tisone, ascorbic acid, retinoic acid, fibroblast growth factor 2,
and Rock inhibitor in the organoid culture medium [20].

Targeted DNA sequencing revealed critical mutations in
tumor-associated genes like KRAS, TP53, SMAD, CKDN2A,
and others within the hTOs but not in organoids from
healthy patients (hNOs) [75]. Once transplanted into nude
(Nu/Nu) mice, human tumor-derived organoids will form
infiltrative carcinoma within months, inducing a strong des-
moplastic reaction with a stroma-rich microenvironment
[77]. Moreover, key genes that are upregulated in progres-
sive PDAC can also be detected in these tumors, emphasiz-
ing the capacity of disease modeling with hTOs. In order
to predict clinical behavior, PDAC was classified into the
classical and quasi-mesenchymal (QM) subtype based on
gene expression data of tumor samples [78]. Since hTOs
reach a high neoplastic purity in culture [79], transcriptomic
and functional profiling enables refinement of classification.
Seino et al. identified three new functional subtypes accord-
ing to dependency of hTOs on stem cell niche factors Wnt
and R-spondin that can help to predict clinical behavior or
treatment options [80]. Also, while the classical subtype is
not well represented in PDAC cell line models, hTOs allow
culture of both subtypes [78]. Additionally, Tiriac et al. iden-
tified two specific molecular subtypes that correlate with the

classical and QM subtype but describe unique gene expres-
sion programs underlining the benefit of hTOs in identifica-
tion of PDAC subtype signatures.

Interestingly, only pancreatic duct cells but not endocrine
or acinar cells are able to form organoids [65, 75]. As in
hNOs, hTOs exclusively express markers of ductal cells, but
not of other pancreatic cell lines. Moreover, the regeneration
of β-cells during islet neogenesis occurs by self-duplication of
remaining β-cells [81] or α-cell conversion [82], suggesting
that pancreatic stem cells reside in ductal tissue. This is also
reflected by the proliferation potential of Doublecortin-like
kinase-1 (Dclk1)+ cells found in the mouse pancreas. These
quiescent cells reside mainly in the ductal epithelium in a
healthy pancreas and can contribute to tissue regeneration
during injury and inflammation. Moreover, Dclk1+ cells
form organoids with continued organoid growth and might
play a role as cancer stem cell or tumor-initiating cell [83].
In adult human pancreatic tissue, a subpopulation with high
aldehyde dehydrogenase activity shows the potential for
organoid expansion with a more limited capability of regen-
eration compared to organoids derived from murine pancre-
atic tissue [84]. Better understanding of specific factors and
signaling for maintaining the stem cell population in culture
will help to generate long-lived organoids from human tissue.

Tumor-derived organoids maintain a given tumor phe-
notype with a continuing ability to progress into locally
invasive and metastatic carcinomas upon orthotopic trans-
plantation [75]. Currently, the value of hTOs in predicting
a patient-specific response for a distinct therapeutic regime
remains to be determined; however, current work on other
gastrointestinal cancer types is promising [85]. Recent pub-
lications have already implemented hTOs as a screening
platform for the evaluation of new therapeutic strategies in
pancreatic cancer: Kumar et al. were able to show a limited
organoid growth of hTOs after chemical inhibition of
MAPK-interacting protein kinases by inducing a reversal
of EMT (epithelial-mesenchymal transition) [86]. Seino
et al. pointed out the loss of stem cell niche factor (Wnt)
dependence in organoids derived from progressive tumor
subtypes, allowing a novel insight into the niche/stromal
cancer crosstalk [80].

For subsequent clinical application, hTOs can be gener-
ated from small patient samples taken from a fine needle
aspiration that has to be obtained in most of the patients

50 �휇m

hTO mTO

Figure 4: Pancreatic organoids in a 3D matrigel culture. Phase
contrast images of human tumor-derived organoids (hTO)
generated from PDAC samples and mouse tumor-derived
organoids (mTO) generated from pancreatic tumors in the KC
(KRASG12D, p48-Cre) mouse model.
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within the routine diagnostic of pancreatic cancer [87]. Orga-
noid models of higher complexity involve the coculture of
tumor organoids with stromal and immune cell components
of the patient in order to mimic a tumor microenvironment
[88]. This model partially addresses the interaction of
cancer-associated fibroblasts and immune cell infiltrates with
the tumor. Therefore, it might provide a more accurate
patient-derived organoid model for the testing of drug
responses and allow evaluation of the effect of immunother-
apeutics in PDAC.

Despite the promising hopes provided by organoid cul-
ture, several limitations remain: First, most of the studies,
especially in the pancreas field, fail to integrate both the
immune and stromal components while these factors are
key modulators of drug response and drug scavenging [88].
Any incorporation of those components in clinical
high-throughput screening still represents a technical chal-
lenge. Second, the clinical prediction of in vivo drug concen-
trations based on in vitro drug concentrations used in
organoid culture remains imprecise: performing IC50 mea-
surements for each drug and each patient is definitely unreal-
istic in a clinical setting mainly due to limited cell availability
and time restrictions caused by the need for early clinical
decision-making. Additionally, reference curves determining
whether a certain IC50 will predict a patient response are not
yet available. It is surprising that despite 10 years of orga-
noids’ “rebirth” story and their use in preclinical studies,
the following basic, technical, and mechanistic questions
have not been answered or standardized: What is the appro-
priate size of organoids that are most representative of the
tumor response to drugs? How long do organoids have to
be exposed to drugs to mimic the drug-tumor response?
Finally, one of the central questions that needs to be

addressed is the evolution of the tumor itself and its acquisi-
tion of resistance during treatment. Current settings of orga-
noid drug screenings only allow analysis of organoids derived
from a previous disease state. Indeed, in a clinical view, the
patient will always receive the first line chemotherapy (as
an example in PDAC either FOLFORINOX or GEMCITA-
BINE+PACTITAXEL) before the organoid culture will reach
the point to be used for drug screening. Therefore, possible
drug-induced resistance mechanisms will remain inaccessi-
ble for organoid screens from a single biopsy. A novel
approach to address these limitations was lately published
by Tiriac et al.: a systematic analysis of organoid-based gene
expression signatures was correlated with a clinical response
to different therapeutic regimes [79]. Moreover, organoids
resistant to clinical chemotherapeutics show improved
response for investigative and targeted agents providing
alternative treatment options in a reasonable timeframe.
Such a combined approach enables a more precise PDAC
subtype classification. Also, a sufficient correlation between
organoids and patient responses could be improved.
Repetitive tumor biopsies in a single patient may more
adequately factor tumor evolution within the course of
the disease, and combined therapeutic, genomic, and tran-
scriptomic organoid-based profiling might enhance current
strategies of personalized medicine. Another study using
liquid biopsy showed that some mutations arise rapidly
in response to treatment [89]. Few additional approaches
have been suggested to overcome this problem: First, the
use of a “minimal” medium will select the most aggressive
and niche factor-independent tumor organoids [80]. Sec-
ond, the establishment of organoids might be performed
directly from circulating tumor cells (CTCs) [90, 91], even
if the isolation of CTCs remains challenging.

Tumor-derived 
cells
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PDAC patient Mouse model iPSC hESC

3D in vitro
differentiation

Crispr/Cas9
Oct4, Klf4,

Sox2, c-Myc
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Endocrine/
exocrine cells
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Genetic
engineering

Disease
modeling

Figure 5: Pancreatic organoids and PSCs to improve therapy and understanding of pancreatic diseases.
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Taken together, the latest data indicate that organoids
represent one of the most promising tools as significant
progress was made in predicting patients’ drug response
and better delineation of underlying mechanisms of tumor
progression. The opportunity of a patient-specific screening
platform for individualized therapeutic strategies with a
potential to reevaluate therapeutic options at later stages of
tumor progression represents an essential advantage of this
approach associated with limited invasiveness. However, a
lot of procedural improvements are required to reach the
optimum use in a clinical approach.

3. Conclusion

With regard to iPSC/ESC-based organoid technology, signif-
icant progress was achieved in the recent past. The
fast-evolving technical advancements in pancreatic organoid
biology was realized via an intricate optimization of pancre-
atic differentiation protocols. In doing so, in vitro differenti-
ation protocols of human ESCs have been adapted by
knowledge obtained from mouse development to generate
various functional pancreatic cell types within an organoid
culture. However, even though optimized use of different
small molecules and growth factors as well as ESC suspen-
sion culture improved β-cell differentiation, protocols are
found to be rather exclusive for specific cell lines.

The establishment of tumor-derived organoids shows
great promise for new approaches in both dissection of
tumorigenesis and patient-specific optimization of thera-
peutic options. But still, the simulation of specific tumor-
(micro)environment interaction represents a pending effort
in the field.

In summary, organoid systems have already proven to
promote pancreatic research leading to progress especially
within the field of diabetes and PDAC (Figure 5).
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