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Abstract
Density estimates for large carnivores derived from camera surveys often have wide confi-

dence intervals due to low detection rates. Such estimates are of limited value to authorities,

which require precise population estimates to inform conservation strategies. Using lures

can potentially increase detection, improving the precision of estimates. However, by alter-

ing the spatio-temporal patterning of individuals across the camera array, lures may violate

closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent

lures on the precision and veracity of density estimates derived from camera-trap surveys

of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treat-

ment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent

except a scent lure was applied at camera-trap stations during the treatment survey. Lures

did not affect the maximummovement distances (p = 0.96) or temporal activity of female

(p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met

for both surveys (p >0.05). The numbers of photographic captures were also similar for con-

trol and treatment surveys (p = 0.90). Accordingly, density estimates were comparable

between surveys (although estimates derived using non-spatial methods (7.28–9.28 leop-

ards/100km2) were considerably higher than estimates from spatially-explicit methods

(3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment

surveys, were also comparable and this applied to both non-spatial and spatial methods of

estimation. Our findings suggest that at least in the context of leopard research in productive

habitats, the use of lures is not warranted.

Introduction
Camera-traps are widely used as a research tool to study cryptic species [1]. In particular,
closed capture-recapture (CR) models are often used on camera-trapping data to estimate the
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population abundance and density of large carnivores [2]. This method has recently been
strengthened by incorporating data on spatial information of captured individuals into the CR
framework, removing the edge effect typically associated with traditional non-spatial estima-
tors [3], [4]. Importantly, the effective survey area is no longer defined by the inclusion of an
ad hoc buffer extending beyond the camera-trap grid [5], but by a homogenous distribution of
potential home-range centres, from which density is estimated [3], [6]. Previous non-spatial
estimators did not allow for demographic processes like immigration or emigration in their sta-
tistical framework in order to interpret N in a meaningful way, and also assumed geographic
and demographic closure [1]. Contrastingly new spatial methods relax geographic closure and
allow for temporary movement of individuals around the state space [7].

Despite these recent advances, biologists continue to seek ways to improve camera-trap sur-
veys; most notably, their precision given the low detection rates often associated with them [8].
Precise population estimates are required to inform appropriate conservation actions and to
monitor the outcomes of management decisions [9]. Increasing the number of recaptures can
reduce error but this may also violate the fundamental principles of CR; as sampling periods
must be short enough to prevent any demographic processes to occur [10], [11]. Similarly,
increasing sampling effort by increasing the number of camera-traps deployed is not always
logistically feasible [12]. Increasing the precision of camera-trap studies can be improved by
augmenting camera-trap data with ancillary biological information e.g. from faecal DNA [13],
[14], but even this may be practically challenging and an inability to age scats or classify those
of juveniles may overinflate density estimates. This was shown by Jenecka et al [15] working on
snow leopards in the Gobi desert of Mongolia.

An alternative option increasingly used in camera-trap studies is to entice animals to cam-
era-traps by placing an attractant nearby [16]. This may be a scent lure such as a perfume/
cologne [17], [18] or a food attractant that is inaccessible to the animal [8]. Baiting is another
strategy and entails the use of a food reward such as a carcass or meat [19], [20], [21]. However,
the use of attractants can be laborious and expensive, and they are only likely warranted if they
increase capture rates significantly [16]. Attractants may also influence the movement of indi-
viduals on and off the camera-trap array, potentially violating the assumption of geographic
closure [8], but this is relaxed in SCR and individuals may move temporarily around the cam-
era-trap grid [7]. They may also have variable effects on animals depending on their age, sex or
resident status. Despite this, attractants have been used in camera-trap studies on species rang-
ing from rodents to large carnivores [19], [20]. The use of lures could also be useful if the total
number of animal detections at a sampling site may be used and no sub-division of captures
into individual temporal occasions occurs [22].

Attaining a better understanding of the effects of attractants in camera-trap surveys is neces-
sary to determine whether they are an appropriate means of improving the precision of popula-
tion density estimates.

In this paper we examine how the use of a scent lure affects the behaviour of African leop-
ards Panthera pardus during a camera-trap survey, and the precision of the resultant density
estimates. We use leopards as a model species as, like many large carnivores, they are of conser-
vation concern as they are sensitive to anthropogenic mortality and have suffered significant
range loss in recent decades [23]. Leopards are also important revenue generators for trophy
hunting [24] and photo-tourism [25] industries. Therefore, accurate and precise estimates of
leopard population density are required to inform conservation and management practices
[26], but leopard numbers are difficult to monitor. In this paper we assess (i) whether the use
of lures violates the assumptions of geographic closure by examining the spatio-temporal pat-
terning (as defined by the distances animals move between camera-traps, and the timing of
photographic captures) of leopard captures in a control (i.e. non-lure) and treatment survey
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(scent lure), (ii) whether the use of lures significantly increases the number of leopard captures
and recaptures, and finally (iii) how precision and density estimates varied between a tradi-
tional non-spatial CR density estimation method and two recent spatially-explicit CR
approaches.

Methods

Ethics statement
We obtained permission to perform leopard research on Phinda Game Reserve from the pro-
vincial conservation authority, Ezemvelo Kwazulu-Natal Wildlife (permit number HO/4004/
07), and by & Beyond, the management authority on Phinda Game Reserve. Ethical clearance
for this research was provided by the University of Kwazulu-Natal Ethics Committee (approval
051/12/Animal).

Study area
The study was conducted on Phinda Private Game Reserve (27° 51’ 30” S, 32° 19’ 00” E, hereaf-
ter Phinda) located in South Africa’s Kwazulu-Natal province, approximately 80 km south of
the Mozambique border (Fig 1). Phinda (220 km2) is located adjacent to two large protected

Fig 1. The location of the Phinda Private Game Reserve with camera-trap stations and potential leopard home-range centres (green). Patches of
unsuitable leopard habitat are demarcated in white. Camera-traps were set on roads and trails to increase capture probability of leopards.

doi:10.1371/journal.pone.0151033.g001
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reserves, the Mkhuze Game Reserve and the St Lucia Wetland Park. The landscape is domi-
nated by savanna interspersed with broad-leafed woodland, grassland and relict patches of
Licuati Sand Forest, a threatened and fragmented tropical dry forest with high levels of plant
and animal endemism. Further details on the study area and its faunal assemblage may be
found in [27]. Importantly, Phinda also borders a number of private game reserves, cattle
ranches and local communities. However, leopard hunting on the ranches surrounding Phinda
has largely stopped allowing for a population recovery of leopards [9]. We therefore feel experi-
menting with lures during camera-trap surveys is warranted as leopards who have home-
ranges beyond Phinda’s border are unlikely to encounter intentionally placed scent trails.

Camera-trapping
We implemented two camera-trap surveys—a ‘control survey’ where no scent lures were
deployed, which ran from 14 August–22 September 2012, and a ‘treatment survey’ where scent
lures were deployed, which ran from 06 October–14 November 2012. Both surveys lasted 40
days and the camera-trap array remained consistent (Fig 1). We used Panthera1 IV digital
camera-traps, set out in a paired format across 30 stations, totalling 60 camera-traps (1200
camera-trap nights). At least one camera-trap site was present per mean female leopard home-
range (30 km2) [28] to ensure no animal had a zero probability of capture (mean camera spac-
ing = 1.68 km) [5]. Camera-traps were mounted to wooden posts, 40 cm from the ground and
were monitored every four days to replace memory cards and batteries, and to administer
lures.

Leopards regularly use roads during territorial patrols and are often attracted to decompos-
ing carcasses upon which they scavenge [29], [30]. Our lure therefore comprised a scent trail of
decomposed entrails from the three main leopard prey species in Phinda, nyala Tragelaphus
angasii, impala Aepyceros melampus, and warthog Phacochoerus africanus [27] that was depos-
ited on the roads along which our camera-traps were placed. The majority of entrails were
from nyala that had died during game translocation operations, which Phinda facilitated
between June-November 2012. The other species were used if found opportunistically. The
scent trail was laid on roads for a distance of 500 metres on either side of camera-traps and
refreshed every four days. This protocol is similar to that employed by trophy hunters wishing
to attract a leopard to a bait near a shooting hide [31]. However, as we provided no reward for
leopards, we considered our scent trail a lure rather than bait. We created separate capture his-
tories for leopards photographed in the control and treatment surveys, in order to compare clo-
sure estimates, distances moved by individuals, the times of their captures and density
estimates. The identity of leopards was determined by the unique spot patterns on their pelage
[32], and their sex was estimated using distinctive morphological features [33]. We used a
Fischer’s exact test [34] to examine differences in capture rates among sex classes in the control
and treatment surveys.

Population closure
Leopards are long-lived (up to 19 years in the wild) [26]; hence, our survey period of 40 days
seems sufficiently short to assume demographic closure [9]. We assessed geographic closure
using the closure test of Otis et al [35] which assumes heterogeneity in recapture probability.
We also used the closure test of Stanley and Burnham [36] which assumes a variation in time
of recapture probability. Both tests were run in the statistical programme CloseTest version 3
(available online from: http://www.fort.usgs.gov/products/software/clostest/).
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Spatio-temporal patterning
We followed [8] in assessing the influence of lures on the spatio-temporal behaviour of leop-
ards during the control and treatment surveys. We compared the maximum distance moved
by individuals detected at more than one camera-trap during both surveys using a Wilcoxon
Signed Ranks test [34]. We also examined the distribution of times when male and female leop-
ards were captured on camera-traps during the two surveys. We sub-divided the photographic
events into five distinct periods (00:00–06:00; 06:00–12:00; 12:00–16:00; 16:00–20:00; 20:00–
00:00) for both males and females and compared their frequencies for both the passive and
treatment surveys using a Fishers exact test.

Density estimation
For comparison and consistency with previous non-spatial camera-trap surveys of leopards
[5], [8], [21] we first used the software CAPTURE [35] to estimate leopard abundance. Follow-
ing [5], we sub-divided our 40 sampling days into twenty 48-hour sampling occasions, and cre-
ated a binary matrix of leopard detections, incorporating individual leopards only once during
an occasion. CAPTURE provides the user with seven possible models for the computation of
leopard abundance [35]. Each of these varies in its assumption regarding capture probability,
which may be influenced by trap-specific response, time and individual heterogeneity [9].
CAPTURE computes a number of goodness-of-fit and between model statistics, and also has a
discriminant function selection algorithm for objective model selection [35]. For each survey,
we estimated the size of our effectively sampled area by adding a buffer equal to half the mean
maximum distance moved by individuals photographed on more than one occasion
(HMMDM) to our camera-trap grid [5] and removing zones of non-suitable leopard habitat
(see supporting information). We divided the abundance estimate from CAPTURE by the
effectively sampled area to estimate leopard density in the control and treatment surveys. We
calculated variance for these density estimates using the delta method [10].

We also estimated leopard population density from both surveys using two spatially-
explicit CR approaches (also using the 20 sampling occasion framework for comparability).
Spatially-explicit CR estimates animal density from a set of individual animal detections made
at capture locations nested within a broader network of potential leopard home-range centres
[3], [6]. Through the incorporation of spatial information in the detection process the method
is considered more robust to the “edge effects” common to non-spatial estimators and elimi-
nates the need of a user-defined sampling area from which density is calculated [3]. We used
the maximum likelihood based estimator secr version 2.9.3 [37] and the Bayesian estimator
SPACECAP version 1.1 [6] in R version 2.15.2 [38]. Both methods make use of three input
files: 1) detection history (information on animal identity, trap location and sampling occa-
sion), 2) trap deployment (location of camera-traps, sampling occasions and camera function
details) and 3) potential home-range centres file (a mesh of potential leopard home-range cen-
tres located in areas of suitable leopard habitat; these are demarcated by a 1 for suitable, and a
0 for non-suitable). We followed Gopalaswamy et al [6], and Athreya et al [39] in eliminating
potential home-range centres from areas of non-leopard habitat. We used the raster [40] and
rgdal [41] packages in R to create a rectangle around our outermost camera-traps. We then
applied a 15-km buffer around a homogenous distribution of potential home-range centres
spaced at 578 m intervals [6] and removed non-suitable leopard habitat (>3 settlements per
0.34 km2 grid and the St Lucia water body. A detailed habitat mask creation procedure is pro-
vided (S1 Protocol). Large felids are known to exhibit trap-specific and sex-specific traits in
their ranging behaviours [9] and males are generally recorded at higher capture rates when
compared to females [42], [43]. We therefore followed [19] and fitted models, in secr, which
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incorporated potential trap-specific responses of individuals and sex-specific detection proba-
bility (full model definitions created in secr may be found in Table 1). We maximised models
in secr using conditional likelihood as this results in a likelihood, which ignores nuisance
parameters within the model. We assessed candidate models in secr using AICc criteria [34]
and evidence ratios (ER) [44]. In order to present leopard density, capture probability at
home-range centre (g0) and sigma, we compared our top-ranked model with the next best-
ranked model. We used the following formula:

ER ¼ wj=wi

where wj is the AICc weight of our best-ranked model and wi is the AICc weight of the next
best model (ie. Model being compared; Table 2). SPACECAP presently allows two models, 1)
a base model which considers equal capture probabilities among individuals and 2) a model
which incorporates a “trap-specific” response with detection probability increasing after initial
capture in a trap [6]. Both models were fitted using a half-normal detection function and Ber-
noulli’s encounter model. The number of Markov-Chain Monte Carlo (MCMC) iterations
and burn in varied per survey in order to achieve convergence (Table 3). SPACECAP uses
data-augmentation, which adds to a dataset of known leopards with an enlarged set of all zero-
encounter histories [6]. We set this augmentation value to 20 times the number of photo-
graphed individuals. We assessed model adequacy in SPACECAP through examination of the
Bayesian P-value which is deduced from individual encounter frequencies. A Bayesian P-value

Table 1. Models used in secr analysis to estimate leopard density on Phinda.

Variable Description Variable function

g0~1 Constant g0 and sigma kept constant

g0~b Learned response Step change in parameter after initial detection of animal

g0~h2 2-class mixture Finite mixture model with two latent classes

g0~bk Animal x site response Site-specific step change

g0~Bk Animal x site response Site-specific transient response

g0~Sex* Sex of animal Male and female specific detection

doi:10.1371/journal.pone.0151033.t001

Table 2. Model definitions and selection criteria for density models fitted for the control and lure surveys in secr.

Survey Model definition Parameters Log likelihood AIC AICc Delta AIC AIC weight Evidence ratio

g0~bk 4 -213.34 434.67 438.67 0 0.97 1

g0~1 3 -219.14 444.29 446.47 7.78 0.02 48.5

g0~b 4 -218.21 444.42 448.42 9.75 0.01 97

Control g0~sex 4 -218.59 445.18 449.18 10.5 0 -

g0~h2 4 -218.59 445.18 449.18 10.5 0 -

g0~Bk 4 -218.66 445.32 449.32 10.65 0 -

g0~sex, sigma~sex 5 -217.47 444.94 444.94 12.93 0 -

g0~sex, sigma~sex 5 -199.69 409.38 416.88 0 0.31 1

g0~bk 4 -202.27 412.54 416.98 0.1 0.3 1.03

g0~1 3 -205.21 416.42 418.82 1.94 0.12 2.58

Lure g0~sex 4 -203.31 414.62 419.07 2.18 0.11 2.82

g0~h2 4 -203.31 414.62 419.07 2.18 0.11 2.82

g0~Bk 4 -204.56 417.13 421.57 4.69 0.03 10.33

g0~b 4 -205.2 418.4 422.85 5.96 0.02 15.5

doi:10.1371/journal.pone.0151033.t002
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close to either 0 or 1 is indicative of an inadequate model [6]. SPACECAP also provides a set
of Geweke diagnostic statistics, which indicate whether MCMC chains have converged around
a solution; if values range between -1.6 and 1.6 then convergence has been achieved [6]. We
supplemented Geweke diagnostics supplied by SPACECAP by performing the Gelman-Rubin
diagnostic and assessed potential shrink reduction factors for each parameter [45]. To do this
we ran two more chains for each survey (including models incorporating the trap response
variable), using different start values on the same data set (Table 4). Shrink Reduction Factors
for each parameter should be<1.1 [45]. Finally we examined if estimates of density decreased
using larger buffer spacings than the 15 km allocated in our models in secr using the mask.
check function in secr, as too narrow a buffer is likely to produce inflated density estimates
[46].

Results

Photographic captures and population closure
Fifteen leopards (eight males, seven females) were captured on 40 occasions during the control
survey, and fourteen leopards (10 males, four females) on 39 occasions in the treatment survey.
Only one female with cubs was detected once during both surveys and those cubs were not
considered in the analyses. Of the 15 leopards captured in the control survey, nine of these
were present during the lure survey (six males, three females). We detected no significant dif-
ference in sex-specific captures between surveys (Fischer’s exact test, p = 0.90). The closure test
of Otis et al [35] suggested no violation of permanent population closure for either the control
(Z = 1.16, p = 0.88) or treatment (Z = 1.35, p = 0.91) surveys. Similarly, the test of Stanley and
Burnham [36], which incorporates time variation in recapture probability, suggested popula-
tion closure was achieved for both the control (X2 = 16.94, d.f = 14, p = 0.26) and treatment (X2

= 12.20, d.f = 15, p = 0.66) surveys.

Spatio-temporal patterning
The maximum distance moved by leopards captured on more than one occasion was similar
for the control (mean = 4.95 km, range = 0–11.8 km) and treatment (mean = 5.34 km,

Table 3. Geweke diagnostic statistics and Bayes p-values generated from the four models run for the
control and treatment surveys in SPACECAP.

Model iterations Burn in

Control survey trap absent 100 000 50 000

Control survey trap present 80 000 40 000

Treatment survey trap absent 80 000 30 000

Treatment survey trap present 80 000 40 000

doi:10.1371/journal.pone.0151033.t003

Table 4. Shrink reduction factors generated using the Rubin-Gelman diagnostic in R.

Model sigma lam0 beta psi N

Point est Upper C.I Point est Upper C.I Point est Upper C.I Point est Upper C.I Point est Upper C.I

Control survey trap absent 1.02 1.02 1.01 1.01 - - 1 1 1 1

Control survey trap present 1.09 1.07 1.02 1.02 1.07 1.06 1.02 1.01 1.02 1.01

Treatment survey trap absent 1.01 1.01 1 1 - - 1.01 1.01 1.01 1.01

Treatment survey trap present 1 1 1.07 1.05 1.16 1.12 1.01 1 1.01 1

doi:10.1371/journal.pone.0151033.t004
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range = 0–10.4 km) surveys. Similarly, we found no difference in the maximum distance
moved by specific individuals captured in both surveys (W = 31, p = 0.96). We found no differ-
ence in time-specific captures between the passive and treatment survey for males (Fisher’s
Exact test, p = 0.79) and females (Fisher’s Exact test, p = 0.12).

Photographic captures and density estimates
The heterogeneity model M(h) fit our data best for both the control and treatment surveys in
CAPTURE. Using the jackknife estimator, CAPTURE estimated population abundance (SE) at
17±4.3 leopards for the control survey, yielding a density (SE) of 7.28±2 leopards/100 km2

when a buffer based on HMMDM (2.48 km) was applied to our survey area. Population abun-
dance (SE) estimated by CAPTURE for the treatment survey was 23±6.6 leopards, resulting in
a density (SE) of 9.28±2.9 leopards/100 km2 with a HMMDM buffer of 2.67 km.

From the seven models we created for the control survey in secr, there was very strong sup-
port for the trap-specific model, with the next best model being 48.5 times less likely. The
trap-specific model estimated a density (SE) of 3.40±1.20 leopards/100 km2 (capture probabil-
ity at home-range centre (g0 with SE) = 0.01±0.005; sigma (σ) = 4454.23±916.40 m). From the
seven models created for our treatment survey, there was equal support for a model incorpo-
rating sex (as a function of both g0 and sigma) and the trap-specific model (ER 1 vs 1.03). The
base model was also a candidate being 2.58 times less likely compared to the sex model. The
sex model estimated a density (SE) of 3.47±1.22 leopards/100 km2; (capture probability at
home-range centre for females (g0 with SE) = 0.03±0.01; sigma (σ) = 2541.03±674.90 m and
(g0 with SE) = 0.03±0.01; sigma (σ) = 4366.64±969.99 m for males). The trap-specific model
estimated a density (SE) of 3.28±1.27 leopards/100 km2 (capture probability at home-range
centre (g0 with SE) = 0.02±0.007; sigma (σ) = 3843.36±935.87 m). Similarly, the base model
from the treatment survey estimated a density (SE) of 3.30±1.15 leopards/100 km2 (g0 = 0.03
±0.009; σ = 3414.81±712.49 m). The SPACECAP estimator yielded a density (SD) of 3.55
±1.04 leopards/100 km2 (g0 = 0.03±0.01; σ = 3970±709 m) for the control survey in the
absence of the trap response variable, and 3.65±1.22 leopards/100 km2 (g0 with SD = 0.01
±0.001; σ = 4700±1010 m) using the trap response variable. The SPACECAP density (SD)
estimate for the treatment survey was 3.43±1.12 leopards/100 km2 (g0 with SD = 0.03±0.01; σ
= 3630±751 m) in the absence of the trap response variable, and 3.49±1.26 leopards/100 km2

(g0 with SD = 0.02±0.01; σ = 4170±1000 m) with the trap response variable. The 15 km buffer
appeared to be adequate as density estimates remained unchanged with buffer increases at
22.38 and 28.84 km using the mask.check function in secr. Bayes p values and Geweke diag-
nostic statistics suggested model adequacy and convergence for all four models run in SPACE-
CAP (Table 5). This was further confirmed by shrink reduction factors for key parameters
which were all<1.1 (Table 4).

Table 5. Geweke diagnostic statistics and Bayes p-values generated from the four models run for the control and treatment surveys in
SPACECAP.

Model sigma lam0 beta* psi N Bayes p-value

Control survey trap absent 0.16 -1.15 - -0.11 -0.11 0.53

Control survey trap present -0.80 0.42 -0.25 1.01 1.09 0.53

Treatment survey trap absent 0.66 -0.36 - -1.37 -1.17 0.59

Treatment survey trap present 0.26 0.31 0.81 0.37 -1.07 0.57

doi:10.1371/journal.pone.0151033.t005
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Discussion
An important foundation for estimating population abundance and subsequent estimates of
density using capture-recapture sampling is geographic closure [9]. Lures and other attractants
may compromise geographic closure by prompting temporary immigration or emigration of
animals into or out of a survey area. Although our results from the two closure tests suggest
that there was no breach of geographic closure during the lure survey, this does not rule out a
movement of individuals either inside or outside the camera-trap grid. We had no GPS collared
leopards at the time of both surveys to confirm this. We however cannot discount the possibil-
ity that our closure tests suffered from a Type II statistical error. Gerber et al [8] suggested that
the Pradel model [47] was more suitable for evaluating population closure (as it is highly flexi-
ble in modelling recapture variation and less susceptible to statistical errors when there is a
trap-specific effect), but our sample sizes were inadequate to run this analysis. Importantly
however, assumptions of geographic closure in SCR are more relaxed and are robust to tempo-
rary movements of individuals on the borders of the camera-trap grid [7].

The use of lures also did not appear to have a significant effect on the distances moved by
leopards or the timing of leopard captures. Gerber et al [8] also found that the presence of a
lure did not influence the distances moved by Malagasy civet Fossa fossana or the temporal dis-
tribution of their captures.

Importantly our model selection process revealed substantial evidence for the “site-spe-
cific learned response”model bk, with individuals becoming “trap happy” in the control sur-
vey. This result may seem surprising as the camera trap sites were not baited nor lured in the
control survey. We would have rather expected trap shyness. The “site-specific learned
response” also did not become more strongly positive when scent lures were used in the treat-
ment. Instead there was an equal support for a model incorporating sex, the site specific
behavioural model and the base model. The fact that we observed a behavioural effect when
there was no lure, there is a possibility that there was some other unmodelled effect (possibly
site-site detector differences). Additionally although the use of lures did not appear to affect
the behaviour of leopards (behaviour being defined as the distances they moved between
camera-traps and when they were caught on camera-traps), they also did not improve cap-
ture or recapture rates, and hence the precision of our density estimates. This may be due to
the limited range over which our lures were effective. Felids do not possess a particularly
acute sense of smell [48]; hence, leopards were only likely to detect scent trails in close prox-
imity. It is also possible that leopards may be more predisposed to scavenging, and thus to
respond to lures, in more arid areas where prey abundance is lower. Phinda is a productive
system and earlier research demonstrated that the leopard population was not constrained by
prey availability [49].

Studies on leopards elsewhere and carnivores more broadly suggest that capture rates may
be increased by using baits (i.e. where the target species is rewarded) rather than lures. Grant
[21] placed stillborn cattle foetuses near camera-traps in Mangwe, Zimbabwe, and showed a
twenty-fold increase in the number of leopard captures when compared to a failed non-baited
survey. Similarly, a study in the Bubye valley conservancy [19] found that the presence of
baits near camera-traps increased leopard captures four-fold. Although at the outset these
results appear promising, the precision estimates of Du Preez et al. [19] only increased mar-
ginally with the presence of baits (2–4%) and at an additional cost of 314 man-hours per sur-
vey [50]. Leopards can remain sedentary, feeding on a single carcass for up to a week if it is
large enough [29]. Such a change in an individual’s daily routine may be significant in the
context of a 40-day camera-trap survey, especially if non-spatial methods are used. Specifi-
cally in reducing the number of detections of an individual leopard on different camera-traps,
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which could underestimate the movement parameter sigma. However SCR models enable the
user to adjust the encounter probability, sigma and density when a trap-specific response is
added to the model. Even when using non-spatial HMMDM [19] suggested no significant
changes in the ranging behaviours of leopards in their study, although they did not explicitly
test for closure violations. The detection distance of baits may also be larger than lures,
artificially drawing individuals into the sampling area and potentially biasing population
estimates.

The density estimates from the two spatially-explicit capture-recapture approaches (maxi-
mum likelihood and Bayesian) were comparable, but were significantly lower than estimates
derived using traditional, non-spatial methods. This concurs with previous research which
shows that non-spatial CR analyses typically overestimate population density by underestimat-
ing the distances moved by animals [51], [52], [53]. Furthermore, spatially-explicit CR models
are generally more robust to changes in the camera-trap array, the sizes of sampled areas and
the movement patterns of individuals [54]. This was reflected in our study by a 22% increase in
density estimates between the control and treatment surveys using the non-spatial estimator,
compared to a nominal change using spatial estimators. It was highly unlikely that leopard
density varied much over our study given its duration and the short interval between surveys.
This was reflected by the similar density estimates obtained from our candidate models in secr
and SPACECAP over the combined survey period.

The application of scent trails was laborious and difficult to justify for our study given the
lack of improvement in the precision of density estimates. However, capture probabilities at
home-range centre among our surveys were similar to other recent studies employing spa-
tially-explicit CR methods to estimate leopard density (eg. in the Limpopo province of South
Africa [46], p = 0.03; and a post conflict landscape of Cambodia [55], p = <0.01–0.04), and
were sufficiently high to produce reliable population estimates even in the absence of attrac-
tants. This may not be the case in lower density populations, or for species, which are less
routine in their movement patterns and thus more difficult to camera trap. In such cases the
use of an attractant may be warranted. For felids, this may require the deployment of baits
rather than lures; however, we strongly recommend that this only be done after the effects of
baiting on population and spatial parameters have been assessed, preferably using a similar
approach as this study (i.e. with a control and treatment period). Lures may be adequate for
species with superior olfactory senses such as hyaenids [16] or viverrids [8], where they are
likely preferable to baits. The use of lures could potentially also be warranted if a certain
variety is found to be particularly successful. Thorn et al [16] and Braczkowski et al [18] fol-
lowed this approach in the Limpopo and Cape respectively, and attempted to examine lure
preference.

An alternative way to increase the capture rates of animals during surveys (and conse-
quently measures of precision) is by lengthening the duration of surveys. This is indeed recom-
mended by Tobler et al [2], who suggest that higher captures be preferred over short survey
periods. Borchers et al [56] also developed a continuous time SCR model and showed that
using count (rather than binary) data improved parameter estimates. Both of these approaches
could help to increase the precision of density estimates.

Our results suggest that although using lures do not lead to the violation of CR model
assumptions in a savanna environment, they also do not improve the precision of density esti-
mates, so may be of limited use for leopard researchers. Insights such as these are important in
assisting biologists and conservation managers in determining which approaches should be
applied or avoided for the most cost- and time-efficient method to enumerate leopards and
potentially other large carnivores.
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