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Abstract

Parkinson's disease (PD) is one of the most common neu-

rodegenerative disorders that manifest various motor and

nonmotor symptoms. Although currently available thera-

pies can alleviate some of the symptoms, the disease

continues to progress, leading eventually to severe motor

and cognitive decline and reduced life expectancy. The past

two decades have witnessed rapid progress in our under-

standing of the molecular and genetic pathogenesis of the

disease, paving the way for the development of new

therapeutic approaches to arrest or delay the neurode-

generative process. As a result of these advances,

biomarker‐driven subtyping is making it possible to stratify

PD patients into more homogeneous subgroups that may

better respond to potential genetic‐molecular pathway

targeted disease‐modifying therapies. Therapeutic nucleic

acid oligomers can bind to target gene sequences with very

high specificity in a base‐pairing manner and precisely

modulate downstream molecular events. Recently, nucleic

acid therapeutics have proven effective in the treatment of

a number of severe neurological and neuromuscular dis-

orders, drawing increasing attention to the possibility of

developing novel molecular therapies for PD. In this
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review, we update the molecular pathogenesis of PD and

discuss progress in the use of antisense oligonucleotides,

small interfering RNAs, short hairpin RNAs, aptamers, and

microRNA‐based therapeutics to target critical elements in

the pathogenesis of PD that could have the potential to

modify disease progression. In addition, recent advances in

the delivery of nucleic acid compounds across the

blood–brain barrier and challenges facing PD clinical trials

are also reviewed.
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blood–brain barrier, molecular pathogenesis, nucleic acid
therapeutics, Parkinson's disease, precision medicine

1 | INTRODUCTION

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and it is estimated that by 2030

it will affect at least 8 million individuals worldwide.1 It was first described by James Parkinson in his landmark

1817 publication: “An Essay on the Shaking Palsy”. In his original description, Parkinson drew attention to the

cardinal motor features of the disease: “Involuntary tremulous motion, with lessened muscular power, in parts not

in action and even when supported; with a propensity to bend the trunk forward and to pass from a walking to a

running pace.”2 It has since become apparent that the clinical phenotype is in fact much broader and encompasses

a wide range of nonmotor manifestations that includes olfactory and gastrointestinal symptoms, autonomic dys-

function, sleep disorders, depression, and cognitive impairment. Some nonmotor symptoms may manifest in the

prodromal stages of the disease and predate the initial motor presentation.3,4 Systematic neuropathological studies

have shown that the basic pathology and hallmark α‐synuclein containing Lewy body inclusions are not confined to

the dopaminergic neurons of the midbrain, but appear to commence in the lower brainstem and olfactory bulb,

before extending to more rostral brainstem centers and eventually to the cerebral cortex. It has been proposed

that this progression may be due to a prion‐like cell‐to‐cell spread of α‐synuclein pathology.5 Since the landmark

discovery of the first mutation in the α‐synuclein (SNCA) gene in an autosomal dominant PD family,6 a variety of

mutations in other genes have been identified in autosomal dominant and recessive forms of familial PD that

collectively account for around 5%–10% of cases of the disease. In addition, genome‐wide association studies have

identified at least 90 common variants associated with risk of PD which are estimated to contribute to between

22% and 27% of the heritable risk of the disease.7

Although symptomatic therapies for PD can improve the motor and nonmotor symptoms for patients, these

drugs do not stop the ongoing neurodegeneration and progression of the disease, which eventually results in

severe motor and cognitive disability and various secondary complications. Thus, there is an urgent need for the

development of effective disease‐modifying therapies to slow or arrest the progression of PD. Unfortunately, many

promising neuroprotective therapies in experimental animal models of PD have failed to demonstrate efficacy

when tested in human clinical trials, and possible reasons for this failure have been discussed elsewhere.8 One of

the significant challenges is the heterogeneity of clinical phenotypes and genetic‐molecular pathogenesis across

the spectrum of sporadic and familial forms of the disease, confounding treatment evaluation in clinical trials.

There is thus increasing recognition of the importance of stratifying PD patients into more homogeneous groups

according to the genes and/or molecular pathways involved and underlying pathophysiology, to better select
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patients who may respond to targeted therapies.9 More importantly, improved understanding of the molecular

pathogenesis is paving the way for novel targeted disease‐modifying approaches, including nucleic acid

therapeutics.10

Within the last few years, several nucleic acid therapeutic compounds have been approved by the US Food and

Drug Administration (FDA) to modify gene expression in a number of inherited conditions including Duchenne

muscular dystrophy, spinal muscular atrophy, familial amyloid neuropathy, and Batten disease.11–14 Milasen®, an

expedited personalized antisense oligomer, was approved by the FDA only 10 months after the genetic cause was

identified. This study, by Professor Timothy Yu's group from Boston Children's Hospital, illustrates the efficiency

and potential in the nucleic acid therapy discovery process.14 The development of different types of nucleic acid

therapeutics for PD using experimental in vitro and animal models has attracted increasing interest, with a few

compounds under early‐stage clinical trials. Hence, in this review, we will first provide a general update on recent

progress in understanding of the molecular pathogenesis of PD and will then focus on the development of precision

nucleic acid therapeutics that target the key pathogenetic elements. Overall, it is encouraging that there is great

enthusiasm for the development of precision and personalized therapies for PD, particularly for subgroups of

patients with distinctive genetic and molecular characteristics, and for whom a more defined target pathway is

evident.

2 | MOLECULAR PATHOGENESIS OF PD

The aetiopathogenesis of PD has proven to be complex. The disease was for many years considered to be a

sporadic disorder with no genetic associations until the first missense variant in SNCA (PARK1 and 4) was iden-

tified in 1997.6 Since then, a large number of other genetic mutations have been determined to be responsible for

familial forms of the disease (Table 1). As a result of these discoveries, several key molecular processes and

pathways, including the ubiquitin–proteasomal system, the autophagy–lysosomal pathway, mitochondrial main-

tenance and integrity, oxidative stress, and neuroinflammation are now known to be involved in PD pathophy-

siology, as summarized in Figure 1. In addition, other pathways, including innate and adaptive immunity, have also

been implicated. In this review, it is not our intent to discuss all of these PD pathways in detail, but rather to

provide a general update on progress in some areas of the molecular pathogenesis, of relevance to drug devel-

opment, and in particular to nucleic acid therapeutics.

2.1 | Ubiquitin–proteasome system

The discovery that Lewy bodies are ubiquitin‐immunopositive provided an early indication that the

ubiquitin–proteasome system (UPS) plays a role in PD pathogenesis.34 As the main component of Lewy bodies,

monomeric or α‐helically folded tetrameric α‐synuclein is actively degraded by the UPS under physiological con-

ditions.35,36 SNCA mutations, including duplication or triplication of the whole gene, or disease‐associated missense

mutations, render α‐synuclein prone to misfolding and formation of toxic protein aggregates. These aggregates

have prominent inhibitory effects on 20S/26S proteasomal protein cleavage in dopaminergic cells,37 which in

return further accumulates aggregates of toxic α‐synuclein.38

Parkin is an auto‐inhibited RING‐between‐RING E3 ligase in the UPS which is deficient in autosomal recessive

PD (PARK2). Upon activation by PINK1, Parkin undergoes a conformational change that facilitates its ubiquitin

ligase activity.39 Amongst the many Parkin substrates, aminoacyl‐tRNA synthetase complex interacting multi-

functional protein‐2 accumulates when Parkin is deficient, which activates poly(ADP‐ribose) polymerase‐1
(PARP1) and causes selective loss of dopaminergic neurons.40 Consequently, PARP1 inhibitors, which have been

approved by the FDA for certain breast and ovarian cancers, are now being considered as repurposed drugs for the
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treatment of PD.41 PINK1 has multiple functions, including modulating mitochondrial respiratory chain activity,

regulating neuroinflammation, and promoting neuron survival.42 In terms of its roles in the UPS, cytosolic PINK1

phosphorylates some Parkin substrates, primes Parkin‐mediated ubiquitination, and ultimately facilitates the de-

gradation of pathological proteins.43

The efficient and timely ubiquitination for substrate degradation requires the maintenance of cellular ubiquitin

homeostasis. As a PD susceptibility gene,44 the ubiquitin C‐terminal hydrolase L1 (UCHL1, PARK5) is one of the

most abundant deubiquitinating enzymes that is predominantly expressed in the brain. UCHL1 is highly efficient in

cleaving monoubiquitin from small peptides that are conjugated to the C‐terminus of a ubiquitinated protein.45,46

UCHL1 also participates in other pathways including processing of proubiquitin, E3 ligase function, maintaining

axonal function, and inhibiting autophagy.47–50 Considering its multiple roles in the UPS and other cellular func-

tions, UCHL1 might be considered as an attractive therapeutic target for PD and related disorders.

2.2 | Autophagy–lysosomal pathway

Autophagy is a catabolic process that delivers dysfunctional organelles or misfolded proteins to the lysosome for

degradation. With substantial evidence that proteins encoded by PD causative or risk genes directly or indirectly

regulate the autophagy–lysosomal pathway, dysregulated autophagy is believed to play a major role in PD pa-

thogenesis. Emerging studies are showing that multiple variants in lysosomal storage disorder genes can contribute

to PD susceptibility.51,52 Deficiency of the lysosomal hydrolase glucocerebrosidase, encoded by GBA, leads to the

most common lysosomal storage disorder, Gaucher disease. Generally, around 5%–15% of PD patients are re-

ported to carry heterozygous GBA mutations. However, the prevalence of GBA mutations varies in different

populations, with the highest prevalence being in Ashkenazi Jewish PD patients (20%).53 While, it is clear that GBA

mutations cause autophagy–lysosomal dysfunction, the specific mechanisms involved remain unclear.54

F IGURE 1 Confirmed causative Parkinson's disease genes and their roles in molecular pathogenesis pathways.
E1, E1 ligase; E2, E2 ligase; E3, E3 ligase; NLRP3, nucleotide‐binding oligomerization domain‐like receptor protein 3;
ROS, reactive oxygen species; RNS, reactive nitrogen species [Color figure can be viewed at wileyonlinelibrary.com]
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Mutations in ATP13A2, a transmembrane endo/lysosomal P‐type transport ATPase, cause Kufor–Rakeb syn-

drome (PARK9), a rare subtype of juvenile‐onset autosomal recessive parkinsonism. ATP13A2 controls lysosome

homeostasis and regulates autophagosome–lysosome fusion through HDAC6 that is recruited to the lysosome and

facilitate autophagy flux.55 Moreover, ATP13A2 interacts with endocytic signaling lipids through its hydrophobic

N‐terminal to enable endocytic cargo export.56 Another PD‐related gene product that regulates endosomal–lysosomal

trafficking is vacuolar protein sorting protein‐associated protein 35 (VPS35, PARK17), a member of the retromer

complex. This complex is involved in intracellular trafficking of proteins including α‐synuclein and proteins that are

important for autophagosome formation.57 Reduced α‐synuclein degradation and profuse Lewy body pathology in the

substantia nigra and other midbrain region were found in patients with VPS35 mutations.58

The major pathogenic factor in both familial and sporadic PD is considered to be the formation of α‐synuclein
aggregates, which is due in part to malfunction of the α‐synuclein degradation machinery. Normal monomeric

α‐synuclein is usually degraded by chaperone‐mediated autophagy, while macroautophagy has been implicated in

the clearance of α‐synuclein oligomers.59 The burden of toxic α‐synuclein aggregates, may compromise the mac-

roautophagy pathway through interfering with autophagosome formation or clearance.60 On the other hand, when

macroautophagy is affected or inhibited by gene mutations, intracellular α‐synuclein clearance is impeded and

accumulation of the mutant protein is exacerbated. Mutations in LRRK2, which are the most common cause of

familial PD (PARK8), have also been reported to dysregulate macroautophagy, although the findings in different

studies have been somewhat contradictory.61

2.3 | Mitochondrial maintenance

The landmark observation that parkinsonism could result from the accidental intake of 1‐methyl‐4‐phenyl‐1,2,3,6‐
tetrahydropyridine, a potent inhibitor of mitochondrial complex I, was a critical finding that first implicated

mitochondria in the pathogenesis of PD.62 Since then, many aspects of mitochondrial dysfunction have been

investigated, including impaired mitochondrial maintenance, defective mitophagy, calcium imbalance, oxidative

stress, and effects of neuroinflammation.63 LRRK2 is thought to act as a scaffold during mitochondrial fusion and

fission, with the WD40 repeat‐containing domain and the dynamin‐related GTPase domain required for LRRK2

interacting with mitochondrial fission or fusion factors.64,65 While, PINK1 and Parkin contribute to mitochondrial

fission and fusion through ubiquitinating mitochondrial fusion regulators, including mitofusin 1/2.66

Mitophagy is a cargo‐specific form of autophagy that removes damaged or excessive mitochondria to maintain

an optimally functioning mitochondrial network. PINK1 is ubiquitously expressed in all mitochondria and main-

tained at a low level in healthy mitochondria.67 Upon mitochondria damage or depolarization, PINK1 proteolysis is

impeded. Subsequently, the overexpressed PINK1 recruits Parkin from the cytosol into mitochondria,68,69 then

mediates Lys63‐linked ubiquitination of outer mitochondrial membrane proteins and induces mitophagy. Loss‐of‐
function mutations in the PINK1/Parkin pathway result in impaired mitophagy. The accumulation of dysfunctional

mitochondria cause increased reactive oxygen species (ROS) generation, cytochrome c leakage, and mitochondrial

DNA mutations, ultimately leading to dopaminergic neuron death.70

Several other PD pathogenic genes are also reported to exert effects on the mitophagy pathway. A recent

study found that LRRK2 mutations interfere with the interaction between dynamin‐related protein 1 and its

mitochondrial receptor MiD51, which is required for the initiation of Parkin‐dependent mitophagy.71 Under basal

conditions, the outer mitochondrial membrane protein Miro is rapidly removed by LRRK2 to stop mitochondrial

mobility and facilitate mitophagy,72 while mutated LRRK2 disrupts this function, delays the arrest of damaged

mitochondria and consequently hinders the induction of mitophagy.73 Other factors such as the accumulation of

α‐synuclein, ATP13A2 deficiency, and GBA mutations have also been shown to impair mitophagy.74–76

In addition to their bioenergetic functions, mitochondria fine‐tune cytosolic Ca2+ levels by controlling Ca2+

uptake and efflux through several calcium transporters.77,78 Mutations in SNCA, PINK1, and LRRK2 have been
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shown to dysregulate Ca2+ transporters, resulting in mitochondrial Ca2+ overload, increased ROS production, and

ultimately neuronal cell death.77,79–81 The tethering complexes connecting mitochondria and the endoplasmic

reticulum are crucial for cellular calcium handling,82 and mutations in SNCA, PARKIN, and DJ1 have been found to

interfere with the coupling of the complexes and then impair Ca2+ dynamics.82–85 Besides the role of PINK1, Parkin

and DJ1 in mitophagy and Ca2+ dynamics, these proteins also modulate the function of the mitochondrial re-

spiratory chain complex.86 Mutations in these genes disrupt the assembly of the components of the respiratory

chain complex, inhibit complexes I and III, and increase the generation of ROS and reactive nitrogen species (RNS).

2.4 | Oxidative stress

Oxidative stress is a cascade reaction resulting from an imbalance between increasing free radicals, including ROS

and RNS, and cellular antioxidant activity. The accumulation of free radicals causes DNA and protein oxidation, or

lipid peroxidation that compromises cell integrity and leads to cell death. As neurons have a high demand for

oxygen but relatively low levels of antioxidants, they are particularly susceptible to oxidative stress.87,88 The

impairment in mitochondrial homeostasis in PD could exacerbate the production of ROS that are the by‐products
from the oxidative phosphorylation pathway. Some PD‐related gene products contribute to mitochondria‐related
oxidative stress through regulating mitochondrial homeostasis or mitophagy as discussed above. In addition,

α‐synuclein binds directly to mitochondria, impairing mitochondrial protein import and resulting in deficient mi-

tochondrial respiration and enhanced ROS production.89 Nonfibrillar phosphorylated α‐synuclein is a newly

identified α‐synuclein neurotoxic isoform, and its aggregates have been shown to induce mitochondrial frag-

mentation via reduced lipoylation and aggravate oxidative stress.90

The protein deglycase DJ1, encoded by PARK7, is ubiquitously expressed in the brain and acts as a sensor of

oxidative stress.91 DJ1 is involved in several signaling pathways that are protective against oxidative injury,

including activating the extracellular signal‐regulated protein kinases 1 and 2 and Akt pathways,92–94 inhibiting

apoptosis signal‐regulating kinase 1,95 and regulating transcription factors such as p53, nuclear factor kappa B, and

nuclear factor erythroid 2–related factor 2.91,96–98 The crosstalk between DJ1 and other major antioxidant sys-

tems, such as the thioredoxin system and the glutathione system91,99 further supports the cellular antioxidant

activity to provide an optimal response to oxidative stress. DJ1 mutants could produce selective mitochondrial

pathologies that impair Ca2+ dynamics and free radical homeostasis through disrupting the interaction between

DJ1 and mitochondrial accessory proteins.84

2.5 | Neuroinflammation

Since the first report of reactive microglia in postmortem PD brain tissue in 1988,100 microglial activation and high

levels of proinflammatory cytokines have been consistently detected in PD brains.101 There is, therefore, con-

vincing evidence that neuroinflammation is involved in dopaminergic neuron death and neurodegeneration.102 As

the primary central nervous system (CNS) resident immune cells,103 microglia can be activated to yield two

different phenotypes (M1/M2) to produce either proinflammatory or anti‐inflammatory cytokines to maintain CNS

homeostasis. Chronic activation by misfolded proteins or environmental toxins results in M1 microglia that pro-

duce proinflammatory cytokines, including tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), and interferon‐γ.
The initial microglial activation and subsequent production of proinflammatory mediators may also result in

activation of astrocytes that are considered to be integrative regulators of neuroinflammation in the nervous

system.104

Apart from the role of innate immunity in neuroinflammation, there is increasing evidence that adaptive

immunity also plays a role in PD pathogenesis.105,106 An increase in the number of cytotoxic and memory T cells,
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and changes in proportions of helper T cells and naive T lymphocytes in peripheral blood, indicates the activation of

a cytotoxic immune response in PD.106–108 Infiltration of T cells in the substantia nigra of PD mice was reported to

affect neurodegeneration in other ways, including inducing microglial activation to the M1 phenotype.109,110

Although the mechanism of T cell invasion into the CNS is still uncertain, microglia as the brain‐resident macro-

phages are believed to present CNS‐derived antigens to peripheral T lymphocytes, resulting in T cell activation and

infiltration.111,112

Along with the cellular mediators, several molecular mechanisms are involved in modulating neuroin-

flammation. Extracellular wild‐type or pathological α‐synuclein activates microglia through toll‐like receptor 2 and

the Janus kinase–signal transducers and activators of transcription signaling pathways, which produces various

proinflammatory cytokines and chemokines.113–115 Blocking the toll‐like receptor 2 signaling alleviates α‐synuclein
accumulation, neuroinflammation, and behavioral deficits in the α‐synuclein transgenic mouse model.116 LRRK2

interacts with and phosphorylates nucleotide‐binding oligomerization domain‐like receptor C4, an inflammasome

protein, and subsequently activates caspase‐1.117 In addition, the LRRK2 G2019S mutation appears to drive

microglia towards the reactive phenotype with enhanced inflammatory responses118 and increases PD

susceptibility.119

PINK1‐ and Parkin‐mediated mitophagy can prevent mitochondrial‐induced inflammation.120 Deficiency in

either PINK1 or Parkin function results in elevated levels of cytosolic and circulating mitochondrial DNA, or

double‐stranded mitochondrial RNA that promotes proinflammatory responses through different mechan-

isms.121,122 Apart from roles in mitochondrial‐induced inflammation, PINK1 and Parkin also contribute to neu-

roinflammation via separate pathways. Through promoting proteasomal degradation of TNF‐α receptor‐associated
factor 2/6123 or regulating ubiquitin‐modifying enzyme A20 and NLRP3‐inflammasome, Parkin suppresses in-

flammation and cytokine‐induced neuron death.124,125 PINK1 modulates neuroinflammation in a glial cell type‐
specific manner, with studies showing that loss of PINK1 increases proinflammatory cytokines (TNF‐α, IL‐1β, and
NO) in astrocytes.126

The progress in the molecular findings is gradually leading to the clarification of PD pathogenesis and is

providing justifications to develop molecular pathway targeted therapeutics. Although most of the pathways are

closely related and/or overlapping, some pathways are proposed to result in a distinct disease process and re-

sultant phenotypes. For example, mitochondrial damage is a particular problem in the substantia nigra,127 and thus

for patients with mitophagy failure, their clinical features are hypothesized to have a more dopaminergic nature.

However, for those who have a dysregulated autophagy–lysosomal pathway, the clinical features might be more

generalized.128,129 The genes and molecular events involved are somewhat clearer in monogenic familial PD cases,

which is facilitating the development of precision or personalized treatment strategies. Nucleic acid therapies are

particularly attractive in this scenario since approaches including small interfering RNAs (siRNA), microRNAs

(miRNA) and antisense oligonucleotides (ASO) can be applied to tackle some gain‐of‐function mutations, while

splice‐switching antisense oligomers can be used to address selected loss‐of‐function mutations. Some common

mutations of PD genes and potential nucleic acids‐based therapeutic strategies are summarized in Table 2.

3 | NUCLEIC ACID THERAPEUTICS AND ITS PROGRESS
IN PD RESEARCH

Since the FDA first approved the nucleic acid drug, Vitravene in 1998 to treat cytomegalovirus retinitis in im-

munocompromised patients, nucleic acid therapeutics have gradually come‐of‐age. In excess of 200 nucleic acid

drug clinical trials are registered at ClinicalTrials.gov and over 10, 000 patients have received nucleic acid drugs

since 2016.130 Nucleic acid therapeutics are emerging as a well‐established, validated class of drugs that could

manipulate almost any gene with high specificity.131 However, there are a number of hurdles that need to be

overcome before successful widespread clinical application of nucleic acid compounds. The first and foremost is the
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instability of unmodified natural nucleic acids. As expected in normal RNA and DNA metabolism, the natural

phosphodiester backbone is particularly sensitive to degradation by endonuclease and exonucleases.132–134

3.1 | Nucleic acid chemistries, modifications, and related toxicities

Chemical modifications (Figure 2) to the backbone and/or bases have been developed to enhance nuclease re-

sistance and overall pharmacokinetic characteristics. The replacement of the nonbridging oxygen atom in the

phosphodiester backbone with a sulfur atom creates a phosphorothioate linkage with enhanced resistance to

degradation.135,136 Furthermore, modifications at the 2′‐position include replacing the hydroxyl group with an

O‐methyl (OMe), O‐methoxyethyl (MOE), fluoro (F), or amino (NH2) moiety, or linking the 2′ oxygen to the 4′
carbon to create locked nucleic acid (LNA). These chemical modifications not only increase the nuclease resistance

but also the binding affinity of ASOs, siRNAs, aptamers, or other nucleic acids.137–140 Modifications on both sugar

and backbone such as peptide nucleic acid (PNA)141 and phosphorodiamidate morpholino oligonucleotide

(PMO)142 have also been developed to enhance oligomer stability. Building on a backbone of morpholine rings

connected by phosphorodiamidate linkages, the neutrally charged PMO has been shown to be a very safe

chemistry in clinical trials, although a delivery system is needed to allow for better uptake of PMO.143 Newer

modifications including altritol nucleic acid, twisted intercalating nucleic acid, cyclohexeny nucleic acid, and hexitol

nucleic acid are shown to have higher exon skipping efficiency compared with 2‐OMe ASO in vitro,144,145 however,

the toxicities and in vivo safety profile of these chemistries remain undetermined.

Actually, most chemical modifications incorporated into oligonucleotides result in drastic toxic con-

sequences.146 The phosphorothioate backbone has been demonstrated to confer innate immunostimulatory ac-

tivity and activate the complement system.147–149 Significant upregulation of immune system associated genes was

observed in mouse brains after intracerebroventricular (ICV) administration of 2‐OMe ASO on the phosphor-

othioate backbone.150 Chronic intravenous infusion of 2‐MOE modified oligomers on the phosphorothioate

backbone in cynomolgus monkeys results in increased plasma concentration of the complement split product

inducing Bb, C3a, and C5a, indicating activation of the alternative pathway of the complement system.149,151

However, oligonucleotide‐induced complement activation was not observed in dog and human.152

Due to their polyanionic nature, phosphorothioate backbone oligomers are known to bind to many serum

proteins, including intracellular and extracellular receptors, causing renal or hepatic toxicities. For example, LNA‐
related hepatoxicity is speculated to be caused by LNAs aptameric binding to hepatic intracellular proteins.153,154

Specific oligonucleotide sequence motifs, such as TGC or TCC motifs of LNAs in a 3–8–3 gapmer design, tend to

exhibit a high propensity to bind to mouse liver proteins and increase hepatotoxicity.154 Binding with proteins in

proximal tubule cells is also suspected of contributing to the LNA‐associated nephrotoxicity. However, the accu-

mulation of the LNAs within proximal tubule lysosomes is more likely to cause renal toxicity,155 as shown by

tubular necrosis and oligomer accumulation in the kidney biopsy from the first human trial of an LNA ASO.156

3.2 | Off‐target effects of nucleic acid oligomers

Nucleic acid oligomers bind to targeted sequences in a highly specific base pairing manner, however, off‐target
annealing to an unintended RNA that shows some homology is still one of the concerns over the safety of the

oligonucleotide compounds. siRNAs inevitably cause unintended gene silencing due to miRNA‐like effects, because

both exogenous siRNAs, including short hairpin RNAs (shRNAs) that eventually produce siRNAs, and endogenous

miRNAs share the same downstream effector.157 After loading with the effector and the Ago protein and then

partial pairing to the 3′‐untranslated region (UTR), siRNAs intrinsically may suppress up to 1,000 unintended gene

transcripts.158 Such off‐target effects show the same dose‐response as on‐target effects, thus it is suggested that
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siRNA treatment should be titrated down to levels that maintain sufficient on‐target effects.159 However, simply

reducing concentration is not sufficient to eliminate off‐target effects. Since the hydroxyl group at siRNA nu-

cleotide position 2 is essential to form a hydrogen bond with the asparagine residue of Ago,160 chemical mod-

ifications on that 2′‐position could render steric constraints and interfere siRNA–Ago interaction, thus reducing

siRNA off‐target effects. Inducing 2‐OMe at siRNA positions 1 and 2 is found to reduce around 80% of putative off‐
target transcripts, resulting in a 66% decrease in unintended gene silencing.157 Similar reduction in off‐target

F IGURE 2 Examples of chemical modifications of nucleic acid analog oligomers. 2‐F, 2′‐fluoro; 2‐MOE,
2′‐O‐methoxyethyl; 2‐NH2, 2′‐amino; 2‐OMe, 2′‐O‐methyl; ANA, altritol nucleic acid; CeNA, cyclohexene nucleic
acid; HNA, hexitol nucleic acid; LNA, locked nucleic acid; PMO, phosphorodiamidate morpholino oligomer;
PNA, peptide nucleic acid
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effects is observed when siRNA is chemically modified as LNA or unlocked nucleic acid,161 however, the safety

profile of these chemistries may hinder their further application. Novel strategies such as making circular siR-

NAs162 or adding a biotin group at the 5′‐end of the sense strand163 have been shown to improve siRNA specificity

and reduce off‐target effects.
Off‐target effects of RNase H‐inducing ASO have also been known for decades, and increased oligonucleotide

binding affinity by chemical modifications may potentially exaggerate the unwanted effects.164 Reducing the overall

binding affinity by limiting the number of LNAs in a gapmer ASO or increasing the length of ASO to make more specific

binding to the target sequence have been shown as potential strategies to mitigate off‐target binding.165 Splice‐
switching ASOs were believed to have less off‐target effects because they must stringently bind to short splicing

motifs such as exonic splicing enhancers or intronic splicing silencers. Moving one or a few nucleotides upstream or

downstream of these splicing motifs may result in no splice‐switching activity.166,167 However, in a recent study

17 missplicing events were detected by reverse transcription‐polymerase chain reaction after in vitro transfection of

one uniformly modified 2‐MOE splice‐switching ASO, with that ASO predicted to have over 108 potential annealing

sites in addition to its intended target.168 Strategically placing mismatches within the ASO or combining two short ASOs

were shown to reduce off‐target effects to some extent. Furthermore, delivering ASO through free uptake markedly

reduced off‐target effects compared with delivering through lipid transfection, which may indicate that splice‐switching
ASO off‐target effects are a greater concern in vitro than in vivo.168 Since there are only a few reports on splice‐
switching ASO induced missplicing activity, additional investigations are needed to assess global off‐target effects.

Developing reliable in silico tools to predict off‐target effects169,170 would allow for identifying and avoiding unwanted

oligonucleotide actions before in vitro and in vivo evaluation.

As with any drug, effective delivery is of paramount importance to its therapeutic potential. Potent nucleic acid

delivery systems are also needed to ensure effective cell uptake or even tissue‐specific delivery to allow for better

assessment of therapeutic benefits. Various approaches, especially bioconjugates including cholesterol, cell‐
penetrating peptides, nucleolipids, receptor ligands, and antibodies have been proposed to enhance nucleic acids

delivery,171–174 however even those approaches have limitations including immunogenic consequences and lack of

efficiency and specificity.175 To date, N‐acetylgalactosamine (GalNac) appears to be the most potent conjugate for

siRNA delivery that specifically targets hepatocytes with limited off‐target effects.176,177 Targeted ASO delivery

was also achieved by conjugating ASO with GalNAc, resulting in selective ASO uptake by hepatocellular carcinoma

cells. Systemically administered GalNAc‐conjugated ASO demonstrated enhanced antisense mediated antitumor

activity both in vitro and in vivo.178 However, up to now, cell‐penetrating peptides emerge as the most suitable

vehicle for ASO systemic delivery which leads to two cell‐penetrating peptides conjugated splice‐switching ASOs,

Eteplirsen179 and Golodirsen180 being approved by the FDA.

The development of nucleic acid therapeutics is rapidly evolving with many issues regarding drug stability, toxicity,

off‐target effects, drug delivery being resolved to some extent, dramatically bringing these therapies closer to patients.

The recent FDA approvals of Exondys 51®, Spinraza®, Tegsedi®, Onpattro®, Vyondys 53®,Milasen®, and Givlaari® illustrate

the broad therapeutic potential of nucleic acid drugs for the treatment of neurological and neuromuscular diseases.

Consequently, an increasing number of researchers are actively investigating the therapeutic effects of different nucleic

acid compounds for neurodegenerative diseases, including PD. Table 2 shows the current status of potential nucleic acid

therapeutic strategies for PD precision or personalized medicines.

3.3 | Progress in nucleic acid therapeutics for PD

3.3.1 | Antisense oligonucleotides

ASOs are synthetic nucleic acid analogs that are designed to anneal to target RNA transcripts through

Watson–Crick base pairing. Depending upon the base and backbone chemistries, ASOs can modify gene expression
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through inducing a variety of mechanisms including suppressing translation, altering splicing, modifying poly-

adenylation, or degrading RNA by activating RNase H or inducing RNA silencing (Figure 3i–iii). In situations where

a gene lesion results in a misfolded toxic protein and the abnormal protein contributes to the disease pathway,

RNA silencing or RNase H activating ASOs can be designed to bind to and degrade the corresponding messenger

RNA (mRNA). The reduction in the targeted mRNA would subsequently reduce the protein levels and slow

the disease course, as demonstrated by the development of Tegsedi® for patients with hereditary transthyretin

amyloidosis (HTA).181

Given that pharmacological inhibition of LRRK2 could abate α‐synuclein‐induced neurodegeneration,182

a 2‐MOE ASO was designed to target LRRK2 mRNA for RNAse H‐mediated degradation to ameliorate pathologic

α‐synuclein inclusion‐body formation. After the administration of the 2‐MOE ASO in a PD mouse model, reduced

levels of LRRK2 mRNA and protein were evident, with diminished pathological aggregation of α‐synuclein in

the substantia nigra of treated mice.183 Since August 2019, a Phase I clinical trial (NCT03976349) has begun

to evaluate this 2‐MOE ASO (BIIB094) through intrathecal administration in PD patients with or without a

F IGURE 3 Examples of the mechanism of actions of nucleic acid compounds. (i) ASO‐mediated splice‐switching;
ASOs bind to the acceptor or donor splice site, switch splicing, and induce alternative mRNA and protein
isoforms; (ii) ASOs activate RNase H and cleave mRNA; (iii) ASOs inhibit mRNA translation by steric blockade of

ribosomes; (iv) siRNA‐induced gene silencing; after being taken up by the RNA‐induced silencing complex and ejection of
the passenger strand, the antisense strand of siRNA binds to mRNA and mediates mRNA cleavage;
(v) shRNA‐mediated targeted gene silencing; (vi) miRNA‐induced RNA cleavage; (vii and viii) mechanism of actions of
antimRs and aptamers. ASO, antisense oligonucleotides; miRNA, microRNA; mRNA, messenger RNA; RISC, RNA‐induced
silencing complex; shRNA, short hairpin RNA; siRNA, small interfering RNA [Color figure can be viewed at
wileyonlinelibrary.com]
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PD‐related LRRK2 mutation. This would be the first compound being tested and evaluated in PD patients with a

defined genetic cause and some positive results were reported.184

An oligonucleotide with amido‐bridged nucleic acid‐modified bases at each end and a DNA core to induce

RNase H activity was designed to specifically degrade the human SNCA transcript. This compound reduced SNCA

expression significantly and improved motor functions in a PD transgenic mouse model.185 Due to the high

prevalence of GBA mutations in PD patients, several therapeutic strategies including gene therapy and small

molecules are under development for patients carrying this particular PD risk.186 Chamishi Therapeutics was

founded in September 2019 with a specific focus on developing ASO therapies for GBA‐associated PD.

It is well‐established that alternative splicing events are overrepresented in the brain,187 with even subtle

DNA variations able to catastrophically disrupt normal pre‐mRNA splicing.188 Intense efforts are underway to

develop ASO molecules capable of redirecting pre‐mRNA splicing by either promoting retention of a missing exon,

excising a disease‐causing exon from the mature mRNA, or removing an exon to change the ratio between different

transcripts.189,190 α‐Synuclein has four isoforms that are generated by alternative splicing of SNCA exons 4, 6, or

both.191 The isoform lacking exon 6 has higher aggregation propensity than full‐length α‐synuclein, while the

isoform lacking exon 4 confers a protective effect.191 Thus, changing the ratio between the full‐length α‐synuclein
and other isoforms by splice‐switching ASOs may initiate a new pathway for the development of disease‐modifying

therapeutics for PD.

The recently reported one‐step strategy to convert astrocytes to functional neurons in situ by RNase

H‐inducing ASOs is probably one of the most exciting advances in PD therapeutic research. Professor Xiangdong

Fu's group designed ASOs on the phosphorothioate backbone to knockdown polypyrimidine tract‐binding
protein 1, which successfully converted primary astrocytes to dopaminergic neurons in the mouse brain.192 The

converted dopaminergic neurons were shown to progressively mature and replenish lost dopaminergic neurons in

a PD mouse model, thereby restoring striatal dopamine and reversing motor phenotypes.192 This study could open

up a completely novel avenue for development of treatments to “rebuild” damaged brains in PD, however, there

are still some uncertainties about the effectiveness of this treatment in older individuals with reduced brain

plasticity because of age.193

3.3.2 | Small interfering RNA

Twenty years after the first description of RNA interference (RNAi), the first RNAi drug Onpattro® was approved

by the FDA for the treatment of HTA in 2018.194,195 The following year, the FDA approved the second siRNA drug

Givlaari® to treat patients with acute hepatic porphyria.196 RNAi is a process that inhibits targeted gene expression

with high specificity and is an exciting therapeutic strategy for precision medicine. siRNAs are generally synthetic,

chemically modified short double‐stranded RNAs that are usually 21–23 nucleotides in length. siRNAs contain an

antisense active strand and a sense mRNA sequence that is ejected when the double‐stranded siRNAs are taken up

by the endogenous cytoplasmic RNA‐induced silencing complex. The active strand can bind to the target mRNA

and initiate sequence‐specific mRNA degradation by the RNA‐induced silencing complex argonaute RNase

(Figure 3iv). As with ASOs, chemical modifications of the 2′‐ribose and the phosphorothioate backbone help

protect siRNAs from nuclease degradation and prolong its half‐life.139 Incorporating siRNA into different lipid

nanoparticles, especially second‐generation lipid nanoparticles, for example, Onpattro®, substantially improves

siRNA delivery and gene knockdown.197,198 Other conjugates such as GalNac, lipoproteins, or exosomes are also

showing improved siRNA delivery and increased knockdown of targeted genes.

SNCA overexpression and accumulation of α‐synuclein protein plays a crucial role in the pathogenesis of PD,

particularly in families with SNCA copy number variations.199,200 Thus, reducing SNCA mRNA levels and the

resultant protein by siRNA is considered as a viable therapeutic strategy for PD. Rabies virus glycoprotein (RVG)

decorated anionic liposomes loaded with siRNA‐protamine complex were used to silence SNCA expression. This
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complex was rapidly taken up by primary neuronal cells and efficiently reduced α‐synuclein protein in mouse

primary cortical and hippocampal neurons.201 In other preclinical studies, polyethylenimine‐siRNA and RVG‐
exosome‐siRNA targeting α‐synuclein transcripts also demonstrated a robust reduction of both overexpressed

human SNCA mRNA and α‐synuclein protein in the striatum of a PD mouse model and delayed the development of

α‐synuclein pathology.202,203 However, a delicate SNCA level must be maintained as it is obvious that too little

α‐synuclein may also be harmful to the brain because of its essential biological functions at the synapse. Marked

downregulation of SNCA expression by siRNA was associated with an increased risk of developing nigrostriatal

degeneration.204 Therefore, expression‐control siRNAs were generated by introducing nucleotide mismatches to

control the levels of SNCA knockdown. Administration of various expression‐control siRNAs in PD transgenic fly

models showed different levels of SNCA knockdown that correlated with motor function improvement.205

3.3.3 | Short hairpin RNAs

shRNAs are RNA transcripts that contain a loop structure and a stem that consists of a paired sense and antisense

strand. As distinct from siRNAs, bacterial or viral vectors are needed to deliver shRNAs into cells, where they are

processed into siRNAs and mediate targeted gene inhibition by the RNAi machinery (Figure 3v). Since host cells

can continuously synthesize shRNAs, they have several advantages over siRNA including longer‐lasting effects,

lower dose requirement, and less specific and nonspecific off‐target effects.206 However, there are also some

disadvantages to use viral vectors, including immunogenicity and potential risk of inducing mutations, making viral

vectors potential safety hazards.207 Adeno‐associated virus‐mediated delivery of shRNAs in normal rats resulted in

a 35% knockdown of α‐synuclein without affecting motor function or causing degeneration of dopaminergic

neurons.208 The α‐synuclein knockdown by shRNAs in a PD rat model was observed to be neuroprotective,

decreasing the degeneration of dopaminergic neurons and attenuating the progression of motor deficits.208

shRNAs have also been used to knockdown polypyrimidine tract‐binding protein 1 and convert astrocytes to

dopaminergic neurons in a PD mouse model, thereby replacing dopaminergic neuron loss and reversing motor

deficits.192 This approach has the potential to open up new therapeutic avenues for PD and other neurodegen-

erative disorders, but more in vivo and preclinical investigations will be required.

Since most viral vectors do not cross the blood–brain barrier, nanoparticles are being evaluated for delivery of

shRNAs to the brain. N‐isopropylacrylamide is one type of nanopolymer material capable of controlled cargo tar-

geting and release and is usually combined with acrylic acid as a drug delivery vehicle. This vehicle was further

combined with photoactive nerve growth factor and oleic‐coated magnetic nanoparticles to deliver shRNAs targeting

SNCA across the blood–brain barrier. Subsequently, the shRNAs reduced α‐synuclein expression and prevented

dopamine neuron degeneration in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine PD mouse model.209 Instead of

directly targeting SNCA, other approaches, including reducing inflammation by shRNA‐mediated silencing of

caspase‐1210 or class II transactivator have also been attempted.211 In addition, inhibition of Nurr1212 or Shp‐2213 by

shRNAs was designed as a potential strategy for the management of levodopa‐induced dyskinesias. However, since

Nurr1 has multiple functions including protection of dopaminergic neurons against neurotoxins and suppressing

neuroinflammation,214 there is still much research needed before the Nurr1‐based PD therapeutics can be

considered for the treatment of PD.

3.3.4 | miRNA therapeutics

miRNAs are short noncoding RNAs, generally, 20–25 nucleotides in length, that regulate gene expression through

binding to the 3′‐UTR of a targeted mRNA. Understanding the critical roles of miRNAs in cellular and molecular

biology,215 and unveiling the mechanisms of dysregulation of miRNAs under disease conditions216–218 has made
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these molecules very attractive propositions with respect to drug development. Since the first discovery of

mammalian miRNAs in 2000, rapid progress in RNA chemistry and delivery technologies has enabled multiple

miRNA‐based therapeutic compounds to move into clinical trials.140 miRNA molecules can be synthesized with

distinct chemical modifications that determine the mode of actions (Figure 3vi,vii). miR mimics are double‐stranded
short RNA molecules and are often modified by O‐methylation of the passenger strand to increase stability.140

When delivered to the targeted tissue, miR mimics can replenish the expression of downregulated miRNAs and

silence targeted mRNA expression.216 On the other hand, single‐stranded antimiRs (also called antagomiRs) either

incorporating LNA or 2‐OME residues can inhibit specific miRNAs and upregulate targeted mRNA expression.219 In

conjunction with antimiRs, miRNA “sponges” or “decoys” are other strategies that can inhibit miRNA activity by

providing multiple target sites complementary to specific miRNAs, and subsequently prevent miRNAs binding to

endogenous target genes.220,221

Studies have shown that miR‐7 regulates neuroinflammation and can also bind directly to specific regions of

the α‐synuclein 3′‐UTR and repress α‐synuclein expression.222,223 Injecting miR‐7 mimics directly into mouse

striatum suppressed inflammasome activation and attenuated dopaminergic cell death.224 Using a miR‐decoy
stably reduced miR‐7 function and resulted in an increased expression of α‐synuclein and a rapid loss of dopa-

minergic neurons in vivo.225 Other miRNAs that could downregulate α‐synuclein expression include miR‐153 and

miR‐214, the latter also participating in brain repair in PD mouse models.222,226,227 miR‐132 regulates embryonic

stem cell differentiation into dopaminergic cells, while miR‐132 was upregulated in a PD mouse model and reduced

dopamine neuron differentiation. The miRNA sponge mmu‐circRNA‐0003292 is hypothesized to sequester

miR‐132 and affect PD pathogenesis,228 however, further experimental verification is needed.

The miRNAs usually have a wide range of targets and a single miRNA can exert effects and influence

multiple different cellular and molecular pathways. For example, transgenic mice overexpressing miR‐7
showed impaired insulin secretion and a decline in the expression level of transcriptional factors for pan-

creatic islet β‐cell differentiation and developed diabetes.229 Over 1,000 genes were found to be dysregulated

in an unbiased genome‐wide expression assay in a pancreatic β‐cell line after adenovirus delivered miR‐7
treatment.229 Thus, before bringing miRNA therapeutics into clinical applications, potential perturbations to

other body systems must be thoroughly investigated. In addition, unlike the application of miRNAs ther-

apeutics in liver disease, where miRNA mimics or antimiRs may readily enter the target tissue and exert their

effects,230 difficulties in miRNA delivery across the blood–brain barrier is one of the factors that limit the

progress in miRNA‐based therapeutics231 and other therapeutic nucleic acids. Different miRNA profiles are

found in PD and other neurodegenerative disorders, with increased expression of miR‐30a‐5p, miR‐153, and
miR‐4639‐5p being identified in PD compared with unaffected healthy individuals.232–234 Thus, it is likely

that, in the near future, the application of miRNA panels on body‐fluids such as a serum, saliva, and cere-

brospinal fluid may provide potential PD diagnostic biomarkers, and may also help stratify PD patients

according to the genetic and molecular pathways involved.

3.3.5 | Aptamers

Aptamers are single‐stranded DNA or RNA molecules that fold into defined three‐dimensional (3D) structures for

specific target binding (Figure 3viii). Aptamers are generally selected from large DNA or RNA oligonucleotide

libraries by systematic evolution of ligands by exponential enrichment.235 The specific 3D configuration of these

small molecules enables selected aptamers to bind to specific targets in a lock‐key manner.236 Thus, aptamers have

a wide range of potential applications including diagnostics, biomarker discovery, and targeted therapeutics where

aptamers can be divided into three groups: antagonist, agonist, and carrier for other therapeutic compounds.

Including the first FDA approved RNA aptamer drug Macugen®, all aptamers currently in clinical trials were

designed to function as antagonists.
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The first DNA aptamer selected to bind to α‐synuclein initiated the exploration of these compounds in PD

research, including investigating the pathogenesis and developing diagnostics and therapeutics for PD.237 Since

α‐synuclein oligomers are reported to be cytotoxic and are likely to play a major role in PD pathogenesis,238 DNA

aptamers were selected to bind to α‐synuclein oligomers specifically, rather than monomers or fibrils.239 In light of

additional evidence that antibodies targeting the C‐terminus of α‐synuclein reduced the extent of oligomerization

and ameliorated nigral dopaminergic neuron loss,240,241 two aptamers selected from 11, 019 sequences were

found to bind to α‐synuclein with high affinity.242 After entry into SK‐N‐SH cells and primary neurons, these

peptide‐conjugated aptamers inhibited α‐synuclein aggregation, promoted α‐synuclein clearance, protected against

α‐synuclein‐induced mitochondrial dysfunction, and rescued the cell defects.242

Aptamers have also been applied to monitor dopamine concentration, with “Apta‐sensors” including the

ultrasensitive and selective voltammetric apta‐sensor,243 and gold nanoparticle enhanced surface plasmon re-

sonance apta‐sensor being reported to quantitate dopamine levels down to 200 fM.244 This superb level of sen-

sitivity and specificity in detecting dopamine supports the development of apta‐sensors as tools for clinical

diagnostics and monitoring disease progression in clinical trials. Although aptamer therapies have some dis-

advantages, including rapid clearance, metabolic instability, and poor translation in in vivo studies,245,246 aptamers

are believed to have considerable potential as novel therapeutics with advanced biological functions, once aptamer

designs and modifications are optimized.

4 | CHALLENGES IN NUCLEIC ACID THERAPEUTICS FOR PD

The first and foremost obstacle for the application of nucleic acid therapeutics for PD and other CNS disorders is

the blood–brain barrier. Blood‐to‐brain transporters have been shown to facilitate transport of systemically‐
delivered ASOs across the blood–brain barrier, and consequently bring a certain level of therapeutic benefit in

animal models of Alzheimer's disease247 and stroke.248 However, the amount of ASOs that reached the brain in

these studies was less than 1% of the dose administered intravenously.249 Several strategies have been in-

vestigated to address the blood–brain barrier and increase drug delivery into the CNS, including direct CNS

administration and the vehicle cargo drug delivery system, as illustrated in Figure 4.

ICV injection/infusion is considered to be a safe and long‐term route for CNS drug administration.251 ASOs

composed of 2‐OMe modified bases on a phosphorothioate backbone were shown to be evenly distributed in the

parenchyma surrounding the ventricles in the mouse brain within a few hours after ICV infusion.252 These ASOs

were taken up preferentially by neurons in key brain structures such as the cerebellum, striatum, hippocampus, and

dentate gyrus.252 Although the pharmacokinetics and distribution pattern of other chemical modifications might be

slightly different, ICV‐delivered ASOs using several different chemistries are generally showing therapeutic po-

tential in preclinical studies. Continuous ICV infusion of a 2‐MOE phosphorothioate ASO was reported to mediate

a sustained reversal of the Huntington's disease phenotype.253 Furthermore, persisting allele‐specific mutant HTT

gene silencing was achieved by ICV injection of constrained ethyl (cEt) ASOs.254 However, the chance of adverse

events, including infection and tissue damage induced by ICV cannot be ignored. The possibility of activation of the

innate immune system, as was detected after ICV administration of 2‐OMe ASOs in mice,255 is another factor that

may eventually restrict the long term, repeated ICV ASO delivery in clinical studies.

Since the clinical trial (NCT01041222) using intrathecal delivery of an ASO to treat familial amyotrophic

lateral sclerosis caused by SOD1 mutations,256 most of the clinical trials for CNS indications are using intrathecal

delivery.130 Intrathecal injection of Nusinersen to infants and children with spinal muscular dystrophy was shown

to be safe and tolerable.257 However, as ICV and intrathecal drug delivery are both relatively invasive procedures,

intranasal administration is an alternative approach that could deliver nucleic acid compounds to the CNS through

endocytosis across the permeable olfactory epithelium.250,258 Intranasally administered sertraline‐conjugated
siRNA was internalized into 5‐hydroxytryptamine neurons and reduced serotonin transporter expression in raphe
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nuclei, evoking fast antidepressant‐like responses in mice.258 In addition, intranasal delivery of LNA antagomirs

targeting miR‐210 decreased brain miR‐210 levels and improved neurological function later in life, which outcomes

were similar to those resulting from ICV‐mediated ASO treatment in a neonatal rat model.259

In addition to selecting optimal delivery routes to achieve expected CNS therapeutic effects, multiple novel

vehicle cargo drug delivery systems are being developed. One promising delivery approach is to conjugate cell‐
penetrating peptides that penetrate the blood–brain barrier to the ASOs, thereby facilitating the uptake and

actions of nucleic acid compounds. A feature of many of these peptides is the presence of tracts of arginine

residues interrupted by short hydrophobic sequences.260 PNA/PMO internalization peptide 6a (Pip6a), derived

from the Penetratin peptide, consists of a central hydrophobic core flanked on either side by arginine‐rich se-

quences.261 Pip6a‐PMO was shown to not only be taken up by muscle cells through endocytosis in vitro,262 but

also increased SMN expression in CNS tissues and resulted in profound phenotypic correction in SMA mice.263

However, toxic effects, especially nephrotoxicity, remains as the main challenge to this category of peptide

reaching clinical application.264

Exosomes are endocytic nano‐vesicles that could enter the CNS through transcytosis or internalization by

endothelial cells265 and thus have been designed as drug vehicles.266 Several preclinical studies are using exosomes

to deliver siRNAs for neurological diseases, including Huntington's disease267 and glioblastoma multiforme with

few toxic effects or immunogenicity observed after repeated doses.268,269 In one recent study, RVG peptide was

F IGURE 4 Strategies for the delivery of nucleic acid drugs across the blood–brain barrier into the central nervous
system. The blood–brain barrier is formed by the cerebral endothelial cells with tight junctions at their margins,
pericytes, basal lamina, and astrocytic end‐feet. Intracerebroventricular and intrathecal injection or infusion can directly
administer compounds, including nucleic acids, into the central nervous system. Through intranasal administration,
nucleic acid drugs can enter the central nervous system through the nose‐to‐brain route, mainly mediated by the
olfactory and trigeminal nerve pathways.250 Cell‐penetrating peptide‐conjugated nucleic acids are taken up through
macropinocytosis (i) and endocytosis (ii) by the endothelial cells. The exosome system delivers nucleic acids across the
blood–brain barrier mainly through receptor‐mediated endocytosis (iv), lipid‐raft mediated endocytosis (v), and
macropinocytosis (iii). Receptor‐mediated endocytosis also contributes to the uptake of transferrin nanoparticles (vi)
and spherical nucleic acids (vii) [Color figure can be viewed at wileyonlinelibrary.com]
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fused to lysosome‐associated membrane glycoprotein (Lamp2b) on exosomes, and the RVG‐Lamp2b modified

exosome was loaded with miR‐124 mimics. Systemic administration of the RVG‐Lamp2b‐miR‐124 localized to the

infarct region in a focal cerebral ischemia model and ameliorated the ischemic injury by promoting neurogen-

esis.269 Exosomes as the carriers for nucleic acid compounds are biocompatible, immunologically inert, and can

efficiently reach the target.270 However, efficiently and reliably isolating and characterizing exosomes is one of the

obstacles that need to be addressed for future clinical applications.

Expanding research on the blood–brain barrier has changed the view on the blood–brain interface and

transformed strategies to overcome its impermeability.271 Blood–brain barrier‐penetrating peptides bearing the

anti‐transferrin receptor antibody272 and transferrin‐containing nanoparticles273 promote the entry of therapeutic

cargos into the CNS by absorptive transcytosis. Other nanoparticle‐nucleic acid delivery systems, such as spherical

nucleic acids (gold nanoparticles)274 and ASO‐liquid nanocapsules275 are also being investigated to deliver nucleic

acids across the blood–brain barrier (Figure 4). Spherical nucleic acids are generally composed of gold nano-

particles at the core and a dense layer of thiol‐modified oligonucleotide in the shell, which render spherical nucleic

acids more resistant to degradation compared to linear nucleic acids.276 More importantly, spherical nucleic acids

can be rapidly internalized by any cell type and readily cross the blood–brain barrier when administered sys-

temically.277 This nanoparticle system has been given approval by the FDA for delivery of NU‐0129, a spherical

nucleic acid gold nanoparticle containing siRNAs targeting the Bcl‐2‐like protein, for an early‐stage clinical trial in

glioblastoma multiforme. In its Phase 0 first‐in‐human trial (NCT03020017), initial evidence of crossing

blood–brain barrier, with no unexpected adverse effects, further validated this approach for CNS drug delivery.278

These studies demonstrate the potential of vehicle cargo delivery systems to enhance the delivery of nucleic

acid oligomers across the blood–brain barrier to their targets in the CNS. However, many outstanding challenges

remain, particularly relating to the stability of the complex compound, possible adverse effects from off‐target
distribution of peptides, toxicity, and efficacy of nanoparticles need to be addressed before these complex com-

pounds can progress to clinical trials. Alternatively, physical methods such as MRI‐guided focused ultrasound‐
induced blood–brain barrier opening has been approved as a novel means for CNS drug delivery.279 Since en-

hanced delivery of ASOs to the target brain region was achieved by focused ultrasound,280 many clinical trials are

now applying MRI‐guided focused ultrasound, and showing safe and reversible opening of the blood–brain

barrier.281

5 | CONCLUSIONS AND OUTLOOK

This review describes advances in the understanding of the complex molecular pathogenesis of PD, and the

proteins and genes that play key roles in familial PD, as well as the more prevalent sporadic form of the disease. It

also draws attention to the importance of biomarker‐driven subtyping of PD as a basis for the application of a

precision‐medicine approach to the development of novel therapeutic strategies, including nucleic acid‐based
therapeutics. Such an approach is an intuitive and logical way of addressing the problem of heterogeneity in PD

and of identifying genetic‐molecular mechanisms that may be more specific to certain disease subtypes and could

be targets for novel disease‐modifying therapies.

Nucleic acid therapeutics have demonstrated great diversity and potential for the treatment of various neu-

rological disorders and have several important advantages, including high target specificity, stability, and low

toxicity and immunogenicity. Other crucial advantages of nucleic acid therapeutics over other small molecule

drugs, include the ease and predictable chemical synthesis of these compounds, efficient drug‐discovery process,

and similarities in toxicity and pharmacokinetic profiling.282 Within 10 months of identification of the genetic cause

in a patient with Batten's disease, Milasen®, a splice‐switching oligomer received FDA approval, demonstrating the

potential for rapid design and development of nucleic acid therapeutics. Although Milasen® is a patient‐customized

drug development case,14 it could serve as an exemplar to open up new avenues for clinical trials and regulation of

LI ET AL. | 2669



individualized medicines for rare diseases.283 The potential of nucleic acid therapeutics in PD is substantial, and

studies to date have already shown that they have the ability to modify the expression of key PD proteins such as

α‐synuclein and its specific isoforms. Although environmental factors such as pesticides or metals may participate

in α‐synuclein aggregation, or the gastrointestinal microbiome could affect PD drug metabolism or clinical phe-

notypes, nucleic acid‐based therapeutics represent potentially new pathways for disease‐modifying therapies for

PD that could be applicable to both familial and sporadic forms of the disease, and have enormous potential,

warranting further investigation and development.
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