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Abstract
Population genetics models predict that the X (or Z) chromosome will evolve at faster rates

than the autosomes in XY (or ZW) systems. Studies of molecular evolution using large data-

sets in multiple species have provided evidence supporting this faster-X effect in protein-

coding sequences and, more recently, in transcriptomes. However, X-linked and autosomal

genes differ significantly in important properties besides hemizygosity in males, including

gene expression levels, tissue specificity in gene expression, and the number of interac-

tions in which they are involved (i.e., protein-protein or DNA-protein interactions). Most im-

portant, these properties are known to correlate with rates of evolution, which raises the

question of whether differences between the X chromosome and autosomes in gene prop-

erties, rather than hemizygosity, are sufficient to explain faster-X evolution. Here I investi-

gate this possibility using whole genome sequences and transcriptomes of Drosophila
yakuba and D. santomea and show that this is not the case. Additional factors are needed to

account for faster-X evolution of both gene expression and protein-coding sequences be-

yond differences in gene properties, likely a higher incidence of positive selection in combi-

nation with the accumulation of weakly deleterious mutations.

Introduction
Population genetics theory predicts that under certain conditions the X chromosome will
evolve at faster rates than the autosomes in XY (or ZW) systems, an effect known as faster-X
[1,2]. In a population of diploids, newly arisen autosomal mutations are mostly found in het-
erozygotes and, if recessive for fitness, their effects are masked by the ancestral variants. In con-
trast, if these mutations arise on the X chromosome and are beneficial, natural selection can
drive them to fixation more efficiently because their fitness effects will be fully exposed in
hemizygous males. As a result, the X chromosome is expected to accumulate adaptive
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mutations at a faster rate than the autosomes. This difference is expected to be more extreme
for mutations that affect only males [3].

Yet in XY (or ZW) systems faster-X evolution can also result from new mutations that are
weakly deleterious [1,2,4,5]. If a population contains equal numbers of breeding females and
males, the effective population size of the X chromosome (NeX) is expected to be ¾ the effective
population size of the autosomes (NeA) (all else being equal). This reduced NeX results in in-
creased genetic drift and, as a consequence, weakly deleterious mutations that are partially
dominant attain higher frequencies in the population and reach fixation more often when
X-linked than when autosomal, thus producing faster-X. Note that strongly deleterious muta-
tions are eliminated from the population by natural selection before they can reach fixation re-
gardless of whether they are X-linked or autosomal.

The likelihood of faster-X being driven by either beneficial or weakly deleterious mutations
is strongly influenced by the NeX to NeA ratio [4,5]. Taxa with small NeX/NeA, such as several
species of birds, are expected to be more susceptible to faster-X associated with the fixation of
weakly deleterious mutations [6], although positive selection has also been invoked [7,8]. Cases
where faster-X is due to weakly deleterious mutations should be also accompanied by a reduc-
tion of neutral polymorphism on the X chromosome due to the smaller NeX. On the other
hand, the observation of faster-X in species with NeX/NeA close to, or slightly above, 1 is more
easily explained by a higher incidence of adaptive evolution on the X chromosome [4,5]. The
NeX to NeA ratio is influenced by multiple factors besides sex ratios, including mating system,
differences between the two sexes in the strength of sexual selection, or disparities in recombi-
nation rates and linkage effects between the X chromosome and autosomes [4,9–13].

Regardless of the evolutionary forces underlying faster-X (selection on beneficial or weakly
deleterious mutations), the evidence for this effect was initially controversial. In Drosophila
early attempts to evaluate the faster-X evolution of protein-coding sequences produced incon-
sistent results [14–19] but more recent studies did find clear statistical support [20–31]. Impor-
tantly the strongest evidence for faster-X is observed in male-biased genes (i.e., genes expressed
at higher levels in males than in females, MBGs) [20,26,29]. To date, accelerated rates of evolu-
tion for X-linked proteins have been documented in a wide range of taxa, including primates
[32–36], mice [37,38], birds [6–8], snakes [39], worms [40], silkmoths [41] and aphids [42],
which are an X0 system. Faster-X evolution of gene expression has been shown in primates
[35] and more recently in Drosophila [43–45].

One limitation of all studies of faster-X is that X-linked and autosomal genes may not be di-
rectly comparable [46,47]. MBGs have been proposed to be underrepresented on the Drosophi-
la X chromosome [48–50]. Recent studies show that the lack of dosage compensation in the
Drosophilamale germline is an important factor explaining the apparent deficit of X-linked
MBGs [51,52]. Levels of gene expression and tissue specificity are significantly different in
X-linked than in autosomal genes of D. melanogaster [47,52–56]. Transcriptional networks
also show unique characteristics for genes on the X chromosome [57,58]. Most important, vari-
ation in these properties correlates significantly with rates of evolution [46,59–65].

In a comprehensive study of the 12 Drosophila genomes, Larracuente et al. (2008) showed
that gene expression levels were negatively correlated with evolutionary rate, and that tissue
specificity in gene expression was independently positively correlated with the rate of evolution
[59]. Protein interactions and protein divergence also showed a negative association in Dro-
sophila and yeast [59,64,65]. These observations raise the question of whether differences be-
tween X-linked and autosomal genes in expression properties (i.e., levels and tissue specificity)
and protein interactions, rather than hemizygosity, could entirely explain faster-X. To evaluate
this possibility, I examined genomewide gene expression divergence between Drosophila
yakuba and D. santomea and whole-genome patterns of protein-coding sequence divergence
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based on a newly obtained D. santomea genome sequence. D. santomea started diverging al-
lopatrically from its common ancestor with D. yakuba ~400,000 years ago [66,67] on the Afri-
can island of São Tomé where today the two species form a hybrid zone [68]. I show that gene
expression properties are good predictors of both gene expression and protein-coding sequence
divergence between species, but they are not sufficient to explain faster-X for MBGs. Addition-
al evolutionary factors are thus necessary to account for the rapid evolution of MBGs on the X
chromosome in this system.

Materials and Methods

Generating a D. santomea genome sequence
To generate a high quality, high coverage sequence of the D. santomea genome, I obtained Illu-
mina reads from 5 different strains (STO.4, STO.18, QUIJA 650.1, COST1235.1 and
CAR1600.3; details on the strains are reported in [67]) according to the manufacturer guide-
lines (“Preparing Samples for Sequencing Genomic DNA”, Part # 1003806 Rev. B, Illumina,
San Diego, CA). High molecular weight DNA was isolated from 30 flies following protocol 47
in Ashburner (1989) with minor modifications [69]. Cluster generation and sequencing (75 to
101-bp single-end reads) were carried out in Illumina GAII/HiSeq2000 instruments at the
Iowa State DNA Facility (Iowa State University, Ames, IA). Trimming and filtering were done
using SAMTools v1.4 [70] and custom scripts.

To obtain a D. santomea syntenic sequence, 208.1 million filtered reads were aligned to the
D. yakuba genome project sequence (dyak_r1.3_FB2011_08; http://flybase.org/) [71] using
BWA [72]. SAMTools was used to generate pileup and fasta files for each chromosome arm
from BAM files. Only nucleotides with coverage greater than 7× and phred-scaled base consen-
sus (or variant) quality greater than Q = 40 were included in the final D. santomea synthetic
and syntenic sequence. The average read depth of this high quality sequence for D. santomea is
145.9× with an average phred-scaled quality of Q = 242, covering 91.8% of the D. yakuba refer-
ence genome [71]. To extract the D. santomea coding sequences of all genes, I used Galaxy
[73–75] and the exon-intron annotation of D. yakuba (dyak_r1.3_FB2011_08; http://flybase.
org/). All D. santomea reads have been deposited in the NCBI Short Read Archive (SRA) Bio-
Project SRP049565.

Evolutionary Analysis
To estimate gene expression levels, I used data on transcript abundance from Llopart (2012)
[43]. Briefly, gene expression was measured in 1-day old D. yakuba and D. santomea adult
males using whole-genome, custom-designed D. yakuba arrays (11,530 genes analyzed; 60-mer
probes; 10 probes/gene). For any given gene, expression level was calculated as the average sig-
nal (in Log2) of the two species. Gene expression divergence between D. yakuba and D. santo-
mea and gene expression polymorphism were obtained from [43]. To gauge tissue specificity
in gene expression, I calculated the tissue specificity index (τ), which takes into account the
number of tissues in which a gene is expressed and the relative expression levels in each tissue
[76]. Genes expressed in many different tissues tend to show low τ values, and genes expressed
in a narrow number of tissues, high τ values. Information on gene expression for different tis-
sues was inferred from the analysis of all 25 tissues included in D. melanogaster FlyAtlas
(http://www.flyatlas.org/) [77]. These tissues are brain, head, eye, thoracicoabdominal gangli-
on, salivary gland, crop, midgut, tubule, hindgut, heart, fat body, ovary, testis, male accessory
glands, virgin spermatheca, mated spermatheca, adult carcass, larval CNS, larval salivary gland,
larval midgut, larval tubule, larval hindgut, larval fat body, larval trachea and larval carcass. To
determine the number of physical interactions, I used information derived from the strict gene
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interaction network of D. melanogaster proposed by Hansen and Kulathinal (2013) [58]. This
is an empirically driven network of physical interactions based on data derived from six experi-
ments, including yeast-two-hybrid and transcription-factor CHIP-seq analyses from the mod-
ENCODE project; the network contains 12,749 genes and 486,138 interactions [58].

To estimate protein-coding sequence divergence, I calculated the number of nonsynon-
ymous (dN) and synonymous (dS) substitutions per site between D. yakuba and D. santomea
using the codeml program implemented in PAML v4.5 [78,79]. The equilibrium codon fre-
quencies were calculated from average nucleotide frequencies at third codon positions (codon
substitution model F3×4). A single dN/dS ratio (ω) was assumed for all lineages and across sites
(Model 0). There were 16,082 annotated genes in the D. yakuba reference sequence
(dyak_r1.3_FB2011_08; http://flybase.org/) [71] and, after excluding genes located on either
heterochromatic regions or in unknown chromosomal locations, I applied codeml to 14,682
genes. In 316 genes I found stop codons in the D. santomea sequence, which are likely due to
either inaccuracy in the current annotation of D. yakuba, sequencing errors, or differences be-
tween species in protein length or exon-intron structure. There were three D. yakuba genes
with no orthologous sequences recovered in D. santomea. Finally I also excluded from the anal-
ysis 350 genes with 0 synonymous changes between D. yakuba and D. santomea and 354 genes
with ω� 9, as they tend to generate unreliable estimates of divergence. I obtained dN, dS and ω
in two sets of genes. The first set contains all 13,659 genes sequenced in both species, without
stop codons in D. yakuba and D. santomea, and with reliable estimates of divergence. The sec-
ond set of genes analyzed contains the 9,203 out of the 13,659 genes for which there was infor-
mation on gene expression level [43], tissue specificity in gene expression, and the number of
protein interactions.

Results and Discussion

Faster-X evolution of male-biased gene expression
A previous study reported faster-X evolution of male-biased gene expression in D. yakuba and
D. santomea [43]. The same significant trend is detected in the current dataset of 9,697 genes
with known gene expression levels, tissue specificity, and the number of protein interactions
(1,537 X-linked and 8,160 autosomal) (Mann-Whitney U test, P = 2.5×10-8; see S1 Fig). To de-
termine whether these properties are significantly associated with gene expression divergence
in D. yakuba and D. santomea, I examined their distributions across the genome. As expected,
expression levels and the number of protein interactions are negatively correlated with gene ex-
pression divergence (Spearman’s rank correlation ρ = -0.25 for levels and ρ = -0.19 for protein
interactions, both P< 1×10-6) while tissue specificity shows a positive correlation (Spearman’s
rank correlation ρ = 0.23, P< 1×10-6). Similar associations have been reported in other Dro-
sophila species [59 and references therein,64,65]. Most important, X-linked and autosomal
genes differ in these properties.

X-linked genes are expressed at significantly lower levels in adult males, show less tissue
specificity (i.e., expressed in more tissues), and are involved in more protein interactions than
autosomal genes (Fig. 1). Based on these differences and genomewide correlations, tissue speci-
ficity and protein interactions may be in fact masking faster-X in this dataset. In contrast,
lower expression in X-linked than in autosomal genes could potentially explain faster-X evolu-
tion. Altogether these results underline the need to control for differences between the X chro-
mosome and autosomes in expression properties (i.e., levels and tissue specificity) and protein
interactions when assessing faster-X.

To evaluate whether the rapid evolution of X-linked male-biased gene expression is detect-
able after controlling for differences between the X chromosome and autosomes in levels of
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gene expression, tissue specificity and the number of protein interactions, I performed multi-
ple-regression analysis (Table 1). Residuals of gene expression divergence are significantly
greater for X-linked than for autosomal MBGs; a pattern not detected in nonsex-biased genes
(NBGs) suggesting a faster-X effect beyond differences in gene properties (Mann-Whitney U
test, P = 0.002 for MBGs and Mann-Whitney U test, P = 0.08 for NBGs). In addition, I carried
out an analysis that is free of the assumptions associated with standard linear regression models
and enables comparisons of gene expression divergence between subsets of genes with similar
expression properties and number of protein interactions. Expression levels, tissue specificity,
and the number of protein interactions were each subdivided into 10 equal-size categories and
all MBGs were assigned to their corresponding combined (3-dimensions) category. For each
category, I then obtained mean expression divergence for X-linked and autosomal MBGs sepa-
rately. Finally, I applied a nonparametric test to determine whether there was an

Fig 1. Comparisons of gene expression levels, tissue specificity in gene expression, and number of
protein interactions between X-linked (X) and autosomal (A) genes. The horizontal line inside each
box indicates the median. The length of the box and the whiskers represent 50% and 90% confidence
intervals, respectively. Asterisks indicate statistically significant differences (Mann-Whitney U test;
P< 1×10-12 for expression levels, P = 1.6×10-4 for tissue specificity, and P = 3×10-4 for protein interactions).

doi:10.1371/journal.pone.0116829.g001

Table 1. Parameters of multiple-regression models and partial correlations for gene expression divergence.

R (P) b*Lev (P) b*Spe (P) b*Int (P)

MBGs 0.33 (<1×10-12) -0.30 (<1×10-12) 0.07 (0.003) -0.04 (0.043)

NBGs 0.35 (<1×10-12) -0.25 (<1×10-12) 0.17 (<1×10-12) -0.03 (0.032)

All 0.39 (<1×10-12) -0.28 (<1×10-12) 0.19 (<1×10-12) -0.027 (0.004)

Note: R, correlation coefficient; P, Probability; Lev, average gene expression levels; Spe, tissue specificity in gene expression estimated according to

Yanai et al. (2005) [76]; Int, protein interactions identified from Hansen and Kulathinal (2012) [58]; MBGs, male-biased genes; NBGs, nonsex-biased

genes; All, all genes.

doi:10.1371/journal.pone.0116829.t001
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overrepresentation of categories in which X-linked MBGs show higher gene expression diver-
gence than autosomal MBGs. (Only categories that contained both X-linked and autosomal
MBGs were considered.) This analysis shows that X-linked MBGs have consistently higher
gene expression divergence than autosomal MBGs (Wilcoxon matched pairs test, T = 4772.0,
P = 0.0032) when sharing expression properties and number of protein interactions. Results
from both types of analyses imply that the observed excess of gene expression divergence in
MBGs on the X chromosome remains significant after taking into account differences among
genes in properties. Note that while estimates of expression levels are based directly on tran-
script abundance in D. yakuba and D. santomea, tissue specificity and protein interactions are
inferred from the close relative D. melanogaster. However potential errors in this inference
could not explain our results, as they are not expected to impact differentially X-linked and
autosomal genes.

The excess of gene expression divergence for X-linked MBGs could be the result of either
positive selection or increased genetic drift associated with NeX< NeA and a higher rate of accu-
mulation of weakly deleterious mutations. The analysis of silent nucleotide polymorphism in
26 nuclear regions sequenced in D. yakuba and D. santomea indicated that the NeX to NeA ratio
is ~0.63 [67], which opens the possibility that faster-X evolution of gene expression could be
the result of increased genetic drift on the X chromosome. To test this possibility, I investigated
gene expression polymorphism in both MBGs and NBGs on the X chromosome [43]. X-linked
NBGs are more polymorphic than X-linked MBGs (median gene expression polymorphism is
0.21 for NBGs and 0.16 for MBGs; Mann-Whitney U test, P = 0.0002), even though the latter
show increased tissue specificity and are involved in fewer protein interactions (Fig. 2). Indeed
this difference remains significant after correcting for variation in expression properties and
protein interactions on the X chromosome using multiple-regression analysis (Mann-Whitney
U test, P = 7.3×10-6 in analysis of residuals; Table 2). Although the precise relationship between
nucleotide changes and variation in gene expression is not yet fully understood, the contrasting
patterns of gene expression divergence and polymorphism in MBGs and NBGs suggest that a

Fig 2. Comparisons of gene expression levels, tissue specificity in gene expression, and number of
protein interactions between X-linked MBGs (blue) and X-linked NBGs (yellow). Asterisks indicate
statistically significant differences (Mann-Whitney U test; P< 1×10-32 for tissue specificity and P = 7.3×10-29

for protein interactions). (See Fig. 1 legend for explanation of box plots.)

doi:10.1371/journal.pone.0116829.g002
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fraction of beneficial mutations contributes to faster-X evolution of male-biased gene expres-
sion in D. yakuba and D. santomea (Fig. 3). However, weakly deleterious mutations may still
play an additional role in faster-X, as a higher incidence of positive selection on the X chromo-
some than on autosomes is expected to reduce NeX due to linkage effects [80–82] and result in
an associated increased fixation of weakly deleterious mutations.

Faster-X evolution of protein-coding sequences in male-biased genes
I obtained a high-coverage, high-quality sequence of the D. santomea genome that covers
>97% of the coding sites annotated in D. yakuba (see Materials and Methods for details). To
determine whether there is faster-X evolution of protein-coding sequences in D. yakuba and D.
santomea, I examined dN and dS in 9,203 genes with information on expression properties and
protein interactions (1,480 X-linked and 7,723 autosomal) [43,77]. When all genes are analyzed
together, there is no evidence for faster-X in comparisons of dN (median dN = 0.003 for X-
linked genes and 0.003 for autosomal genes; Mann-Whitney U test, P = 0.35; Fig. 4) or dN/dS
(ω) (median ω = 0.074 for X-linked genes and 0.070 for autosomal genes; Mann-Whitney U

Table 2. Parameters of multiple-regression models and partial correlations for gene expression
polymorphism.

R (P) b*Lev (P) b*Spe (P) b*Int (P)

X 0.38 (<1×10-12) -0.37 (<1×10-12) 0.042 (0.094) -0.001 (0.97)

A 0.40 (<1×10-12) -0.32 (<1×10-12) 0.16 (<1×10-12) -0.02 (0.1)

Note: R, correlation coefficient; P, Probability; Lev, average gene expression levels; Spe, tissue specificity

in gene expression estimated following Yanai et al. (2005) [76]; Int, protein interactions identified from

Hansen and Kulathinal (2012) [58]; X, X-linked genes; A, autosomal genes.

doi:10.1371/journal.pone.0116829.t002

Fig 3. Multiple-regression residuals of gene expression divergence and polymorphism (mean) for X-
linkedmale-biased genes (MBGs) (blue diamonds), autosomal MBGs (blue circles), X-linked nonsex-
biased genes (NBGs) (yellow diamonds), and autosomal NBGs (yellow circles).Grey lines represent
90% confidence limits of the residual means.

doi:10.1371/journal.pone.0116829.g003
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test, P = 0.63). To confirm that these trends are representative of whole genome patterns, I also
analyzed a larger set of 13,659 genes sequenced in both species (2,335 X-linked and 11,424 au-
tosomal; see Materials and Methods for details), which produced the same non-significant re-
sults for dN (median dN = 0.0039 for X-linked genes and 0.0038 for autosomal genes; Mann-
Whitney U test, P = 0.76) and marginally significant results for ω (median ω = 0.092 for X-
linked genes and 0.086 for autosomal genes; Mann-Whitney U test, P = 0.026). The only con-
sistent difference between X-linked and autosomal genes is detected in dS, which is significantly
smaller on the X chromosome in both gene sets (9,203 genes, median dS = 0.043 for X-linked
genes and 0.045 for autosomal genes; Mann-Whitney U test, P = 1.3×10-4; 13,659 genes, medi-
an dS = 0.041 for X-linked genes and 0.043 for autosomal genes; Mann-Whitney U test, P<

2.8×10-8). This observation is consistent with previous findings of stronger codon bias on the X
chromosome in other Drosophila species, reflecting higher intensity of natural selection for
preferred synonymous variants [13,25,28,83–86].

Faster-X evolution is expected to be strongest in MBGs. Tests to the faster-X hypothesis are
thus optimally performed when analyzing MBGs and NBGs separately. Two trends became ap-
parent from this analysis. First, MBGs show strong evidence for faster-X evolution at nonsy-
nonymous sites (1,799 genes; median dN = 0.009 for X-linked genes and 0.006 for autosomal

Fig 4. Number of nonsynonymous changes per site (dN) betweenD. yakuba andD. santomea in 9,203
genes (green), male-biased genes (blue, MBGs) and nonsex-biased genes (yellow, NBGs). X, X-linked
genes; A, autosomal genes. Asterisks indicate statistically significant differences in dN (Mann-Whitney U test,
P = 1×10-6). (See Fig. 1 legend for explanation of box plots.).

doi:10.1371/journal.pone.0116829.g004
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genes; Mann-Whitney U test, P = 1×10-6) but NBGs do not (5,684 genes; median dN = 0.003
for X-linked genes and 0.003 for autosomal genes; Mann-WhitneyU test, P = 0.5; Fig. 4). Similar
patterns are detected for ω (ω = 0.22 vs. ω = 0.11; Mann-Whitney U test, P = 2.5×10-8 for MBGs
and ω = 0.07 vs. ω = 0.06; Mann-WhitneyU test, P = 0.053 for NBGs). Second, MBGs appear to
evolve significantly faster than NBGs across the genome (median dN = 0.006 for MBGs and
0.003 for NBGs; Mann-WhitneyU test, P< 1×10-32), on the X chromosome (median dN = 0.009
for MBGs and 0.003 for NBGs; Mann-Whitney U test, P = 2.6×10-28) and on autosomes (median
dN = 0.006 for MBGs and 0.003 for NBGs; Mann-Whitney U test, P< 1×10-32). All together
these results support the idea that MBGs and NBGs evolve under different selective regimes, pos-
sibly connected with differences in function [46,87–92], pleiotropic effects, and/or differences in
expression properties [46,47] and protein interactions [65].

Genomewide correlations of gene expression levels, tissue specificity, and the number of pro-
tein interactions with dN, dS and ω, open the possibility that faster-X could be the by-product of
differences in these properties between X-linked and autosomal genes (Table 3). To take into ac-
count this possibility, I applied a multiple-regression analysis (Table 4). Residuals of dN are sig-
nificantly greater for X-linked than for autosomal MBGs (Mann-Whitney U test, P = 6×10-5)
but this difference is not observed in NBGs (Mann-Whitney U test, P = 0.48 for NBGs). In
addition, the comparison of divergence between genes with similar expression properties and
number of protein interactions using a nonparametric test indicates that MBGs on the X chro-
mosome show consistently higher dN than autosomal MBGs (Wilcoxon matched pairs test,
T = 4615.5, P = 0.014; see above). Both results imply that faster-X protein evolution in MBGs of
D. yakuba andD. santomea remains detectable even after correcting for differences between the
X chromosome and autosomes in expression levels, tissue specificity, and number of
protein interactions.

Although expression levels, tissue specificity, and the number of protein interactions are im-
portant to our understanding of X-linked divergence of both gene expression and protein se-
quences in the D. yakuba—D. santomea system, additional factors are necessary to explain
faster-X evolution. The hemizygosity of the X chromosome in males has been often used as the
default explanation [1,2]. Faster-male evolution driven by positive selection [93,94] could

Table 3. Spearman’s rank correlations (ρ) of dN, dS and ω with gene expression levels, tissue specificity, and protein interactions.

ρ (P)

dN dS ω

Levels

MBGs -0.28 (<0.001) -0.094 (<0.001) -0.23 (<0.001)

NBGs -0.23 (<0.001) -0.13 (<0.001) -0.17 (<0.001)

All -0.24 (<0.001) -0.12 (<0.001) -0.19 (<0.001)

Specificity

MBGs 0.30 (<0.001) 0.10 (<0.001) 0.24 (<0.001)

NBGs 0.22 (<0.001) 0.02 (0.13) 0.21 (<0.001)

All 0.33 (<0.001) 0.057 (<0.001) 0.30 (<0.001)

Interactions

MBGs- -0.24 (<0.001) -0.045 (0.06) -0.21 (<0.001)

NBGs -0.23 (<0.001) -0.07 (<0.001) -0.19 (<0.001)

All -0.31 (<0.001) -0.07 (<0.001) -0.27 (<0.001)

Note: P, Probability; MBGs, 1,799 male-biased genes; NBGs, 5,684 nonsex-biased genes; All, 9,203 genes.

doi:10.1371/journal.pone.0116829.t003
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additionally facilitate faster-X for MBGs in systems where males are the heterogametic sex
[95]. Other differences between the X chromosome and autosomes such as recombination
rates could also be contributing factors to faster-X [19]. Because Drosophilamales lack crossing
over, the X chromosome is more exposed to recombination than the autosomes, as it spends
2/3 of its time in females [9,11,19]. The difference is particularly exaggerated in D. melanoga-
ster, in which the X chromosome also shows an increased rate of recombination per female
meiosis relative to that of autosomes [96] and there are abundant autosomal polymorphic in-
versions [31]. As a result of higher recombination, the efficacy of selection is expected to be
higher on the X chromosome than on autosomes, which could potentially lead to a higher inci-
dence of adaptive evolution on the X chromosome [13,21].

Conclusions
I report here parallel trends of faster-X evolution of gene expression and protein-coding se-
quences in D. yakuba and D. santomea. The increased divergence is specific to X-linked MBGs
and not detected in NBGs. Multiple-regression and nonparametric analyses indicate that
faster-X is not the by-product of differences between X-linked and autosomal genes in proper-
ties known to correlate with rates of evolution, such as gene expression levels, tissue specificity
in expression, and the number of protein interactions. Because MBGs are significantly less
polymorphic for gene expression than NBGs on the X chromosome, the observed excess of
gene expression divergence is consistent with a higher incidence of positive selection, possibly
associated with the hemizygosity of the X chromosome in males. Besides male heterogamety,
other differences between X-linked and autosomal genes, such as recombination rates, could
also contribute to faster-X. Note that an additional contribution of weakly deleterious muta-
tions to faster-X cannot be ruled out, as recurrent adaptive evolution on the X chromosome
will inevitably reduce NeX due to linkage effects, which in time will result in an increased fixa-
tion of weakly deleterious mutations. It is thus possible that the excess of X-linked divergence
is the compound effect of both beneficial and weakly deleterious mutations.

Table 4. Parameters of multiple-regression models and partial correlations for rates of protein-coding sequence evolution.

R (P) b*Lev (P) b*Spe (P) b*Int (P)

ω

MBG 0.21 (<1×10-12) -0.11 (<5×10-6) 0.14 (<7×10-7) -0.03 (ns)

NBG 0.17 (<1×10-12) -0.07 (<1×10-12) 0.13 (<1×10-12) -0.002 (ns)

All 0.26 (<1×10-12) -0.06 (<3.7×10-9) 0.23 (<1×10-12) -0.009 (ns)

dN

MBG 0.30 (<1×10-12) -0.16 (<1×10-12) 0.21 (<1×10-12) -0.03 (ns)

NBG 0.26 (<1×10-12) -0.13 (<1×10-12) 0.18 (<1×10-12) -0.03 (0.012)

All 0.36 (<1×10-12) -0.10 (<1×10-12) 0.31 (<1×10-12) -0.029 (0.0027)

dS

MBG 0.13 (<1×10-12) -0.05 (0.03) 0.10 (<9×10-5) 0.001 (ns)

NBG 0.12 (<1×10-12) -0.12 (<1×10-12) -0.04 (0.032) -0.03 (0.011)

All 0.11 (0.026) -0.10 (<1×10-12) 0.02 (ns) -0.03 (0.008)

Note: R, correlation coefficient; P, Probability; Lev, average gene expression levels; Spe, tissue specificity in gene expression estimated following Yanai

et al. (2005) [76]; Int, protein interactions identified from Hansen and Kulathinal (2012) [58]; MBG, male-biased genes; NBGs, nonsex-biased genes; All,

all genes; ns, P > 0.05.

doi:10.1371/journal.pone.0116829.t004
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Supporting Information
S1 Fig. Gene expression divergence between D. yakuba and D. santomea. Gene expression
divergence (De) is shown for all genes analyzed (green, All), male-biased genes (blue, MBGs),
and nonsex-biased genes (yellow, NBGs). X, X-linked genes; A, autosomal genes. The heavy
horizontal line in each box indicates the median. The length of the box and the whiskers repre-
sent 50% and 90% confidence intervals, respectively. Asterisks indicate significant differences
(Mann-Whitney U test; ��, P< 0.001).
(PDF)
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