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It is crucial to our survival that we can rapidly predict, detect, 
and respond to potential threats in our environment. As highly 
visual creatures, we have developed sophisticated neural net-
works for processing visual information about the world around 
us. Both the visual system and the amygdala are arguably the 
most thoroughly studied components of the brain and yet there 
is considerable controversy over how these two systems interact 
to rapidly respond to signs of threat. Specifically, there has been 
extensive debate over whether the amygdala receives visual input 
from a short, fast, subcortical pathway from the superior collicu-
lus to the pulvinar.1 It might seem strange that the existence of 
this so-called ‘subcortical route to the amygdala’ could be so elu-
sive, so much that it divides the neuroscientific community. In 
fact, the human subcortex is extremely difficult to study due to 
the problems associated with measuring very deep but also very 
fast neural activity, posing problems to both fMRI and M/EEG 
methods. Because of this (and the complete absence of postmor-
tem human studies on this pathway), evidence for the subcortical 
route to the amygdala has had to be pieced together from an 
array of different studies using different approaches, each prone 
to its own set of methodological and interpretative limitations. 
Thus, there has been a great deal of discussion from opposing 
viewpoints (see review by Tamietto and de Gelder2 but also the 
review by Pessoa and Adolphs1).

In recent years, there have been significant advances in 
human neuroimaging methods that have brought us closer to 
resolving whether this pathway exists and, if so, what it might be 
used for. First, the computational methods applied to diffusion 
magnetic resonance imaging (MRI) images have significantly 

advanced in how accurately they can reconstruct the underlying 
white matter structure.3 Second, there now exist multiple con-
sortiums around the world that collect high-quality human 
neuroimaging data from thousands of people, obtaining struc-
tural images as well as functional measures from an array of 
cognitive tasks.4 In our study,5 we exploited these two recent 
advancements and combined them with a long-standing net-
work modelling method (i.e. dynamic causal modelling)6 to 
robustly investigate the evidence for a subcortical route to the 
amygdala in the human brain.

The results from our study provided strong evidence for the 
presence of an afferent subcortical pathway to the amygdala. 
Using data from the Human Connectome Project, we success-
fully reconstructed this pathway in over 600 young healthy adults 
using sophisticated local and global tractography methods. We 
also observed strong evidence that neural activity (as indicated 
by BOLD signal) flowed in a forward direction along this path-
way (i.e. from the superior colliculus to the amygdala via the 
pulvinar; see Figure 1) while participants viewed angry and fear-
ful faces. Taken together, these two findings provide convergent 
evidence for the presence of an afferent subcortical route to the 
amygdala in the human brain recruited for face processing.

We then investigated whether people with greater fibre den-
sity along this pathway might also have stronger forward-flow-
ing neural connectivity during face viewing or perhaps be better 
at recognising different facial expressions. We discovered that 
fibre density along only the second half of the subcortical route 
significantly covaried with effective connectivity (i.e. people with 
greater fibre density also had stronger pulvinar-amygdala 
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functional coupling) as well as better recognition of fearful (but 
not angry or sad) expressions. These significant intermodal rela-
tionships support the validity of the tractography results and also 
demonstrate the involvement of the pulvinar-amygdala connec-
tion in fearful face processing.

The results from our study resolve several key issues in the 
debate over the existence and function of the subcortical route 
to the amygdala. They also, however, raise new questions about 
how the subcortical route to the amygdala might contribute to 
individual differences in affective processing, as well as affective 
processing disorders like anxiety and autism. Let us frame this 
finding in the context of previous animal research and then 
postulate how these results might change our understanding of 
how emotion processing engages with hierarchical visual 
systems.

Comparing Evidence for the Subcortical Route to the 
Amygdala Across Species
The amygdala is well suited for comparison across species, as 
its evolution has been well-conserved, and it is essential for 
producing fear responses, which are critical to the survival of 
any animal.7 Hence, we might expect subcortical pathways to 
the amygdala to also be conserved across species. Indeed, a sub-
cortical pathway was first identified from the inferior colliculus 
to the amygdala via the medial geniculate nucleus in the rodent 
brain for transmitting auditory signals,8 particularly those in 
the frequency range of warning calls from other rodents.9 
While this rapid subcortical auditory pathway is also present in 
the human brain,10 research has focused almost exclusively on 
whether an analogous pathway exists in humans for vision. The 
primary reason for this was the discovery of blindsight (dis-
cussed in more detail below) but also because, unlike rodents, 

we are highly visual creatures. The majority (55%) of the 
human cortex is dedicated to visual processing while rodents 
have relatively poor vision.11 As such, their cortical and subcor-
tical areas for visual processing less clearly resemble those of a 
human brain. Despite this, a number of recent studies have 
used tracing and optogenetics to uncover a visual subcortical 
pathway to the amygdala that transmits threat signals (for 
mice, this is looming stimuli) and directly triggers fearful 
behaviour.12,13 Pathways have been identified from the mouse 
superior colliculus (which is architecturally similar but func-
tionally dissimilar to the primate brain), to the lateral posterior 
nucleus of the thalamus (considered analogous to the human 
pulvinar12,14,15 or the parabigeminal nucleus13 and on towards 
the amygdala). These studies provide compelling evidence for a 
subcortical visual path to the amygdala, even in a species whose 
primary sensory modality is touch via its whiskers. It is, how-
ever, essential to consider the dramatic evolutionary reorgani-
sation seen in the primate brain to accommodate vision, as this 
may render the subcortical route absent or perhaps even redun-
dant (our results, of course, suggest the opposite).

There is dramatic neuroplastic reorganisation in the early 
developmental years of the primate brain. Tectopulvinar path-
ways actually develop earlier than geniculostriate pathways but 
are pruned as we get older, leaving the geniculostriate pathways 
as the dominant transmission of visual information.16 Hence, 
the structure or functional relevance of the subcortical route to 
the amygdala is highly likely to be susceptible to change. 
Nonetheless, there is evidence that this pathway is intact in 
adult primates. Most recently, one study successfully traced 
axonal projections in the macaque brain. They discovered axons 
connecting the superior colliculus to the pulvinar, the terminals 
of which overlapped with axons connecting the pulvinar to the 
amygdala.17 Previous work has also identified these axonal pro-
jections in the tree shrew.18 Unlike the optogenetic innervation 
seen in the aforementioned rodent research, these neuroana-
tomical investigations into the primate brain do not relate the 
presence of the subcortical route to a particular functional role. 
This is where studies on humans have made the biggest impact, 
originating with the discovery of affective blindsight.

The Malleable Functional Role of the Pulvinar-
Amygdala Connection
Blindsight describes the remarkable ability of people with a 
destroyed primary visual cortex (V1) to respond to visual stim-
uli that they cannot consciously perceive.19 When presented 
with affective stimuli, these cortically blind patients show sig-
nificantly greater signal in the superior colliculus, pulvinar, and 
amygdala than healthy controls.20 This suggests that visual 
information, particularly fearful faces, is re-routed away from 
the damaged visual cortex and transmitted along the alterna-
tive, shorter subcortical pathway through the superior collicu-
lus and pulvinar instead. One case study on a cortically blind 
patient has even shown that there is greater fibre density (as 

Figure 1. Anatomical diagram of subcortical and cortical visual afferents 

to the amygdala.
Subcortical-only pathways are indicated by red arrows, cortical visual pathways 
are indicated by blue arrows, and alternative subcortical-cortical pathways are 
indicated by purple arrows.
Abbreviations: AMG, amygdala; IT, inferior temporal cortex; LGN, lateral 
geniculate nucleus; MT, middle temporal area (V5); OFC, orbital frontal cortex; 
SC, superior colliculus; THAL, thalamus; V1-V4, visual areas 1 to 4.



McFadyen 3

measured by fractional anisotropy) along the subcortical route 
in the damaged hemisphere than the intact hemisphere or the 
brains of healthy controls.21 This suggests that neural plasticity 
may have altered the strength of the subcortical route as a result 
of the patient’s reliance on unconscious visual processing.

An extraordinary case of a 7-year-old boy demonstrates the 
functional power of neuroplasticity for vision. At 2 weeks old, 
the boy sustained severe damage to both occipital lobes due to 
a disorder of fatty acid oxidation. Despite this, as well as sig-
nificant damage to the eyes themselves (his left eye was com-
pletely blind), he reports near-normal conscious vision and can 
play video games, watch movies, and play soccer. He also per-
forms perfectly on orientation, shape, colour, and face discrimi-
nation tasks. Instead of finding changes to the affective 
subcortical route to the amygdala, diffusion tractography 
instead revealed a significant increase in structural connections 
from the lateral geniculate nucleus and pulvinar to V5/MT.22 
This thalamo-cortical circuit has been implicated in blindsight 
before, as well as in the healthy brain.2 It presents as a strong 
contender to the colliculo-pulvinar path to the amygdala we 
investigated in our study (see Figure 1). Crucially, we observed 
anatomical evidence for the full colliculo-pulvinar pathway but 
only found the latter half from the pulvinar to the amygdala to 
be functionally relevant. This supports the notion that perhaps 
there is significant cortical input to the pulvinar’s transmission 
to the amygdala, making it not quite so ‘subcortical’ after all. 
Future research is needed to directly compare the contributions 
of each circuit to producing fear responses in the amygdala. 
Importantly, this illustrates that visual affective processing is 
anything but serial. There are many different types of subcorti-
cal, cortical, and subcortical-cortical networks all operating in 
parallel; the specific combination might depend on particular 
tasks or perhaps is modulated by clinical disorders.

Regardless of whether the pulvinar receives input subcorti-
cally or cortically before communicating with the amygdala, 
the pulvinar-amygdala connection may play an important role 
in rapid relevance detection. We have previously shown this 
connection to innervate amygdala activity very quickly (~70 ms 
poststimulus onset).23 Other research has demonstrated the 
role of the pulvinar in relaying visual and higher-order cortical 
signals to orient attention, facilitate visual search, and recognise 
emotions.16 Hence, the pulvinar may gate or amplify informa-
tion flow to the amygdala and cortex according to an assess-
ment of relevance. Interestingly, people with high trait anxiety 
show heightened pulvinar-amygdala connectivity,24 while peo-
ple with autism show reduced pulvinar-cortical connectivity,25 
suggesting that modulation of this connection may play an 
important role in psychopathology.

Both autism and anxiety, which can be comorbid, can be 
characterised by atypical fear responses. People with autism 
tend to have impaired fear conditioning,26 atypical amygdala 
responses to stimuli like fearful faces,27 as well as unusual  
fears where, for example, a child with autism may be afraid of 

umbrellas but not afraid of deep bodies of water.28 Studies on 
autism have found that there is weaker structural connectivity 
along the subcortical route in humans and in an animal model 
of autism, coinciding with a reduction in typical fear responses.14 
In another study, however, people with autism showed greater 
BOLD signal in the superior colliculus, pulvinar, and amygdala 
when fixating on the eyes of fearful faces.29 Taken together, 
these findings suggest that the subcortical route may be under-
used, due to reduced structural connectivity, but then also over-
used for processing certain visual input like fearful faces. 
Further research is needed to establish precisely how the sub-
cortical route to the amygdala might be modulated in people 
higher on the autistic spectrum. Indeed, individual differences 
in anxiety may play a role in these autism-related findings and 
may be an interesting avenue to explore. There is already neu-
ropharmacological research using dynamic causal modelling 
finding that the subcortical route to the amygdala significantly 
contributes to abnormal fear responses in phobia disorder.30 
Therefore, this points towards a promising avenue of new 
research into how rapid affective processing subserved by the 
subcortical route to the amygdala might contribute to disor-
dered fear responses.
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