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Human gait phase estimation has been studied in the field of robotics due to its

importance for controlling wearable devices (e.g., prostheses or exoskeletons) in a

synchronized manner with the user. As data-driven approaches have recently risen in

the field, researchers have attempted to estimate the user gait phase using a learning-

based method. Thigh and torso information have been widely utilized in estimating the

human gait phase for wearable devices. Torso information, however, is known to have

high variability, specifically in slow walking, and its effect on gait phase estimation has

not been studied. In this study, we quantified torso variability and investigated how the

torso information affects the gait phase estimation result at various walking speeds.

We obtained three different trained models (i.e., general, slow, and normal-fast models)

using long short-term memory (LSTM). These models were compared to identify the

effect of torso information at different walking speeds. In addition, the ablation study

was performed to identify the isolated effect of the torso on the gait phase estimation.

As a result, when the torso segment’s angular velocity was used with thigh information,

the accuracy of gait phase estimation was increased, while the torso segment’s angular

position had no apparent effect on the accuracy. This study suggests that the torso

segment’s angular velocity enhances human gait phase estimation when used together

with the thigh information despite its known variability.

Keywords: gait phase estimation, machine learning, torso variability, exoskeletons and prostheses, biomechanics

1. INTRODUCTION

The gait cycle is a key concept in explaining human locomotion. The gait cycle commonly starts
with heel-strike and ends with the next heel-strike of the ipsilateral leg (Alamdari and Krovi, 2017;
Kawalec, 2017). A gait phase indicates the walking state (or progression) of the user within the gait
cycle and estimating this user gait phase is crucial for controlling wearable assistive devices, such
as powered prostheses (Gregg et al., 2014; Quintero et al., 2018; Hong et al., 2021; Lee et al., 2021)
or exoskeletons (Kang et al., 2019; Seo et al., 2019; Sawicki et al., 2020). This is because wearable
assistive devices should provide a synchronized motion with the user for stable walking, requiring
an accurate user gait phase estimation (Gregg et al., 2014; Quintero et al., 2018; Kang et al., 2019;
Seo et al., 2019; Sawicki et al., 2020; Hong et al., 2021; Lee et al., 2021). Conventionally, a discrete
gait phase estimation (i.e., gait event detection) has been widely studied using different wearable
sensor sets; several gait phase models have been proposed to separate the gait cycle into a different
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number of phases (Jasiewicz et al., 2006; Kotiadis et al., 2010;
Abaid et al., 2013; Mannini et al., 2013; Allseits et al., 2017).
Some researchers focused on heel-strike and toe-off detection
with a rule-based algorithm using different sensor combinations
(Jasiewicz et al., 2006; Allseits et al., 2017). Kotiadis et al.
(2010) additionally detected the heel-off phase based on shank
information. The hidden Markov model was also used to detect
four different gait phases: heel-strike, flat-foot, heel-off, and toe-
off (Abaid et al., 2013; Mannini et al., 2013). These discrete gait
phase estimators could be used in the wearable device application
to provide a synchronized motion control to the user.

Continuous gait phase estimation would be more effective
in the seamless control of wearable devices since humans show
continuously varying joint kinematics/kinetics trends (Rouse
et al., 2014; Lee et al., 2016; Shorter and Rouse, 2018; Hong
et al., 2019; Anil Kumar et al., 2020). Furthermore, for even more
accurate gait phase estimation in a continuous manner, data-
driven estimation techniques have recently evolved, utilizing
diverse kinematics/kinetics information as an input dataset
(Kang et al., 2019; Seo et al., 2019; Lee et al., 2021). Kang et al.
(2019) achieved a neural network-based gait phase estimation
relying on multiple sensors: encoders at the hip and IMUs at the
thigh and torso. Seo et al. (2019) also implemented a recurrent
neural network (RNN) model to estimate user gait phase using
shank-mounted IMUs and additional foot pressure information
for their model training. Lee et al. (2021) focused on angular
positions and velocities of thigh and torso segments to estimate
the user gait phase for their powered prosthesis application. As
a result, they all achieved robust and accurate estimation in a
continuous manner at different walking speeds (Kang et al., 2019;
Seo et al., 2019; Lee et al., 2021). Even with those successful
estimation results, the error rate varied according to walking
speed. To be more specific, a larger deviation of error was found
during the mid-stance phase in slow-walking (Lee et al., 2021).
As suggested by Kang et al. (2019) and Lee et al. (2021), the
torso movement exhibits a certain pattern during locomotion
(Cappozzo, 1981; Thorstensson et al., 1984; Ceccato et al., 2009),
thereby being used for estimating the gait phase. For instance,
the torso maintains a particular forward inclination and oscillates
around this position two times per gait cycle in the sagittal plane,
and its rotation occurs one time per gait cycle in the horizontal
plane (Ceccato et al., 2009). The torso information (e.g, segment’s
position and velocity), however, is also known to have high
variability as per individual, and this variability becomes even
higher in slow-walking (Thorstensson et al., 1984; Kerrigan et al.,
2001; Dingwell and Marin, 2006; Asgari et al., 2015). We do not
know yet whether this variability affects the estimation results at
various walking speeds, especially at slow speeds.

Therefore, this article focuses on how torso information (i.e.,
segment’s angular position and velocity) affects the accuracy of
learning-based gait phase estimation at various walking speeds.
We hypothesize that torso movement affects human gait phase
estimation results at different walking speeds due to its known
variability. To the authors’ knowledge, the effect of the torso on
the accuracy of gait phase estimation has not been spotlighted.
In section 2, our gait phase estimation model is briefly explained.
Also, the ablation study is described to identify the contribution

of torso information to the estimation. In section 3, training
results are presented and discussed based on the torso variability
shown in the correlation matrix. To validate the proposed idea,
prediction results are also shown in this section. We additionally
present a heel-strike detection error for further evaluation. All
the results are discussed and concluded in sections 4 and 5,
respectively.

2. METHODS

We previously proposed a speed-adaptive gait phase estimation
model in Lee et al. (2021). Interestingly, it was found that gait
phase estimation errors became larger during the mid-stance
phase in slow-walking (Lee et al., 2021). In this study, we
speculate on a possible remedy for this. The large estimation error
may be because the torso deviates more while maintaining the
balance in slow-walking (Dingwell and Marin, 2006; Asgari et al.,
2015). This could be interpreted that torso kinematics may affect
the estimation result. Therefore, we investigate the effect of torso
kinematics on estimating the human gait phase by comparing
the resulting estimations when torso information is included or
excluded in model training.

2.1. Training Dataset
We utilized an open-source dataset, which can be found in
Schreiber and Moissenet (2019), for our model training to
guarantee a sufficient size of input data. This dataset included
walkway walking data of 50 healthy subjects (26 male and 24
female) in five different speed conditions, such asC1: 0.0–0.4 m/s,
C2: 0.4–0.8 m/s, C3: 0.8–1.2 m/s, C4: self-selected speeds (1.0–
1.4 m/s), and C5: self-selected fast speeds (1.4–1.8 m/s). Fifty-
two whole-body reflective markers were used to provide an
individual’s 3D motion information (Schreiber and Moissenet,
2019). We were able to generate the torso segment vector using
the markers at the anterior-superior and posterior-superior iliac
spine of both sides of the leg, and at the spinous process of the
10th thoracic vertebrae. The thigh segment vector was generated
using the markers at the greater trochanter and the lateral
femoral epicondyle. We calculated the angular positions and
velocities of the thigh and torso segments in the sagittal plane
and utilized them for training our model. Furthermore, heel-
strike and toe-off information could be estimated using ground
reaction forces from two force plates. The data was sampled
at 100 and 1.5 kHz for markers and force plates, respectively.
Forty-two individuals’ datasets were randomly selected for model
training and validation, while the others were used for prediction.

2.2. Ground Truth Labeling
Heel-strike is conventionally used as a cue of gait initiation
because the human gait cycle is usually defined from heel-strike
to the next heel-strike on the same leg (Taborri et al., 2016; Vu
et al., 2020). Based on the heel-strike, we labeled the data using a
polar coordinate encoding method in the training session (Kang
et al., 2019; Lee et al., 2021). This was because the nominal linear
label is vulnerable to the discontinuity at heel-strike due to gait
initiation (as shown in Figure 1), resulting in an undesired loss
(i.e., mean-squared error) during model training. In Figure 1, φ
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FIGURE 1 | Ground truth labeling. Sine (Blue) and cosine (Red) functions are transformed into a bounded linear function (Black). Gait initiation occurs at the

heel-strike.

refers to the percentage of the gait cycle, representing the user’s
walking progression between the heel-strikes, where φ ∈ [0, 100].
As shown in Equation (1), this walking progression (i.e., φ) can
be mapped into θ during the entire gait cycle for the polar
coordinate transformations, where θ ∈ [0, 2π]. By having two
continuous sinusoidal functions as the ground truth (i.e., Px and
Py in Equation (2), we could prevent the undesired error from the
discontinuity at heel-strikes.

θ = 2π
100 · φ (1)

(Px, Py) = (cos θ , sin θ) (2)

Following Equations (3) and (4), those sine and cosine functions
can be transformed into a linear function τ̂ , which is bounded
in [0,1], representing the continuous gait phase. This linear
gait phase estimation is usually utilized for controlling wearable
devices (Kang et al., 2019; Hong et al., 2021).

τ =
1

2π
atan2(Py, Px) (3)

τ̂ =

{

τ Py ≥ 0
τ + 1 Py < 0

(4)

2.3. Neural Network
Torso movement is known to have higher variability compared
to thigh movement during walking. Even though highly variable
signals may have the potential for more information, we still do
not know whether the torso information enhances the gait phase
estimation accuracy. In order to investigate the contribution of
torso information to gait phase estimation, an ablation study
was performed in this study using torso angular position and

velocity. We prepared four input datasets for model training: (Set
1) angular positions and velocities of thigh and torso segments;
(Set 2) angular position and velocity of the thigh segment and
angular velocity of the torso segment; (Set 3) angular position
and velocity of the thigh segment and angular position of the
torso segment; and (Set 4) angular position and velocity of the
thigh segment. As shown above, both the thigh segment’s angle
and velocity were always included in the four datasets, while the
torso segment’s angular position and velocity conditions were
changed. Also, three different speed conditions (e.g., C2, C2−C5,
and C3 − C5) were given for the model training to be generalized
to diverse walking speeds. The trained model only utilizing C2

was named the slow model, while the models using C2 − C5 and
C3 − C5 were called the general model and normal-fast model,
respectively. C1 was excluded because it referred to extremely
slow speeds. A long short-term memory (LSTM) was utilized in
this study due to its powerful performance with chronological
data, such as time series prediction (Hochreiter, 1997; Kang et al.,
2019; Lee et al., 2021). Further, bidirectional LSTM (Bi-LSTM)
was implemented to achieve both forward and backward learning
during the training process (Graves, 2005). This allowed the given
model to learn from past and future information. The size of the
sliding windows for the model was chosen to be 100, which was
deemed to be appropriate for the collected data with relatively
short lengths. Figure 2 shows the proposed network architecture.
Our network consists of five layers with LSTM and Bi-LSTM.
Layer 1–4 has 128, 64, 64, and 32 units, respectively. As depicted
in Figure 2, the current input (x0) updates the cell state (C0)
and the output (h0). The cell state updates the information from
input data and transfers the previously learned information to
the next block. Layer 5 results in the output as the sine and cosine
functions, as explained in section 2.2.We selected the last value in
the sequence to get the gait phase at time t. The network model
was trained with the Adam optimizer and mean-squared error
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FIGURE 2 | Proposed neural network architecture for the gait phase estimation. The network consists of five layers with long short-term memory (LSTM) and

bidirectional LSTM (Bi-LSTM). Layer 1–4 has 128, 64, 64, and 32 units, respectively. Layer 5 is fully connected and results in the output as sine and cosine functions.

(MSE) was used as a loss function with a batch size of 64. To
prevent the over-fitting, the model was trained for a maximum of
100 epochs, stopping early if the validation loss did not continue
to decrease in 10 epochs.

2.4. Statistical Analysis
Statistical analysis was performed to determine the significance
of the torso information in the gait phase estimation model
using RStudio statistical software (RStudio ver. 1.3.1093). For
model training, we used three models (i.e., general, slow, and
normal-fast models) with four input datasets (i.e., Sets 1–4).
For the training results, we performed a two-way ANOVA to
identify the effects of the training dataset (i.e., Sets 1–4) and three
different models (i.e., general, slow, and normal-fast). For the
prediction results, three two-way ANOVAs (each for a speed-
dependent model) were performed to examine the effect of the
trained dataset (i.e., Sets 1–4) and the speed condition (C2 −

C5). We performed another two-way ANOVA for the heel-strike
detection error to identify the effect of the dataset and the speed
condition. In a multiple comparison, Bonferroni correction was
used as a post-hoc test. A significance level of 0.05 was used in all

analyses. Throughout this article, the statistical significance was
symbolized as follow: * = p ≤ 0.05, ** = p ≤ 0.01, and *** =
p ≤ 0.001.

3. RESULTS

Throughout this section, a total of 12 conditions are given based
on four different training sets (i.e., Sets 1–4) and three different
speed-dependent models: general, slow, and normal-fast. We
performed a training process for each condition and collected the
final loss-value (i.e., MSE) for each independent model.

3.1. Training Results
The two-way ANOVA for the training results found that both
training sets (p < 0.001) and three different models (p <

0.001) were significant. Training results using four different
training sets (Sets 1–4) were compared to investigate the torso
information effect on the estimation (see Figure 3). Note that
Set 4 was considered as the baseline because it only contained
thigh information. As shown in Figure 3, there was no significant
difference when the torso angle was included compared to Set 4
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FIGURE 3 | Training results using four different training sets: (Set 1) angular

positions and velocities of thigh and torso segments, (Set 2) angular position

and velocity of thigh segment, and torso segment angular velocity, (Set 3)

angular position and velocity of thigh segment, and torso segment angular

position, (Set 4) position and velocity of thigh segment. Bar colors correspond

to three different trained models: general, slow, and normal-fast walking. Bar

graphs and error bars correspond to the mean and ± 1SD.

(Set 3 vs. Set 4, p = 0.052). The highest accuracy was found when
position and velocity of the thigh segment and torso segment
velocity were utilized for model training (Set 2, p < 0.001), while
the second-highest accuracy was achieved with both angular
positions and velocities of the thigh and torso segments (Set 1,
p < 0.001). Between Sets 1 and 2, the error increased when the
torso angle was included (p < 0.001). On the other hand, the
estimation errors were reduced when the torso angular velocity
was included in the training set (Sets 1 and 2 vs. Sets 3 and
4, p < 0.001). This implies that the contribution of torso
angular position and velocity may differ. Considering the speed-
dependent model conditions, it was obvious that the slow model
shows the highest error in Sets 3 and 4 (p < 0.001). To identify
a link between torso variability and gait phase estimation results,
we additionally checked howmuch deviations the thigh and torso
have per individual at different walking speeds.

As depicted in Figure 4A, the correlation matrix was
generated using 51 variables, having 51×51 dimensions. The
given variable set consists of a single mean trajectory of all
subjects (A) and each subject’s mean trajectory (Si, where i refers
to subject id). Each cell in the matrix shows the correlation
between two variables. Our matrix starts with the mean trajectory
of all subjects (A) and ends with the 50th subject’s mean trajectory
(S50). So, we could only focus on the first row or column
(red box in Figure 4A) to see the correlation between each
individual’s trajectory (S1,2,...,49,50) and the mean trajectory of all
subjects (A). The mean and SD of those correlation coefficients
are presented in Table 1. According to Table 1, both the thigh
and the torso show the highest variability in slow-walking (C1),

which is consistent with other studies (Dingwell and Marin,
2006; Asgari et al., 2015). The torso correlations are specifically
smaller than those of the thigh. Compared to the normal and
fast speed conditions, the slow walking data (i.e., C1 and C2)
showed significantly higher variability for both thigh and torso.
The torso data was specifically more sensitive to the walking
speed according to Table 1. Even at the normal walking (i.e.,
the highest correlation result), the torso shows less correlation
(e.g., position: 0.7032 ± 0.2546, velocity: 0.7996 ± 0.2011 in
C3) when the thigh correlation is close to 1 (e.g., position:
0.9925 ± 0.0057, velocity: 0.9835 ± 0.0085 in C3). Between torso
angular position and velocity, the torso velocity shows a higher
correlation per individual than the torso position throughout
all speed conditions. In Figure 4, the correlation matrix is also
illustrated using a colormap. Figures 4B,C depict the correlation
matrix of thigh and torso information at two different walking
speeds: C1 and C3. It is obvious that thigh information shows a
much higher correlation with each other than torso information
in both slow and fast walking (as shown in Figures 4B,C). It
is also apparent that faster walking speed (Figure 4C) shows a
higher correlation than slower walking speed (Figure 4B) for
all information.

3.2. Prediction Results
A two-way ANOVA was performed for each speed-dependent
model (i.e., general, slow, and normal-fast models) to identify the
significance of the trained dataset (i.e., Sets 1–4) and the speed
conditions (i.e., C2 − C5). The prediction process was performed
using Sets 1–4. Data from eight subjects were randomly selected
to be used for the prediction. Also, individuals’ walking data at
four different speeds (i.e., C2 − C5) were used for evaluating
the prediction results. The prediction errors are described in
Figure 5 to identify the torso kinematics effect on the gait phase
estimation. Figure 5A shows the prediction result of the general
model. In this model, both training sets (p = 0.002) and speed
conditions (p < 0.001) were significant. Figures 5B,C show the
results of the slowmodel and the normal-fast model, respectively.
In the cases of the slow model and the normal-fast model, both
models also showed the significant effects of the training sets (p <

0.001) and the speed conditions (p < 0.001) according to each
two-way ANOVA. The estimation error specifically increased
when the walking speed became faster in the slow model (p <

0.001). On the other hand, in the normal-fast model, the highest
error was observed at slow walking speed (p < 0.001). In general,
Figure 5A shows the best estimation result while covering all
different speed conditions (i.e., C2 − C5). The relatively high
errors were still shown at slow speeds due to the high variability
of the dataset in slow-walking. This could be further explained by
comparing the results of each dataset. In Figure 5A, there was
no significant interaction effect between the prediction dataset
and walking speed. Among the given datasets, Set 4 showed the
highest error in the prediction compared to Sets 1 (p = 0.0438)
and 2 (p = 0.0042). Set 3 had no significant difference from Set
4. According to the post-hoc test based on speed conditions, all of
them showed a significant difference from each other, except C3

and C5.
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FIGURE 4 | Correlation matrix. (A) 51×51 dimension of the correlation matrix. The color map indicates the correlation coefficient value: blue (positive), red (negative),

and white (≃ 0). (B) The correlation results of slow-walking data (C1). (C) The correlation results of normal-walking data (C3).

TABLE 1 | Mean and SD of correlation coefficients for each dataset in five different speed conditions.

Walking Thigh position Thigh velocity Torso position Torso velocity

speed (mean ± 1SD) (mean ± 1SD) (mean ± 1SD) (mean ± 1SD)

C1 0.9663 ± 0.0382 0.9059 ± 0.0656 0.1259 ± 0.3269 0.2222 ± 0.2817

C2 0.9892 ± 0.0074 0.9726 ± 0.0169 0.4092 ± 0.5476 0.4936 ± 0.5278

C3 0.9925 ± 0.0057 0.9835 ± 0.0085 0.7032 ± 0.2546 0.7996 ± 0.2011

C4 0.9917 ± 0.0096 0.9824 ± 0.0063 0.6638 ± 0.3098 0.7630 ± 0.2857

C5 0.9941 ± 0.0047 0.9876 ± 0.0063 0.5643 ± 0.3098 0.6999 ± 0.2857

The correlation results were calculated between each subject’s trajectory (Si ) and the mean trajectory of all subjects (A).

Another two-way ANOVA was performed to identify the
effects of training sets and walking speeds on the heel-strike
detection errors in the general model. This error refers to the

temporal difference between actual heel-strike and predicted
heel-strike (as shown in Figure 6A). The two-way ANOVA for
heel-strike prediction found that both training sets (p = 0.046)
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FIGURE 5 | Prediction results from three trained models: (A) General model using C2 − C5. (B) Slow model using only C2 (C) Normal-fast model using C3 − C5. Bar

graphs and error bars correspond to the mean and + 1SD. Bar colors correspond to walking speeds: C2 − C5.

FIGURE 6 | Heel-strike detection error. (A) Temporal difference between actual heel-strike and predicted heel-strike. (B) Heel-strike detection error in four different

speed conditions. The general model was chosen for the comparison. Bar graphs and error bars correspond to the mean and + 1SD. Bar colors correspond to

walking speeds: C2, C3, C4, and C5.

and speed conditions (p < 0.001) were significant. According
to the post-hoc comparison, only Sets 2 and 3 were significantly
different (p = 0.044) in the training set condition. In Figure 6B,
C2 showed the highest error in the heel-strike detection (p <

0.001) compared to the other speed conditions. At the fast speed,
the detection error was significantly reduced compared to C3

(p = 0.002), but it was not significant compared to C4 (p =

0.076). There was no significant difference between C3 and C4.

4. DISCUSSION

It is no doubt that thigh information is a key factor for human
gait phase estimation (Quintero et al., 2018; Kang et al., 2019;
Seo et al., 2019; Hong et al., 2021; Lee et al., 2021). Across all

walking speeds, its robustness can also be shown in Table 1.
On the other hand, it is obvious that the torso information
has higher variability compared to the thigh information during
walking. Owing to the fact that the torso segment’s angular
position showed even higher variability than the torso segment’s
angular velocity, we could assume that torso position information
may hinder a successful estimation of the user’s gait phase.
Assuming Set 4 as a baseline, Sets 3 and 4 comparison tells
the isolated effect of torso segment’s angular position on gait
phase estimation. To be more specific, when the torso position
information was solely utilized with the thigh information, no
apparent effect was found in the prediction result according
to Figure 5. Likewise, the effect of the torso segment’s angular
velocity can be identified by the comparison between Sets 2
and 4. Unlike the torso position information, significant error
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reductions were found in predicting the user’s gait phase when
torso velocity information was included in the training set. This
implies that the torso segment’s angular velocity is beneficial
to gait phase estimation despite its relatively high variability
compared to thigh information (as shown in Table 1). However,
the heel-strike detection error result showed a different trend in
the slow walking speed condition. Compared to Set 4, the heel-
strike detection error became greater at slow speed (C2) when any
torso information was contained. This may imply that heel-strike
detection is more sensitive to torso variability in slow-walking.
Higher torso variability at slow speed (Dingwell andMarin, 2006)
may hinder the accurate detection of the heel-strike. For other
speeds, torso velocity information also showed a beneficial effect
on gait phase estimation.

As we mentioned in section 2.3, we did not have much choice
in the size of the sliding window for ourmodel training. Since, the
chosen dataset was collected on a walkway, it contained relatively
short time-series data (compared to treadmill walking), including
only a single gait cycle at most. We considered an alternative
dataset, but the selected dataset contained an abundant number
of subjects, which guaranteed to show individuals’ variability. The
chosen window size may affect the estimation accuracy, but we
obtained sufficiently high accuracy in our estimation. To be fair
with validating this claim, we implemented the same window size
(i.e., 100) as our previous model (Lee et al., 2021) and compared
its training results (i.e., MSE) to this study. As a result, there was
no significant difference between them (Lee et al., 2021; 1.10E-
02 vs. this study: 1.19E-02), thereby alleviating the concern about
the window size. Furthermore, compared to Lee et al. (2021), we
improved the estimation accuracy during the mid-stance phase
at slow walking speed (i.e., C2). In this work, we computed
the mean-squared error during 30–50% of the gait cycle and
compared it to the result of Lee et al. (2021). The prior model,
Lee et al. (2021), yielded 9.88E-04± 8.47E-04, while the proposed
model yielded 5.34E-04± 7.11E-04 in this study.

In future work, the authors plan to develop a user-adaptive
gait phase estimator for enhancing an individual’s gait trait
adaptability. This is important for providing user-specific control
of wearable devices based on user-specific gait estimation. This
is because all individuals have their own gait traits, considering

these traits is expected to give a better estimation of the
individual. Also, we plan to implement a convolutional neural
network (CNN) with LSTM to obtain faster estimation. The
proposed method will be implemented to control a custom-built
powered prosthesis. The authors have controlled the powered
prosthesis using a phase variable, deriving from the user’s thigh
motion (Hong et al., 2021). Unlike the phase variable, a learning-
based gait phase estimation utilized a plentiful dataset, so we
could expect improved robustness, leading to more stable control
of the prosthesis.

5. CONCLUSION

Torso information has been used for estimating the human
gait phase, but its effect on the gait phase estimation has
not been studied so far. We investigated the torso segment
information effect by comparing the estimation results using
four different datasets (i.e., Sets 1–4). As a result, the torso
segment’s angular velocity supported an accurate gait phase
estimation for all walking speeds despite its relatively high
variability compared to thigh information. On the other hand,
the torso segment’s angular position had no significant effect on
the accurate estimation. As walking speed became slower, the
torso variability increased, and lower accuracy was obtained. This
study, therefore, showed the torso segment’s angular velocity is
more beneficial than the torso segment’s angular position for gait
phase estimation.
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