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ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for a large num-
ber of malignant and nonmalignant (inherited) diseases of the hematopoietic system. Nevertheless,
non-HLA identical transplantations are complicated by a severe T-cell immunodeficiency associated
with a high rate of infection, relapse and graft-versus-host disease. Initial recovery of T-cell immunity
following HSCT relies on peripheral expansion of memory T cells mostly driven by cytokines. The
reconstitution of a diverse, self-tolerant, and naive T-cell repertoire, however, may take up to 2 years
and crucially relies on the interaction of T-cell progenitors with the host thymic epithelium, which
may be altered by GvHD, age or transplant-related toxicities. In this review, we summarize current
concepts to stimulate reconstitution of a peripheral and polyclonal T-cell compartment following
allogeneic transplantation such as graft manipulation (i.e., T-cell depletion), transfusion of ex vivo
manipulated donor T cells or the exogenous administration of cytokines and growth factors to stimu-
late host-thymopoiesis with emphasis on approaches which have led to clinical trials. Particular
attention will be given to the development of cellular therapies such as the ex vivo generation of
T-cell precursors to fasten generation of a polyclonal and functional host-derived T-cell repertoire.
Having been tested so far only in preclinical mouse models, clinical studies are now on the way to
validate the efficacy of such T-cell progenitors in enhancing immune reconstitution following HSCT in
various clinical settings. STEM CELLS TRANSLATIONAL MEDICINE 2019;8:650–657

SIGNIFICANCE STATEMENT

Prolonged T-cell immunodeficiency following allogeneic transplantation is a major clinical prob-
lem leading to high rate of infectious complications and disease relapse. The present article dis-
cusses current strategies targeted to enhance immune reconstitution post-HSCT. In particular,
this review emphasizes the importance of cellular therapies such as the injection of ex vivo gen-
erated T-cell progenitors to accelerate immune reconstitution following transplantation as this
approach confers a polyclonal host repertoire without the risk of alloreactivity.

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation
(HSCT) is the standard treatment for many malig-
nant and nonmalignant hematopoietic disorders.
Complications include conditioning regimen-
related toxicities, infections, relapse, and graft-ver-
sus-host disease (GvHD).

Conventional T-cell depletion of the graft by
CD34+ cell selection, post-transplant immunosup-
pression or use of immediate post-transplant cyclo-
phosphamide (PTCY) in case of T-cell replete HSCT
have enabled HSCT from partially human leuko-
cyte antigen (HLA)-mismatched or even haploi-
dentical donors to become a valid therapeutic
option for patients lacking an HLA-matched sibling

or matched unrelated donor [1–3]. In recent
years, advances in graft handling such as par-
tial depletion of certain T-cell subsets and
ex vivo manipulation of donor T cells have further
improved the feasibility of haploidentical HSCT
[4, 5]. However, despite improving transplant-
related toxicity such as reducing the risk of GvHD,
all these approaches negatively impact on resto-
ration of immunity; the profound immunodefi-
ciency following this type of HSCT remains one of
the major challenges exposing patients to infec-
tious complications and relapse.

After allogeneic HSCT, innate immunity nor-
mally recovers within weeks to few months after
allogeneic HSCT, whereas the reconstitution of
an adaptive immune response is a much longer
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process [6, 7]. In particular, qualitative and quantitative reconstitu-
tion of a functional T-cell compartment may take up to 2 years,
although it is of key importance due to the critical role of T cells in
the defense against opportunistic pathogens and as mediators of
graft-versus-tumor immune responses. It is therefore not surpris-
ing, that early immune recovery following HSCT is associated with
lower risk of infection and relapse rates resulting in a lower inci-
dence of transplant-related complications andmore favorable out-
come for both pediatric and adult patients [8–10]. In particular, the
early acquisition of a CD4+ T-cell compartment following HSCT
(defined as >50 per microliter CD4 T cells at day 100 or >200 per
microliter CD4+ CD45RA+ naive T cells at 6 months post-transplan-
tation) is associated with faster clearance of viremia and improve-
ment of overall survival [11–13]. Conversely, the presence of
infection seems to have a negative effect on the regeneration of
T-cell immunity following allogeneic HSCT [12].

Besides infection, T-cell reconstitution following HSCT may
be influenced by several other factors such as the presence of
GvHD (damage of the thymic epithelium and priming of allor-
eactive T cells), leukemia relapse and several pretransplant
parameters (e.g., HLA mismatch, conditioning regimen, graft
type, infectious status of donor and recipient) [14–16]. In addi-
tion, age-related changes such as thymic involution and dis-
rupted thymic architecture lead to a decreased thymic output
[15, 16].

In light of the above, strategies to boost T-cell reconstitution
following allogeneic HSCT are urgently needed in order to re-
enforce immune competence against pathogens or malignant
cells especially in the lymphodepleted setting. The present article
will discuss current concepts and future perspectives to enhance/
accelerate post-transplant T-cell reconstitution and thymus func-
tion with a particular focus on cellular therapies such as the use of
T-cell precursors to fasten the regeneration of a polyclonal T-cell
immunity following allogeneic HSCT.

T CELL DIFFERENTIATION IN HUMANS

In mice and humans, the production of T cells follows a
defined series of differentiation steps starting from pluripotent
hematopoietic stem cells in the bone marrow, which then give
rise first to multipotent progenitors and subsequently to multi-
lymphoid (multipotent) progenitors (MLP) before entering the
circulation. Once released into the periphery, they become
committed to the lymphoid pathway and susceptible to hom-
ing signals from the thymus, the crucial organ for coordinating
the differentiation and education of a functional and poly-
clonal T-cell repertoire. Within the thymus, MLPs commit to
T-cell differentiation under the influence of Notch signals pro-
vided by the thymic epithelium [17]. Differentiation steps
include the sequential acquisition of CD7 (early thymic precur-
sor, ETP), CD5 (pro-T), and CD1a (pre-T) surface markers as
well as the progressive loss of surface CD34. At the molecular
level, T lineage commitment is marked by the gradual downre-
gulation of early lymphoid development and B-cell genes
(e.g., IKAROS, MYB, and PAX5) as well as the induction of cru-
cial T-lineage differentiation genes, such as BCL11B, IL7RA, and
TCF7 [18].

After commitment to the T-cell lineage, progenitors undergo
rearrangements of the δ, γ, and α/β T-cell receptor (TCR) loci
leading to either the production of γδ TCR+ T cells (<5% of the

peripheral T-cell compartment) or the production of CD4+ CD8+
TCRαβ+ double positive (DP) cells. These cells then undergo
positive and negative selection processes orchestrated, respec-
tively, by the cortical and medullary thymic microenvironments in
order to produce a polyclonal, HLA-restricted and self-tolerant
αβ+ T-cell repertoire [19].

T-CELL RECONSTITUTION IN ALLOGENEIC TRANSPLANTATION

In any type of HSCT, T-cell reconstitution occurs through two
distinct pathways. The early post-transplant period is marked
by peripheral expansion of either donor T cells in the graft
or recipient T cells that survive conditioning. This cytokine-
dependent expansion occurs predominantly in the CD8+ mem-
ory T-cell population and leads to a contraction and skewing of
the TCR repertoire, thus producing an ineffective immune
response [20]. In contrast, complete reconstitution of the T-cell
repertoire relies on a second pathway, in which de novo pro-
duction and education of naive T cells in the thymus of the
recipient takes place. During this process, the thymus is seeded
by rare MLPs present in the graft or arising from donor hemato-
poietic stem cells. T-cell development is subsequently tightly
regulated by the bi-directional crosstalk between thymic stromal
cells and developing thymocytes. Conditioning regimens, infec-
tions, chronic inflammation, GvHD, and age may damage or
alter the thymic epithelium and thereby hamper the reconstitu-
tion of a functional T-cell repertoire [12, 16, 17].

In CD34+ selected haploidentical transplantation, this first
wave of homeostatically expanded CD8+ T cells is virtually
absent and T-cell reconstitution completely relies on the pro-
duction of a naive T-cell repertoire. Especially CD4+ T cells,
which in general reconstitute later than CD8+ T cells, are
dependent on thymic generation of CD4+ CD45RA+ naive
T cells, which also explains the reported inversion of CD4/CD8
ratios following HSCT [21]. TCR excision circles (TRECs), a sur-
rogate parameter for production of thymic derived naive
T cells, remain low until 3–6 months following allogeneic HSCT
[20]. Even in young patients (i.e., most of those transplanted
for severe combined immunodeficiency, naive T cells appear in
the blood after 3–6 months [22, 23] post-HSCT. A period of
6–12 months is required to achieve CD4+ cell counts that pro-
vide protective immunity. More complete restoration of the
overall T-cell compartment (i.e., naive T cells exhibiting a poly-
clonal TCR repertoire) is an even longer process and may take
up to 2 years [6, 7].

Clinical therapies to stimulate T-cell production or expansion
can be divided into two categories: (a) direct restoration of the
peripheral T-cell compartment and (b) enhancement of a naive
T-cell production by the host thymic environment (Fig. 1).

RESTORING THE PERIPHERAL T-CELL COMPARTMENT

Homeostatic expansion of donor-derived T cells in the periph-
eral blood after HSCT has been demonstrated to rely on the
presence of cytokines such as interleukin-7 (IL-7) [24]. IL-7 is
primarily produced by thymic epithelial cells and its receptor
(IL7R-α) is expressed at all stages of lymphocyte development
[25]. The importance of IL-7 signals for proliferation and sur-
vival of lymphocytes is highlighted by the fact that the pres-
ence of mutations in the IL-7R α chain leads to severe
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combined immunodeficiency syndromes characterized by the
complete absence of T lymphocytes [26]. In addition, aberrant
expression of IL-7R is frequently found in precursor T- and
B-cell leukemia [27, 28] and IL-7 serum levels increase during
stages of T-cell depletion [29]. Results on exogenous adminis-
tration of IL-7 following allogeneic transplantation in mice and
nonhuman primates have been controversial with some dem-
onstrating an effect on thymopoiesis and functional T-cell
recovery [30–32], and others proving no effect on thymic
regeneration [33].

Interleukin 15 (IL-15), another member of the common γ
chain cytokine family, has equally been shown to improve
homeostatic proliferation of T cells and reconstitution of T-cell
immunity in mice [34]. However, both IL-7 and IL-15 act pri-
marily on expansion of the CD8+ T-cell compartment [35], and
have been shown to enhance acute GvHD even following
T-cell-depleted allogeneic transplantation in mice due to
their impact on proliferation of circulating alloreactive T cells
[36, 37]. Phase I trials of recombinant human IL-7 (r-hIL-7) in
patients with solid tumors or HIV infection reported an increase
of peripheral CD4 and CD8 T cells as well as an expansion of
recent thymic emigrants (RTEs), naive and central memory, but
not effector T cells [38–40]. In contrast, the administration of
r-hIL-7 in a phase I clinical trial including 12 patients receiving
T-cell-depleted allogeneic HSCT for malignant hematologic disor-
ders revealed an effect on the expansion of effector memory
T cells only [41].

With reference to cellular therapies targeting the peripheral
T-cell compartment, manipulation of the stem cell graft and
donor-lymphocyte infusions (DLIs) historically provide a well-
established way to influence T-cell immunity and antitumor
effects following allogeneic transplantation. However, it is

well-known that the administration of nonmanipulated donor
lymphocytes is complicated by high rates of GvHD [37, 42]. On
the other hand, nonspecific T-cell depletion of allogeneic grafts
is complicated by high rates of graft rejection, delayed engraft-
ment, and higher risk of relapse due to the loss of graft-versus-
leukemia (GvL) effects [43–46].

To overcome this imbalance, advances in graft-handling and
optimization of conventional DLI infusions use depletion of
alloreactive T-cell subsets and/or enrichment of tumor-directed
lymphocytes with the aim of protecting preferred T-cell subsets
to maintain graft-versus-tumor and antiviral effects of T-cell
deplete grafts while reducing the risk of GvHD in T-cell replete
grafts.

Recent advances in graft-handling strategies include the
selective depletion of TCRα/β lymphocytes allowing for enrich-
ment of a (donor-derived) γ/δ innate-like population confer-
ring an improved anti-infective and antitumor response in an
HLA-nonrestricted manner. This approach is currently being
tested in several clinical trials in the haploidentical transplanta-
tion setting [47–50].

CD45RA+ naive alloreactive T cells previously unexposed to
allogeneic stimuli have been shown to be responsible for GvH
reactions [51]. Consequently, strategies to deplete the CD45RA+
naive T-cell subset in the graft via magnetic beads have been
developed allowing for the preservation of functional memory
T cells specific for viral and fungal antigens [52]. Clinical trials
have shown a slight reduction in the incidence of chronic GvHD
and rapid T-cell recovery following transplantation of these
grafts. [53, 54]. However, more studies are needed to prove the
safety and efficacy of this approach.

Modification of DLIs such as the deletion of alloreactive T cells
from the donor lymphocyte graft via immunotoxins, reagents

Figure 1. Strategies to accelerate T-cell reconstitution following allogeneic-hematopoietic stem cell transplantation (HSCT). Immunologi-
cal consequences of allogeneic HSCT are depicted in blue boxes. The differential strategies to overcome immunodeficiency following allo-
geneic-HSCT are shown on the left in green. Their respective impact on the reconstitution of the T-cell repertoire is shown on the right
side of the diagram.
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reacting with activation markers such as CD25 [55, 56] or a
special photodepletion technique (ATIR101, Kiadis) represent a
other options to reduce alloreactivity while sparing antitumor
T cells to preserve GvL functions [57]. Currently, the safety and
efficiency of such modified donor T-cell infusions is being eval-
uated in comparison to the use of PTCY in the haploidentical
transplantation setting (HATCY study NCT02999854 and
NCT01827579).

In recent years, another interesting approach to strengthen
the peripheral T-cell compartment and thus reduce infection-
related mortality after allogeneic transplantation has been the
administration of donor T cells armed with an inducible suicide
gene (either HSV-TK or iCas9) [58, 59]. In the case of CD19-
transduced iCas9 T cells the coexpression of CD3 and CD19 surface
markers allows for traceability in vivo. More importantly, alloreac-
tive iCas9 T cells can be depleted in vivo upon injection of the
small-molecule drug AP1903. Compared with HSV-TK modified
cells, the iCas9 safety switch is less immunogenic and allows for
faster T-cell elimination in the case of GvHD [59]. The safety and
efficacy of iCas9 cell infusion in the haploidentical transplantation
setting has been tested in two clinical trials. A phase I–II clinical
trial in 112 pediatric patients transplanted with haploidentical, TCR
α/β depleted grafts for malignant (leukemia) and nonmalignant
hematologic disorders is currently ongoing (NCT02065869). Both
trials report expansion and persistence of CD3+ CD19+ iCas9 cells
over time in the host accompanied by detection of efficient anti-
viral responses (EBV, CMV, HHV6, VZV, and BKV) in infected
patients and a fastened recovery of endogenous CD3+ CD19−
T cells [59].

In addition to graft-handling procedures and modified DLIs,
post-transplant cellular therapy approaches also include the
adoptive transfer of virus specific T cells (VST). Initially, the
manufacture of VST products included time-consuming strate-
gies such as ex vivo stimulation/culture to expand T cells tar-
geting one or multiple viruses in a single product [60, 61].
However, viral infection in recipients of allogeneic transplanta-
tion represents a medical emergency in which antiviral therapy
needs to be initiated immediately. Therefore, recent studies
have focused on rapid manufacturing strategies such as the
direct selection of donor-derived VSTs via leukapheresis on the
basis of their binding of viral peptide/HLA tetramers or disso-
ciable streptamers [62]. An alternative, HLA unrestricted strat-
egy is based on secretion of interferon-γ (IFN-γ) by VSTs after
short-term stimulation with peptide antigens followed by mag-
netic enrichment of IFN-γ secreting cells [63, 64]. Because a
major reason for failure is lack of immunity to the infecting
virus in a naive donor, more recent studies have infused
closely matched third-party VSTs. Such VST have been proven to
be effective against EBV, CMV, adeno-virus, and recently also
HHV-6 and BK-virus infections without causing GvHD (response
rates between 70% and 90%) [65]. The advantages and disadvan-
tages of each approach are summarized in recent reviews [66,
67] and will not be discussed here.

Major caveats of graft-manipulation and post-transplantation
approaches are the development of a skewed TCR repertoire and
the potential induction of a memory phenotype in expanded
donor T cells all of which lead to the absence of a polyclonal host
immunity. Furthermore, for the iCas9 system, AP1903-induced
deletion of the donor T cells in the case of GvHD immediately
resets the immune status of the recipient. As a consequence,
such transfer of donor-derived immunity provides rather limited

or only very specific protection (in the case of VSTs) against infec-
tions and may be insufficient to control the significant risk of
relapse in the malignant setting.

STIMULATING THYMIC REGENERATION AND T-CELL OUTPUT

POST-TRANSPLANTATION

As mentioned above, attempts to provide modified donor
immunity within the first months following transplantation
result in a donor HLA-restricted and skewed TCR repertoire.
Whereas this might be sufficient with reference to antitumor
effects in some cases, the absence of specific immunity against
infections still harbors a significant risk. Especially in haploi-
dentical transplantations particular attention should be given
to the analysis of early immune-reconstitution within the first
6 months following transplantation of HSCT, as a total number
of >300 CD3 T cells at 3 months has been identified as a crucial
milestone for survival by reduction of nonrelapse mortality [22].

Therefore, strategies to accelerate the reconstitution of a
naive, self-tolerant, and polyclonal host-derived T-cell reper-
toire following allogeneic transplantation by stimulating thymic
niche and increasing thymic output (RTEs) are needed.

Several factors directly impact on proliferation of TECs,
thymus homing potential of lymphoid progenitors and thymus
cellularity after thymic injury in mice thereby enhancing T-cell
differentiation and thymic output, such as keratinocyte growth
factor (KGF), sex-steroid inhibition by luteinizing hormone-
releasing hormone-agonists and the administration of growth
hormone [68–71]. Mechanisms include direct activation of the
FgfR2-IIIb receptor on TECs and subsequent upregulation of
NFk-B and Wnt/BMP pathways for KGF, as well as upregula-
tion of CCL25 and DLL4 for sex-steroid inhibition [72, 73]. Cur-
rently, clinical trials in the U.S. are evaluating the effect of
Leuprolide alone or in combination with KGF on immune
reconstitution in 118 adult patients undergoing allogeneic
transplantation for hematologic malignancies (NCT01338987
and NCT01746849).

Recent data in mouse models of allogeneic transplantation
have also established the role of interleukin-22 (IL-22) and
RankL/lymphotoxin α signaling provided by innate cell popula-
tions such as lymphoid tissue inducer cells in the regeneration
of the thymic microenvironment and T-cell differentiation follow-
ing thymic epithelial damage. Interestingly, exogenous adminis-
tration of RankL was effective independently of age, making it
also potentially applicable for older patients [74–76]. The clinical
impact of these factors has yet to be determined, especially in
light of the potential side effects such as osteoporosis in the case
of RankL [77].

EX VIVO GENERATED T-CELL PROGENITORS TO ACCELERATE
RECONSTITUTION OF T-CELL IMMUNITY FOLLOWING

ALLOGENEIC HSCT

As mentioned earlier, T-cell differentiation and selection in the
host thymus is dependent on the continuous seeding of the
latter by lymphoid progenitors. In the case of allogeneic HSCT,
these progenitors derive from donor hematopoietic stem cells,
which have to populate the bone-marrow of the host to
become MLPs before homing to the thymus via the periphery
[78]. Even in a healthy individual, this process is quite long
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lasting and might be hampered in the setting of allogeneic
transplantation leading to prolonged post-transplantation immu-
nodeficiency. In particular, the CD4+ T-cell compartment may
take up to 2 years to recover [6, 7].

Hence, adoptive transfer of in vitro generated human
T lymphoid precursors (HTLPs) provides a novel and promising
approach to accelerate T-cell reconstitution after HSCT. In this
case, ex vivo culture conditions mimic the initial steps of lym-
phoid and T-cell commitment normally occurring in the bone
marrow and in the cortico-medullary junction of the thymus.

Considering the known role of Notch signaling in T-cell lin-
eage differentiation in mice and humans, we have implemen-
ted a feeder cell-free culture system for hematopoietic stem
cells based on the immobilized Notch ligand DL-4 and a cock-
tail of cytokines known to induce T-cell differentiation and
expansion in hematopoietic stem cells (for details on the
experimental protocol, see Fig. 2) [79]. This system allows for
the in vitro generation of large amounts of HTLPs from differ-
ent CD34+ hematopoietic stem cell sources. In recent years,
we have extended and improved this protocol to differentiate
and expand not only neonatal cord blood (CB) but also adult
CD34+ cells from granulocyte-colony stimulation factor (G-CSF)-
mobilized peripheral blood (mPB) [80]. mPB is currently the
main source of HSPCs in allogeneic HSCT, as adult HSPCs are
available in large quantity and exhibit several advantages over
CB grafts in the clinical setting. Our culture system, therefore,
exhibits major advantages over other recently described cell cul-
ture systems [81], which are restricted to the use of CB HSPCs
and less efficient.

After 7 days of culture, HTLPs exhibit an early ETP/pro-T dif-
ferentiation stage as indicated by the surface expression of the
T-cell precursor marker CD7 and the concomitant downregulation

of CD34 (Fig. 2). In addition, HTLPs express low levels of CD5
and no CD1a. Importantly, HTLPs express intracellular CD3e,
GATA3, and Bcl11b, three factors implicated in T-cell differentia-
tion and physiologically expressed at the ETP/pro-T-cell stages.
Transcriptional analysis of HTLPs revealed the expression of T lin-
eage related genes, thymus homing and crosstalk genes as well
as early lymphoid commitment genes. As expected, at this point
of differentiation, HTLPs do not harbor any TCR rearrangements.

Using our HTLP culture system together with the OP9 DL-1
stromal cell line in vitro, we were able to demonstrate that the
kinetics of appearance of DP cells and mature T cells from HTLPs
is accelerated by 3 weeks in comparison to noncultured HSCs.
The putative thymus homing potential of HTLPs was confirmed
in vivo upon transplantation into nonirradiated newborn NSG
mice. Human thymic engraftment was greatly accelerated occur-
ring at only 4 weeks in the mice injected with day 7 adult HTLPs
and persisting thereafter (as compared with 12 weeks after
injection of uncultured CD34+ selected HSCs). Active human thy-
mopoiesis was further demonstrated by the presence of human
CD4+ CD8+ DP cells and enlarged thymic lobes as compared
with recipients of uncultured adult HSPCs [80]. This data pro-
vided further evidence of the ability of in vitro-generated HTLP
to accelerate T-cell reconstitution in vivo.

Based on this preclinical work, we have initiated a phase
I/II clinical study evaluating the safety and efficacy of HTLP
injection to accelerate immune reconstitution after haploiden-
tical HSCT in SCID patients (EudraCT N�: 2018-001029-14). In
this situation, the major obstacle to a successful outcome is
the long-lasting T-cell immunodeficiency [82, 83].

The intended cellular therapy consists of the injection of
in vitro-committed T-cell precursors (HTLPs) capable of accel-
erating the production of a mature and polyclonal T-cell wave

Figure 2. Ex vivo generation of human T lymphoid progenitors (HTLPs). (A): Human T-cell development. (B): Experimental protocol for
the 7-day generation of CD7+ T-cell precursors (=HTLPs) from hematopoietic stem and precursor cells (HSPCs) by coculture with an immo-
bilized Notch ligand DL4 and a cocktail of cytokines. Specifically, CD34+ hematopoietic stem and progenitor cells are seeded on day 0 in
culture wells coated with immobilized DL-4/Fc fusion protein and Retronectin. After addition of cytokines (IL7, TPO, FLT-3, and SCF) cells
are cultured for 7 days with medium change at day 3. HTLPs on day 7 display an early ETP/pro-T differentiation phenotype as shown by
expression of CD7 and downregulation of CD34.
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following haploidentical transplantation. Theoretically, once
injected in vivo, these HTLPs should be capable of migrating to
the thymus where they undergo further T-cell differentiation
and selection and interact with the thymic epithelium. The
putative interaction between injected HTLPs and TECs will help
to quickly restore a proper thymus architecture [16], which in
turn will support not only T-cell differentiation of HTLPs but
also differentiation of MLPs generated from the noncultured
primary CD34+ graft. Due to the fact that HTLPs do not harbor
any TCR rearrangements at the time of injection they are sus-
ceptible to thymic maturation and selection processes in the
host, which will allow for the generation of a polyclonal and
self-tolerant T-cell repertoire without increasing the risk of
GvHD. The injection of HTLPs directly after transplantation is
expected to shorten the time required to get >300 CD3+
T cells per microliter in peripheral blood, a threshold below
which the patients are at high risk of viral reactivation [22].

If successful in pediatric patients, administration of T-cell pro-
genitors to enhance immune reconstitution may also become
available to adult patients with relapsed malignant diseases.

CONCLUSION

Despite numerous advances in graft-handling and conditioning,
delayed immune reconstitution still remains a major issue after
partially HLA- mismatched HSCT because of its consequences in
terms of relapses and infections. Various strategies are being

explored and are at different stages of development, among
which treatments by cytokines aiming at improving thymopoi-
esis or mature T-cell based and T-cell progenitor based cellular
therapies. They all present advantages and disadvantages and
deserve a rigorous comparison in the various indications before
their inclusion in the conventional HSCT procedure either alone
or in combination.
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