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Abstract
Recently, human monkeypox outbreaks have been reported in many countries. According to the reports and studies, quick 
determination and isolation of infected people are essential to reduce the spread rate. This study presents an Android mobile 
application that uses deep learning to assist this situation. The application has been developed with Android Studio using 
Java programming language and Android SDK 12. Video images gathered through the mobile device’s camera are dispatched 
to a deep convolutional neural network that runs on the same device. Camera2 API of the Android platform has been used 
for camera access and operations. The network then classifies images as positive or negative for monkeypox detection. The 
network’s training has been carried out using skin lesion images of monkeypox-infected people and other skin lesion images. 
For this purpose, a publicly available dataset and a deep transfer learning approach have been used. All training and testing 
steps have been applied on Matlab using different pre-trained networks. Then, the network that has the best accuracy has 
been recreated and trained using TensorFlow. The TensorFlow model has been adapted to mobile devices by converting to 
the TensorFlow Lite model. The TensorFlow Lite model has been then embedded into the mobile application together with 
the TensorFlow Lite library for monkeypox detection. The application has been run on three devices successfully. During the 
run-time, the inference times have been gathered. 197 ms, 91 ms, and 138 ms average inference times have been observed. 
The presented system allows people with body lesions to quickly make a preliminary diagnosis. Thus, monkeypox-infected 
people can be encouraged to act rapidly to see an expert for a definitive diagnosis. According to the test results, the system 
can classify the images with 91.11% accuracy. In addition, the proposed mobile application can be trained for the preliminary 
diagnosis of other skin diseases.
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Introduction

Monkeypox is a zoonotic disease and an orthopoxvirus 
causes it [1]. It shows signs of a smallpox-like disease in 
humans. Monkeypox in humans first appeared in 1970 in 
the Democratic Republic of the Congo (DRC), then spread 

to other regions of Africa. Recently many cases have been 
diagnosed outside Africa [2] and an outbreak of monkeypox 
infection has been quickly spreading worldwide [3]. Accord-
ing to [2], there is an increment of monkeypox cases, specifi-
cally in the endemic DRC, and a growing median age from  
young children to young adults. On July 23, 2022, the global 
monkeypox outbreak was announced as a public health 
emergency of international concern (PHEIC) by WHO [1]. A  
PHEIC is the highest level of alert that the UN health body 
can give. The same alert was given for covid-19, polio, the 
2014 outbreak of Ebola, and the spread of the Zika virus in 
2016 [4]. According to the WHO [1], from 1 January to 22 
June 2022, 3413 laboratory-confirmed cases and one death 
have been reported to WHO from 5 countries/territories in 
five WHO Regions.

Monkeypox symptoms last from 2 to 4 weeks and severe 
cases can occur. According to a WHO report, the recent 
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case fatality ratio has been around 3% and 6%. While 
the incubation period of monkeypox is usually from 6 to 
13 days, it can range from 5 to 21 days. The infection is 
observed in two periods. During the invasion period, the 
patients are observed with back pain, fever, swelling of the 
lymph nodes, intense headache muscle aches, and lack of 
energy. In the second period, within 1-3 days of fever, the 
skin lesions begin. In 95% of cases, the face is affected. In 
75% of them, the palms of the hands and soles of the feet are 
affected. Moreover, in 70% of cases oral mucous membranes 
are affected, in 30% of them genitalia, and in 20% of them 
conjunctivae, as well as cornea [1].

The virus is usually transmitted from one person to 
another by close contact or contact with contaminated 
materials such as bedding, clothing, etc. [1]. According to 
[5], detection of more cases is anticipated. According to [6], 
the Polymerase Chain Reaction (PCR) and some other bio-
chemical tests are not readily available in sufficient amounts.

WHO recommends investigating a patient with suspected 
monkeypox. If confirmed, isolation is recommended until 
the lesions have crusted, the scab has fallen off, and a fresh 
layer of skin has formed underneath [1]. Therefore, rapid 
detection of infected individuals is required to reduce the 
spread.

In recent years, artificial intelligence applications have 
been frequently used in the field of health as well as in many 
areas such as biometric recognition [7], commerce [8] and 
social media [9]. From the viewpoint of health, it assists 
specialists in pre-diagnosis, counting lesions [10] or mito-
chondria [11], etc. In particular, visual detection studies pro-
duce successful results owing to deep learning techniques, a 
sub-branch of artificial intelligence.

Today, mobile devices have become ubiquitous [12–15]. 
They have penetrated our lives in many ways, like smart-
phones, tablets, and smartwatches. Their capabilities and 
functionalities have grown over time. Mobile devices can get 
information from real life through microphone, camera and 
several different sensors. They have powerful central pro-
cessing units (CPUs), sufficiently good memory, and large 
permanent storage unit. Nowadays, we use mobile devices 
for various needs like entertainment [16], reading [17], solv-
ing engineering problems [18], and tracking personal health 
[19]. They became a part of the life of society.

This study presents an Android mobile application to help 
reduce the rate of monkeypox spread. The application ana-
lyzes the skin lesions with the help of a smartphone camera 
and indicates the possibility of a monkeypox. People with 
body lesions and suspected monkeypox can make a pre-
liminary diagnosis using the presented application. Thus, 
monkeypox-infected people can be encouraged to act more 
quickly to see an expert for a definitive diagnosis. Eventu-
ally, it can be ensured that infected people are isolated more 
quickly.

The contributions of the study are summarized in the 
items listed below. 

1.	 A basic, cheap, non-invasive disease diagnosis tool has 
been developed as a mobile application. To the best of 
the authors’ knowledge, no other study has been found 
that detects monkeypox in humans using a mobile appli-
cation.

2.	 Introduced a low-modified MobilNetV2 model for detec-
tion of Monkeypox with skin lesion image data using a 
mobile application.

Related works

Human monkeypox investigation with computer 
vision techniques

The first human case of monkeypox appeared in 1970. Thus, 
the human monkeypox studies in the literature date back 
to the 1970s [20–22]. The research on human monkeypox 
has recently increased as the outbreak of monkeypox infec-
tion has been quickly spreading worldwide. Recently, some 
researchers [3, 23] have mentioned in their studies that more 
research is needed on this topic.

Although the human monkeypox disease dates back to 
ancient times, computer vision based studies for preleminary 
diagnosis of the disease have recently begun. There are very 
few studies on it currently. In [24], the authors collected 
monkeypox-infected image data from Google and analyzed 
the data with deep learning methods. They used modified 
VGG16 network for this purpose. In [6] the authors created a 
human monkeypox image database and classified them. For 
classification, they used four deep learining networks. These 
are VGG16, ResNet50, InceptionV3 and Ensemble. Their 
results are reported in Experimental results section in this 
study (Table 5), and compared with proposed system results.

Apart from the studies mentioned above, as a contribu-
tion to the literature, we propose a mobile application that 
classifies skin lesions of patients as monkeypox-infected vs. 
non-infected.

Mobile applications for identification of skin lesion 
images

Smartphones are becoming increasingly significant in moni-
toring and delivery of healthcare. With the help of mobile 
healthcare applications, people can quickly get information 
about their diseases and can be followed by their therapists. 
In addition, this task does not need additional device costs. 
The patients can receive various health services from the 
mobile device they are already accustomed to [25].
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There are variety of mobile applications to improve health-
care [25–28]. Some of them are developed for identification  
of skin lesions. In [29, 30], the authors developed a mobile 
system to diagnose skin cancer lesions. They used deep 
learning in their studies. In [31], the authors presented a 
mobile application that acquires and identifies moles in skin 
images and classifies them according to their severity into 
melanoma, nevus, and benign lesion. In [32], the authors 
developed a image-processing based smartphone applica-
tion for psoriasis segmentation and classification. They used 
image processing and computer vision techniques.

Methodology

The overall system flow is illustrated in Fig. 1. First, the 
human monkeypox lesion images have been prepared for 
training using image preprocessing methods. In this stage, 
we have normalized the pixel values from [0, 255] to [-1, 
1]. Then, the system has been trained with the transfer 
learning method using pre-trained networks. Various pre-
trained networks have been used and their performances 
have been compared in this step. The training and testing 
steps have been applied on Matlab 2022a. Afterward, the 
network with the best performance was recreated using 
TensorFlow. The TensorFlow model has been converted 

to the TensorFlow Lite model [33, 34] for use on mobile 
and edge devices. Lastly, an Android mobile application 
has been developed to detect monkeypox using the Ten-
sorFlow Lite model. When launched, the mobile applica-
tion automatically opens the device’s camera and takes 
the real-time video stream. It extracts image frames from 
the stream, classifies them, and outputs the detection as 
positive or negative.

Image classification using deep transfer learning

Deep learning approaches allow automatic learning of 
complex features needed for visual pattern recognition. 
Convolutional Neural Networks (CNN) is a type of deep 
learning approach. CNN has been used for several com-
puter vision tasks such as facial expression recognition 
[35, 36], text recognition [37], face recognition [38], gen-
der classification [39], age classification [40], and action 
recognition [41]. CNN has also recently shown outstand-
ing performance in biomedical applications, including pat-
tern recognition and computer vision [42–45].

CNNs are structured with different combinations of 
convolution, pooling, and fully connected layers. In the 
convolution layer, filters are convolved with the input data. 
The convolution process is shown in Eq. (1) [46].

Video
Stream

Image 
Preprocessing

positive

Transfer Leraning
(Pre-trained Network)

Monkeypox Dataset

TensorFlow
Model

Converter
TensorFlow

Lite 
Model

Metadata Metadata
Embeding

TensorFlow Lite 
Model with
Metadata

Fig. 1   A perspective of the proposed method
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In the equation, I represents an input image with two dimen-
sions, K represents a two-dimensional kernel, S represents 
the two-dimensional output after the convolution process. 
(i,j) are matrix indexes and (m,n) are filter sizes.

Convolutional layers are often followed by a non-linear 
activation layer. ReLu activation function has been used 
in this study. The pooling layer reduces the input size in 
width and height. The dropout layer is used to prevent 
overfitting in the CNNs. The fully connected layer is 
structured just before the classification layer. It connects 
to all nodes in the previous layer.

After the CNN model design, the next step is determin-
ing filter numbers, the value of strides, and dimensions. 
Then, the network is trained using the feed-forward strat-
egy. Feed-forward means information is taken in the first 
layer and forwarded through the following layers. In the 
last layer, the error value is calculated. In this calculation, 
the produced result by the network and the target result 
are used. In this study, cross-entropy loss function shown 
in Eq. (2) [47] has been used.

In the equation, N and K are the number of observations 
and classes, respectively. Y is the input, and T is the target.

In deep learning, instead of designing a network from 
scratch, a network prepared for a task can be used for 
another purpose. That is called transfer learning. Transfer 
learning takes features learned on one problem and lever-
ages them on a new problem [48]. For example, a network 
that learns features of object detection can be used for 
a disease diagnosis. In this study, different pre-trained 
networks have been used for the human monkeypox clas-
sification task. For this purpose, some modifications have 
been made in the last layers of the network. The last layer 
with learnable weights in the networks is a fully con-
nected layer. In this study, these fully connected layers 

(1)
S(i, j) = (I ∗ K)(i, j)

=
∑

m

∑

n

I(i + m, j + n)K(m, n)

(2)loss = −
1

N

N
∑

n=1

K
∑

i=1

TnilnYni

have been replaced with a new fully connected layer 
with 2 outputs. Thus, the networks were prepared for the 
classification.

The used pre-trained networks and their properties are 
given in Table 1. The main purpose of this study is to 
develop a mobile application for human monkeypox clas-
sification. Thus, we select low-size and parameter models 
to run speedily on mobile devices.

Mobile application for human monkeypox detection

The first step in application development is to create a 
problem statement. The problem statement of this study 
is the need for an application to detect monkeypox lesions 
and inform the user with the help of a mobile device and 
its camera. According to this problem statement, three 
main requirements emerge.

•	 The users should be able to detect the lesion using a 
mobile device.

•	 The video stream from the mobile device’s camera 
should be gathered and provided both to the user and 
the subsystem that performs prediction.

•	 The application should perform prediction, and the 
users should see the prediction results on the device’s 
screen.

The authors chose to use smartphones with Android 
operating system (OS) [49] to meet the first requirement. 
Android OS is a mobile platform that powers devices like 
smartphones, tablets, smartwatches, car infotainment sys-
tems, and smart televisions. Therefore, the development of 
an Android mobile application has been decided. There are 
three main ways to develop an Android application. The 
first one is to use the tools of the Android ecosystem [50] 
and develop a native Android mobile application solely for 
the Android platform. The second one is to use a multi-
platform framework like React Native [51], Flutter [52], 
Kotlin Multiplatform Mobile (KMM) [53] and develop 
an application that targets multiple platforms. The third 
option is to use Progressive Web Applications (PWAs) 
[54] again for the development of multi-platform mobile 
applications. The authors decided to utilize the Android 
ecosystem tools for this study. Therefore, the development 
has been carried out using Android Studio (Chipmunk 
2021.2.1) integrated development environment (IDE). 
To develop an Android application, an Android standard 
development kit (SDK) is needed with Android Studio. In 
this study, Android 12 SDK, in other words, application 
programming interface (API) level 31 has been used. The 
Android platform supports multiple languages like Java 
and Kotlin. In this study, Java programming language has 
been chosen.

Table 1   Details of the pre-trained networks used as feature extractor

Network Name Depth Size (MB) Parameters Input Size

ResNet18 18 44 11.7 224x224
GoogleNet 22 27 7.0 224x224
EfficientNetb0 82 20 5.3 224x224
NasnetMobile * 20 5.3 224x224
ShuffleNet 50 5.4 1.4 224x224
MobileNetv2 53 13 3.5 224x224
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The camera of the Android smartphone should be 
accessed, and the frames of the video stream should be 
gathered to meet the second requirement. For camera appli-
cations, the Android platform provides two APIs: Camera2 
API and CameraX API. The authors chose to use Cam-
era2 API. The minimum requirement for Camera2 API is 
Android 5.0 SDK (API level 21). That means the developed 
application can run on smartphones that have Android 5.0 
Lollipop and higher.

For the third requirement, a machine learning (ML) 
library compatible with mobile and edge devices is needed. 
Today, ML tasks can be handled using mobile applications. 
One way of achieving this is getting help from TensorFlow 
Lite [33, 34]. The TensorFlow Lite is a library that helps to 
run ML models on mobile and edge devices. It is optimized 
to handle machine learning tasks on resource constraint 
mobile and edge devices. Currently, the TensorFlow Lite 
binary is approximately 1MB in size when all supported 
operators are linked for 32-bit ARM builds. It supports 
Android, iOS, and embedded Linux devices. It also supports 
microcontrollers. The TensorFlow Lite library can use the 
hardware accelerator on the mobile device, if any, by get-
ting help from the Android Neural Networks API (NNAPI). 
There is multiple programming language support. The 
library can be used with Java, Python, C++, Objective-C, 
and Swift programming languages.

In this study, the authors used the TensorFlow Lite 
library to develop a mobile application that runs on 
Android devices. The development has been carried out 
using Java programming language.

The design decisions regarding the development are 
shown in Table 2.

TensorFlow Lite uses its specific ML model format. 
This format is small, portable, and can also be optimized 
for fast execution. Any ML model that is prepared else-
where must be converted to this format for deployment on 
Android devices. In this study, the design and development 
of the deep learning network have been done on Matlab. 
Afterward, the same network was realized using Tensor-
Flow [33] and TensorFlow model was created. Then, the 
TensorFlow model was converted to the TensorFlow Lite 
model and embedded into the Android application.

The flow of ML tasks on an Android application is shown 
in Fig. 2. The mobile application first takes the input data for 
prediction. Then the data is converted to a different format 
for use by TensorFlow Lite. This format is called a tensor. 
A tensor is a multidimensional NumPy [55] array. Then, the 
tensor is given to the TensorFlow Lite runtime. The Tensor-
Flow Lite library provides this runtime for the execution of 
ML models. The runtime executes the ML model with the 
provided tensor(s) and produces output as tensor(s). In other 
words, it makes a prediction. In the TensorFlow Lite context, 
this phase is called inference. Lastly, these tensors are inter-
preted as prediction results.

The TensorFlow Lite library provides two APIs: Ten-
sorFlow Lite Task API and TensorFlow Lite Interpreter 
API. Both of them can be used for ML tasks in Android 
applications. The TensorFlow Lite Interpreter API is a 
low-level API. The TensorFlow Lite Task API is a high-
level API that wraps the functionality of the TensorFlow 
Lite Interpreter API. In this study, TensorFlow Lite Task 
API has been used. From the user’s point of view, one of 
the differences between these two APIs is the metadata 
requirement. TensorFlow Lite Task API requires embed-
ding the model metadata to the TensorFlow Lite model. 
That is shown in Fig. 1.

Table 2   Design decisions for the mobile application

Feature Type Feature Name

Mobile Device Smartphone
Operating System Android OS
IDE Android Studio Chipmunk 2021.2.1
SDK Android 12 SDK (API level 31)
Minimum SDK Android 5.0 SDK (API level 21)
Programming Language Java
Camera API Camera2 API
ML Library TensorFlow Lite

Fig. 2   The flow of ML tasks on Android application
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Experimental results

Dataset and data preparation

For human monkeypox classification task, Monkeypox 
Skin Lesion Dataset (MSLD) [6] has been used. This 
dataset has been obtained from the Kaggle website [56]. 
It includes binary classification data for monkeypox vs. 
non-monkeypox. The non-monkeypox lesions are either 
chickenpox or measles. These lesions are similar to mon-
keypox lesions.

The database was prepared for computer-aided monkey-
pox detection from skin lesion images. MSLD was created 
by collecting and processing images using web-scrapping 
such as news portals, publicly accessible case reports, and 
websites. The database consists of three folders. These are 
original images, augmented images, and Fold1. The original 
images folder includes 228 images; 102 belong to monkey-
pox class, and 126 belong to non-monkeypox class. Varied 
data augmentation methods were applied to original images 
like hue, saturation, contrast, rotation, translation, reflection, 
shear, brightness jitter, noise, and scaling. Thus, the image 
number increased to 1428 and 1764 for monkeypox and non-
monkeypox, respectively. These images were stored in the 
augmented images folder. The original images were divided 
into training, validation, and test sets with the approximate 
ratio of 70:10:20. Patient independence was maintained 
while doing this. The data augmentation was only applied 
to the validation and training sets. These datasets were stored 
in Fold1 folder. In the proposed study, Fold1 has been used 
for the training, validation, and testing phase.

Experiments on image classification

Various pre-trained networks have been modified for the 
human monkeypox classification task. All networks have 
been trained with transfer learning up to 60 epochs. These 
networks were originally trained to classify 1000 object 
categories from the ImageNet database [57]. On the other 

hand, the proposed method considers monkeypox detec-
tion as a binary classification problem. Thus, the last lay-
ers have been modified in accordance with the proposed 
task. The networks have been trained to classify the images 
monkeypox vs. non-monkeypox. The comparative results 
for the networks are shown in Table 3. As can be seen, the 
network accuracies differ according to the epoch numbers. 
The best performances were achieved with MobileNetv2 
and EfficientNetb0 in 60 epochs.

The EfficientNetb0 and MobileNetv2 networks, which 
show the best performances for the human monkeypox 
classification task, have also been evaluated in terms of 
different criteria indexes. These criteria indexes, their for-
mulas, and the network results are illustrated in Table 4.

The confusion matrices of the networks EfficientNetb0 
and MobileNetv2, which produced the best accuracies, are 
given in Fig. 3. Figure 4 shows some visual results from 
the system: (a) shows some outputs from EfficientNetb0 
and (b) from MobileNetv2. These sample images are from 
the test set. Although the test set includes different back-
grounds and lesions from different parts of the human 
body, the system results are satisfactory.

The proposed system has been compared to the litera-
ture and the results are reported in Table 5. All studies in 
the table used the same MSLD database. As seen in the 
table, the proposed method that used MobileNetv2 outper-
forms other methods in terms of Precision, Sensitivity, F1 
score, and Accuracy.

Table 3   Pre-tarined network performances for human monkeypox 
classification task

Network Name Accuracy (%)

Epochs 15 30 45 60

ResNet18 86.87 66.67 75.56 73.33
GoogleNet 55.56 82.22 80.00 77.78
EfficientNetb0 82.22 88.89 88.89 91.11
NasnetMobile 82.22 84.44 84.44 86.67
ShuffleNet 77.78 77.78 80.00 80.00
MobileNetv2 82.22 88.89 88.89 91.11

Table 4   Objective evaluations of EfficientNetb0 and MobileNetv2

Measure Formula EfficientNetb0 MobileNetv2

Jaccard  TP / (TP+FP+FN) 82.61 81.82
Precision TP/(TP+FP) 86.36 90.00
Sensitivity TP/(TP+FN) 95.00 90.00
F1 Score 2*TP/(2*TP+FP+FN) 90.48 90.00
Accuracy (TP+TN)/

(TP+TN+FP+FN)
91.11 91.11
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Fig. 3   Confusion matrices of the networks which produced the best 
accuracy: (a) EfficientNetb0, (b) MobileNetv2
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Experiments on mobile application

In this study, an Android mobile application has been real-
ized to detect monkeypox. Instead of developing a new 
application from scratch, the authors chose to use the Image-
Classifier example application from TensorFlow Lite GitHub 
repository [58] as a basis for this work. The TensorFlow Lite 
GitHub repository provides several example applications for 
ML, like text classification, pose estimation, image segmen-
tation, and image classification. The example applications 
are licensed under the open source Apache License Version 
2 [59]. The ImageClassification example application has 
been downloaded and modified for the use of monkeypox 
detection.

The realized application uses the camera of the Android 
device for input. For this purpose, the Camera2 API of the 
Android platform has been used. In the first phase, the video 
stream from the camera is provided to the application.

The video stream frames are converted from YUV to 
RGB in the second phase. The frames are also previewed on 
the interface of the application. The RGB image is processed 
to make it available for use in the TensorFlow Lite runtime.

In the third phase, the prepared image is provided to the 
ImageClassifier object of the TensorFlow Lite library. The 
ImageClassifier object makes inference (prediction) based 
on the TensorFlow Lite model and returns a list of recogni-
tions for each image frame. The recognition list contains the 

classes and their possibilities. In our case, the ImageClassi-
fier returns positive and negative classes with their respec-
tive possibilities.

In the last phase, the application shows the name of 
the class with the higher possibility on the top left por-
tion of the device screen. The application also indicates 
the inference time in milliseconds. The inference time 
is the prediction time. Some example screenshots of the 
developed Android application are shown in Fig. 5. The 
first and second screenshots are a sample of true positive, 
the third one is a true negative, and the last one is a false 
positive. Although sometimes it produces false responses, 
in general, the system produces satisfactory results. System 
performance can be further increased by using a dataset 
containing more images.

The application has been compiled with the minimum 
Android SDK version 21. Then, it has been deployed and 
successfully run on three different Android devices for test-
ing. During the run-time, inference times for devices have 
been observed, and then the average inference time for 
each device has been calculated. The devices are shown in 
Table 6. As seen from the table, there is a difference between 
inference times, although the core count and the frequency 
of the devices’ CPUs are similar. This difference may be 
related to the different characteristics of the mobile pro-
cessor platforms of the devices like GPU and image signal 
processor.

Fig. 4   Some visual results of 
the networks: (a) Efficient-
Netb0, (b) MobileNetv2
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Table 5   Comparative results 
with other studies that used the 
same MSLD database

Network Jaccard Precision Sensitivity F1 Score Accuracy

VGG16 [6] - 0.85 0.81 0.83 81.48
ResNet50 [6] - 0.87 0.83 0.84 82.96
InceptionV3 [6] - 0.74 0.81 0.78 74.07
Ensemble [6] - 0.84 0.79 0.81 79.26
Proposed(MobileNetv2) 0.81 0.90 0.90 0.90 91.11
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Conclusion

This study presents a mobile system to automatically detect 
human monkeypox skin lesions. For this purpose, first, a deep-
transfer learning-based system has been trained using MSLD 
database images. In this stage, different pre-trained networks 
have been retrained using the transfer learning approach, and 
the network results have been compared. Then, MobileNetv2 
which showed one of the best performance in terms of accuracy 
as 91.11% was adapted into an Android mobile application. The 
proposed study was also compared with other studies using the 
same database and produced better results.

The system allows monkeypox suspects to conduct pre-
liminary screening from home comfort using their mobile 
devices. It enables infected people to take action in the early 
stages of the infection. Therefore, the system helps to reduce 
the spread rate of the human monkeypox outbreak. This 
study is one of the pioneering studies for visual monkeypox 
detection using mobile devices.

In this study, the authors chose to use the tools provided 
by the Android platform and developed an Android applica-
tion. However, as mentioned above, a multi-platform frame-
work like React Native, Flutter, and KMM can also be used 
to create mobile applications to target multiple platforms. In 

addition, PWAs are another alternative to developing multi-
platform mobile applications.

In the future, the usage of multi-platform frameworks and 
PWAs for solving these kinds of problems can be exercised. 
Also, the proposed system’s network can be made more 
robust using more stable and comprehensive monkeypox 
datasets. In addition, the proposed system can be extended 
to classify different skin diseases.
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