
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10916-022-01863-7

ORIGINAL PAPER

Human Monkeypox Classification from Skin Lesion Images with Deep
Pre‑trained Network using Mobile Application

Veysel Harun Sahin1 · Ismail Oztel2 · Gozde Yolcu Oztel1

Received: 23 July 2022 / Accepted: 7 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recently, human monkeypox outbreaks have been reported in many countries. According to the reports and studies, quick
determination and isolation of infected people are essential to reduce the spread rate. This study presents an Android mobile
application that uses deep learning to assist this situation. The application has been developed with Android Studio using
Java programming language and Android SDK 12. Video images gathered through the mobile device’s camera are dispatched
to a deep convolutional neural network that runs on the same device. Camera2 API of the Android platform has been used
for camera access and operations. The network then classifies images as positive or negative for monkeypox detection. The
network’s training has been carried out using skin lesion images of monkeypox-infected people and other skin lesion images.
For this purpose, a publicly available dataset and a deep transfer learning approach have been used. All training and testing
steps have been applied on Matlab using different pre-trained networks. Then, the network that has the best accuracy has
been recreated and trained using TensorFlow. The TensorFlow model has been adapted to mobile devices by converting to
the TensorFlow Lite model. The TensorFlow Lite model has been then embedded into the mobile application together with
the TensorFlow Lite library for monkeypox detection. The application has been run on three devices successfully. During the
run-time, the inference times have been gathered. 197 ms, 91 ms, and 138 ms average inference times have been observed.
The presented system allows people with body lesions to quickly make a preliminary diagnosis. Thus, monkeypox-infected
people can be encouraged to act rapidly to see an expert for a definitive diagnosis. According to the test results, the system
can classify the images with 91.11% accuracy. In addition, the proposed mobile application can be trained for the preliminary
diagnosis of other skin diseases.

Keywords  Android · Artificial Intelligence · Mobile Application · Monkeypox · TensorFlow Lite · Deep Learning

Introduction

Monkeypox is a zoonotic disease and an orthopoxvirus
causes it [1]. It shows signs of a smallpox-like disease in
humans. Monkeypox in humans first appeared in 1970 in
the Democratic Republic of the Congo (DRC), then spread

to other regions of Africa. Recently many cases have been
diagnosed outside Africa [2] and an outbreak of monkeypox
infection has been quickly spreading worldwide [3]. Accord-
ing to [2], there is an increment of monkeypox cases, specifi-
cally in the endemic DRC, and a growing median age from
young children to young adults. On July 23, 2022, the global
monkeypox outbreak was announced as a public health
emergency of international concern (PHEIC) by WHO [1]. A
PHEIC is the highest level of alert that the UN health body
can give. The same alert was given for covid-19, polio, the
2014 outbreak of Ebola, and the spread of the Zika virus in
2016 [4]. According to the WHO [1], from 1 January to 22
June 2022, 3413 laboratory-confirmed cases and one death
have been reported to WHO from 5 countries/territories in
five WHO Regions.

Monkeypox symptoms last from 2 to 4 weeks and severe
cases can occur. According to a WHO report, the recent

 *	 Veysel Harun Sahin
	 vsahin@sakarya.edu.tr

	 Ismail Oztel
	 ioztel@sakarya.edu.tr

	 Gozde Yolcu Oztel
	 gyolcu@sakarya.edu.tr

1	 Software Engineering Department, Sakarya University,
Sakarya 54050, Turkey

2	 Computer Engineering Department, Sakarya University,
Sakarya 54050, Turkey

/ Published online: 10 October 2022

Journal of Medical Systems (2022) 46:79

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-022-01863-7&domain=pdf

1 3

case fatality ratio has been around 3% and 6%. While
the incubation period of monkeypox is usually from 6 to
13 days, it can range from 5 to 21 days. The infection is
observed in two periods. During the invasion period, the
patients are observed with back pain, fever, swelling of the
lymph nodes, intense headache muscle aches, and lack of
energy. In the second period, within 1-3 days of fever, the
skin lesions begin. In 95% of cases, the face is affected. In
75% of them, the palms of the hands and soles of the feet are
affected. Moreover, in 70% of cases oral mucous membranes
are affected, in 30% of them genitalia, and in 20% of them
conjunctivae, as well as cornea [1].

The virus is usually transmitted from one person to
another by close contact or contact with contaminated
materials such as bedding, clothing, etc. [1]. According to
[5], detection of more cases is anticipated. According to [6],
the Polymerase Chain Reaction (PCR) and some other bio-
chemical tests are not readily available in sufficient amounts.

WHO recommends investigating a patient with suspected
monkeypox. If confirmed, isolation is recommended until
the lesions have crusted, the scab has fallen off, and a fresh
layer of skin has formed underneath [1]. Therefore, rapid
detection of infected individuals is required to reduce the
spread.

In recent years, artificial intelligence applications have
been frequently used in the field of health as well as in many
areas such as biometric recognition [7], commerce [8] and
social media [9]. From the viewpoint of health, it assists
specialists in pre-diagnosis, counting lesions [10] or mito-
chondria [11], etc. In particular, visual detection studies pro-
duce successful results owing to deep learning techniques, a
sub-branch of artificial intelligence.

Today, mobile devices have become ubiquitous [12–15].
They have penetrated our lives in many ways, like smart-
phones, tablets, and smartwatches. Their capabilities and
functionalities have grown over time. Mobile devices can get
information from real life through microphone, camera and
several different sensors. They have powerful central pro-
cessing units (CPUs), sufficiently good memory, and large
permanent storage unit. Nowadays, we use mobile devices
for various needs like entertainment [16], reading [17], solv-
ing engineering problems [18], and tracking personal health
[19]. They became a part of the life of society.

This study presents an Android mobile application to help
reduce the rate of monkeypox spread. The application ana-
lyzes the skin lesions with the help of a smartphone camera
and indicates the possibility of a monkeypox. People with
body lesions and suspected monkeypox can make a pre-
liminary diagnosis using the presented application. Thus,
monkeypox-infected people can be encouraged to act more
quickly to see an expert for a definitive diagnosis. Eventu-
ally, it can be ensured that infected people are isolated more
quickly.

The contributions of the study are summarized in the
items listed below.

1.	 A basic, cheap, non-invasive disease diagnosis tool has
been developed as a mobile application. To the best of
the authors’ knowledge, no other study has been found
that detects monkeypox in humans using a mobile appli-
cation.

2.	 Introduced a low-modified MobilNetV2 model for detec-
tion of Monkeypox with skin lesion image data using a
mobile application.

Related works

Human monkeypox investigation with computer
vision techniques

The first human case of monkeypox appeared in 1970. Thus,
the human monkeypox studies in the literature date back
to the 1970s [20–22]. The research on human monkeypox
has recently increased as the outbreak of monkeypox infec-
tion has been quickly spreading worldwide. Recently, some
researchers [3, 23] have mentioned in their studies that more
research is needed on this topic.

Although the human monkeypox disease dates back to
ancient times, computer vision based studies for preleminary
diagnosis of the disease have recently begun. There are very
few studies on it currently. In [24], the authors collected
monkeypox-infected image data from Google and analyzed
the data with deep learning methods. They used modified
VGG16 network for this purpose. In [6] the authors created a
human monkeypox image database and classified them. For
classification, they used four deep learining networks. These
are VGG16, ResNet50, InceptionV3 and Ensemble. Their
results are reported in Experimental results section in this
study (Table 5), and compared with proposed system results.

Apart from the studies mentioned above, as a contribu-
tion to the literature, we propose a mobile application that
classifies skin lesions of patients as monkeypox-infected vs.
non-infected.

Mobile applications for identification of skin lesion
images

Smartphones are becoming increasingly significant in moni-
toring and delivery of healthcare. With the help of mobile
healthcare applications, people can quickly get information
about their diseases and can be followed by their therapists.
In addition, this task does not need additional device costs.
The patients can receive various health services from the
mobile device they are already accustomed to [25].

Journal of Medical Systems (2022) 46:7979 Page 2 of 10

1 3

There are variety of mobile applications to improve health-
care [25–28]. Some of them are developed for identification
of skin lesions. In [29, 30], the authors developed a mobile
system to diagnose skin cancer lesions. They used deep
learning in their studies. In [31], the authors presented a
mobile application that acquires and identifies moles in skin
images and classifies them according to their severity into
melanoma, nevus, and benign lesion. In [32], the authors
developed a image-processing based smartphone applica-
tion for psoriasis segmentation and classification. They used
image processing and computer vision techniques.

Methodology

The overall system flow is illustrated in Fig. 1. First, the
human monkeypox lesion images have been prepared for
training using image preprocessing methods. In this stage,
we have normalized the pixel values from [0, 255] to [-1,
1]. Then, the system has been trained with the transfer
learning method using pre-trained networks. Various pre-
trained networks have been used and their performances
have been compared in this step. The training and testing
steps have been applied on Matlab 2022a. Afterward, the
network with the best performance was recreated using
TensorFlow. The TensorFlow model has been converted

to the TensorFlow Lite model [33, 34] for use on mobile
and edge devices. Lastly, an Android mobile application
has been developed to detect monkeypox using the Ten-
sorFlow Lite model. When launched, the mobile applica-
tion automatically opens the device’s camera and takes
the real-time video stream. It extracts image frames from
the stream, classifies them, and outputs the detection as
positive or negative.

Image classification using deep transfer learning

Deep learning approaches allow automatic learning of
complex features needed for visual pattern recognition.
Convolutional Neural Networks (CNN) is a type of deep
learning approach. CNN has been used for several com-
puter vision tasks such as facial expression recognition
[35, 36], text recognition [37], face recognition [38], gen-
der classification [39], age classification [40], and action
recognition [41]. CNN has also recently shown outstand-
ing performance in biomedical applications, including pat-
tern recognition and computer vision [42–45].

CNNs are structured with different combinations of
convolution, pooling, and fully connected layers. In the
convolution layer, filters are convolved with the input data.
The convolution process is shown in Eq. (1) [46].

Video
Stream

Image
Preprocessing

positive

Transfer Leraning
(Pre-trained Network)

Monkeypox Dataset

TensorFlow
Model

Converter
TensorFlow

Lite
Model

Metadata Metadata
Embeding

TensorFlow Lite
Model with
Metadata

Fig. 1   A perspective of the proposed method

Journal of Medical Systems (2022) 46:79 Page 3 of 10 79

1 3

In the equation, I represents an input image with two dimen-
sions, K represents a two-dimensional kernel, S represents
the two-dimensional output after the convolution process.
(i,j) are matrix indexes and (m,n) are filter sizes.

Convolutional layers are often followed by a non-linear
activation layer. ReLu activation function has been used
in this study. The pooling layer reduces the input size in
width and height. The dropout layer is used to prevent
overfitting in the CNNs. The fully connected layer is
structured just before the classification layer. It connects
to all nodes in the previous layer.

After the CNN model design, the next step is determin-
ing filter numbers, the value of strides, and dimensions.
Then, the network is trained using the feed-forward strat-
egy. Feed-forward means information is taken in the first
layer and forwarded through the following layers. In the
last layer, the error value is calculated. In this calculation,
the produced result by the network and the target result
are used. In this study, cross-entropy loss function shown
in Eq. (2) [47] has been used.

In the equation, N and K are the number of observations
and classes, respectively. Y is the input, and T is the target.

In deep learning, instead of designing a network from
scratch, a network prepared for a task can be used for
another purpose. That is called transfer learning. Transfer
learning takes features learned on one problem and lever-
ages them on a new problem [48]. For example, a network
that learns features of object detection can be used for
a disease diagnosis. In this study, different pre-trained
networks have been used for the human monkeypox clas-
sification task. For this purpose, some modifications have
been made in the last layers of the network. The last layer
with learnable weights in the networks is a fully con-
nected layer. In this study, these fully connected layers

(1)
S(i, j) = (I ∗ K)(i, j)

=
∑

m

∑

n

I(i + m, j + n)K(m, n)

(2)loss = −
1

N

N
∑

n=1

K
∑

i=1

TnilnYni

have been replaced with a new fully connected layer
with 2 outputs. Thus, the networks were prepared for the
classification.

The used pre-trained networks and their properties are
given in Table 1. The main purpose of this study is to
develop a mobile application for human monkeypox clas-
sification. Thus, we select low-size and parameter models
to run speedily on mobile devices.

Mobile application for human monkeypox detection

The first step in application development is to create a
problem statement. The problem statement of this study
is the need for an application to detect monkeypox lesions
and inform the user with the help of a mobile device and
its camera. According to this problem statement, three
main requirements emerge.

•	 The users should be able to detect the lesion using a
mobile device.

•	 The video stream from the mobile device’s camera
should be gathered and provided both to the user and
the subsystem that performs prediction.

•	 The application should perform prediction, and the
users should see the prediction results on the device’s
screen.

The authors chose to use smartphones with Android
operating system (OS) [49] to meet the first requirement.
Android OS is a mobile platform that powers devices like
smartphones, tablets, smartwatches, car infotainment sys-
tems, and smart televisions. Therefore, the development of
an Android mobile application has been decided. There are
three main ways to develop an Android application. The
first one is to use the tools of the Android ecosystem [50]
and develop a native Android mobile application solely for
the Android platform. The second one is to use a multi-
platform framework like React Native [51], Flutter [52],
Kotlin Multiplatform Mobile (KMM) [53] and develop
an application that targets multiple platforms. The third
option is to use Progressive Web Applications (PWAs)
[54] again for the development of multi-platform mobile
applications. The authors decided to utilize the Android
ecosystem tools for this study. Therefore, the development
has been carried out using Android Studio (Chipmunk
2021.2.1) integrated development environment (IDE).
To develop an Android application, an Android standard
development kit (SDK) is needed with Android Studio. In
this study, Android 12 SDK, in other words, application
programming interface (API) level 31 has been used. The
Android platform supports multiple languages like Java
and Kotlin. In this study, Java programming language has
been chosen.

Table 1   Details of the pre-trained networks used as feature extractor

Network Name Depth Size (MB) Parameters Input Size

ResNet18 18 44 11.7 224x224
GoogleNet 22 27 7.0 224x224
EfficientNetb0 82 20 5.3 224x224
NasnetMobile * 20 5.3 224x224
ShuffleNet 50 5.4 1.4 224x224
MobileNetv2 53 13 3.5 224x224

Journal of Medical Systems (2022) 46:7979 Page 4 of 10

1 3

The camera of the Android smartphone should be
accessed, and the frames of the video stream should be
gathered to meet the second requirement. For camera appli-
cations, the Android platform provides two APIs: Camera2
API and CameraX API. The authors chose to use Cam-
era2 API. The minimum requirement for Camera2 API is
Android 5.0 SDK (API level 21). That means the developed
application can run on smartphones that have Android 5.0
Lollipop and higher.

For the third requirement, a machine learning (ML)
library compatible with mobile and edge devices is needed.
Today, ML tasks can be handled using mobile applications.
One way of achieving this is getting help from TensorFlow
Lite [33, 34]. The TensorFlow Lite is a library that helps to
run ML models on mobile and edge devices. It is optimized
to handle machine learning tasks on resource constraint
mobile and edge devices. Currently, the TensorFlow Lite
binary is approximately 1MB in size when all supported
operators are linked for 32-bit ARM builds. It supports
Android, iOS, and embedded Linux devices. It also supports
microcontrollers. The TensorFlow Lite library can use the
hardware accelerator on the mobile device, if any, by get-
ting help from the Android Neural Networks API (NNAPI).
There is multiple programming language support. The
library can be used with Java, Python, C++, Objective-C,
and Swift programming languages.

In this study, the authors used the TensorFlow Lite
library to develop a mobile application that runs on
Android devices. The development has been carried out
using Java programming language.

The design decisions regarding the development are
shown in Table 2.

TensorFlow Lite uses its specific ML model format.
This format is small, portable, and can also be optimized
for fast execution. Any ML model that is prepared else-
where must be converted to this format for deployment on
Android devices. In this study, the design and development
of the deep learning network have been done on Matlab.
Afterward, the same network was realized using Tensor-
Flow [33] and TensorFlow model was created. Then, the
TensorFlow model was converted to the TensorFlow Lite
model and embedded into the Android application.

The flow of ML tasks on an Android application is shown
in Fig. 2. The mobile application first takes the input data for
prediction. Then the data is converted to a different format
for use by TensorFlow Lite. This format is called a tensor.
A tensor is a multidimensional NumPy [55] array. Then, the
tensor is given to the TensorFlow Lite runtime. The Tensor-
Flow Lite library provides this runtime for the execution of
ML models. The runtime executes the ML model with the
provided tensor(s) and produces output as tensor(s). In other
words, it makes a prediction. In the TensorFlow Lite context,
this phase is called inference. Lastly, these tensors are inter-
preted as prediction results.

The TensorFlow Lite library provides two APIs: Ten-
sorFlow Lite Task API and TensorFlow Lite Interpreter
API. Both of them can be used for ML tasks in Android
applications. The TensorFlow Lite Interpreter API is a
low-level API. The TensorFlow Lite Task API is a high-
level API that wraps the functionality of the TensorFlow
Lite Interpreter API. In this study, TensorFlow Lite Task
API has been used. From the user’s point of view, one of
the differences between these two APIs is the metadata
requirement. TensorFlow Lite Task API requires embed-
ding the model metadata to the TensorFlow Lite model.
That is shown in Fig. 1.

Table 2   Design decisions for the mobile application

Feature Type Feature Name

Mobile Device Smartphone
Operating System Android OS
IDE Android Studio Chipmunk 2021.2.1
SDK Android 12 SDK (API level 31)
Minimum SDK Android 5.0 SDK (API level 21)
Programming Language Java
Camera API Camera2 API
ML Library TensorFlow Lite

Fig. 2   The flow of ML tasks on Android application

Journal of Medical Systems (2022) 46:79 Page 5 of 10 79

1 3

Experimental results

Dataset and data preparation

For human monkeypox classification task, Monkeypox
Skin Lesion Dataset (MSLD) [6] has been used. This
dataset has been obtained from the Kaggle website [56].
It includes binary classification data for monkeypox vs.
non-monkeypox. The non-monkeypox lesions are either
chickenpox or measles. These lesions are similar to mon-
keypox lesions.

The database was prepared for computer-aided monkey-
pox detection from skin lesion images. MSLD was created
by collecting and processing images using web-scrapping
such as news portals, publicly accessible case reports, and
websites. The database consists of three folders. These are
original images, augmented images, and Fold1. The original
images folder includes 228 images; 102 belong to monkey-
pox class, and 126 belong to non-monkeypox class. Varied
data augmentation methods were applied to original images
like hue, saturation, contrast, rotation, translation, reflection,
shear, brightness jitter, noise, and scaling. Thus, the image
number increased to 1428 and 1764 for monkeypox and non-
monkeypox, respectively. These images were stored in the
augmented images folder. The original images were divided
into training, validation, and test sets with the approximate
ratio of 70:10:20. Patient independence was maintained
while doing this. The data augmentation was only applied
to the validation and training sets. These datasets were stored
in Fold1 folder. In the proposed study, Fold1 has been used
for the training, validation, and testing phase.

Experiments on image classification

Various pre-trained networks have been modified for the
human monkeypox classification task. All networks have
been trained with transfer learning up to 60 epochs. These
networks were originally trained to classify 1000 object
categories from the ImageNet database [57]. On the other

hand, the proposed method considers monkeypox detec-
tion as a binary classification problem. Thus, the last lay-
ers have been modified in accordance with the proposed
task. The networks have been trained to classify the images
monkeypox vs. non-monkeypox. The comparative results
for the networks are shown in Table 3. As can be seen, the
network accuracies differ according to the epoch numbers.
The best performances were achieved with MobileNetv2
and EfficientNetb0 in 60 epochs.

The EfficientNetb0 and MobileNetv2 networks, which
show the best performances for the human monkeypox
classification task, have also been evaluated in terms of
different criteria indexes. These criteria indexes, their for-
mulas, and the network results are illustrated in Table 4.

The confusion matrices of the networks EfficientNetb0
and MobileNetv2, which produced the best accuracies, are
given in Fig. 3. Figure 4 shows some visual results from
the system: (a) shows some outputs from EfficientNetb0
and (b) from MobileNetv2. These sample images are from
the test set. Although the test set includes different back-
grounds and lesions from different parts of the human
body, the system results are satisfactory.

The proposed system has been compared to the litera-
ture and the results are reported in Table 5. All studies in
the table used the same MSLD database. As seen in the
table, the proposed method that used MobileNetv2 outper-
forms other methods in terms of Precision, Sensitivity, F1
score, and Accuracy.

Table 3   Pre-tarined network performances for human monkeypox
classification task

Network Name Accuracy (%)

Epochs 15 30 45 60

ResNet18 86.87 66.67 75.56 73.33
GoogleNet 55.56 82.22 80.00 77.78
EfficientNetb0 82.22 88.89 88.89 91.11
NasnetMobile 82.22 84.44 84.44 86.67
ShuffleNet 77.78 77.78 80.00 80.00
MobileNetv2 82.22 88.89 88.89 91.11

Table 4   Objective evaluations of EfficientNetb0 and MobileNetv2

Measure Formula EfficientNetb0 MobileNetv2

Jaccard TP / (TP+FP+FN) 82.61 81.82
Precision TP/(TP+FP) 86.36 90.00
Sensitivity TP/(TP+FN) 95.00 90.00
F1 Score 2*TP/(2*TP+FP+FN) 90.48 90.00
Accuracy (TP+TN)/

(TP+TN+FP+FN)
91.11 91.11

Tr
ue

 C
la

ss

Predicted Class
Monkeypox Others

19 1

3 22Others

Monkeypox

Tr
ue

 C
la

ss

Predicted Class
Monkeypox Others

18 2

2 23Others

Monkeypox

(a) (b)

Fig. 3   Confusion matrices of the networks which produced the best
accuracy: (a) EfficientNetb0, (b) MobileNetv2

Journal of Medical Systems (2022) 46:7979 Page 6 of 10

1 3

Experiments on mobile application

In this study, an Android mobile application has been real-
ized to detect monkeypox. Instead of developing a new
application from scratch, the authors chose to use the Image-
Classifier example application from TensorFlow Lite GitHub
repository [58] as a basis for this work. The TensorFlow Lite
GitHub repository provides several example applications for
ML, like text classification, pose estimation, image segmen-
tation, and image classification. The example applications
are licensed under the open source Apache License Version
2 [59]. The ImageClassification example application has
been downloaded and modified for the use of monkeypox
detection.

The realized application uses the camera of the Android
device for input. For this purpose, the Camera2 API of the
Android platform has been used. In the first phase, the video
stream from the camera is provided to the application.

The video stream frames are converted from YUV to
RGB in the second phase. The frames are also previewed on
the interface of the application. The RGB image is processed
to make it available for use in the TensorFlow Lite runtime.

In the third phase, the prepared image is provided to the
ImageClassifier object of the TensorFlow Lite library. The
ImageClassifier object makes inference (prediction) based
on the TensorFlow Lite model and returns a list of recogni-
tions for each image frame. The recognition list contains the

classes and their possibilities. In our case, the ImageClassi-
fier returns positive and negative classes with their respec-
tive possibilities.

In the last phase, the application shows the name of
the class with the higher possibility on the top left por-
tion of the device screen. The application also indicates
the inference time in milliseconds. The inference time
is the prediction time. Some example screenshots of the
developed Android application are shown in Fig. 5. The
first and second screenshots are a sample of true positive,
the third one is a true negative, and the last one is a false
positive. Although sometimes it produces false responses,
in general, the system produces satisfactory results. System
performance can be further increased by using a dataset
containing more images.

The application has been compiled with the minimum
Android SDK version 21. Then, it has been deployed and
successfully run on three different Android devices for test-
ing. During the run-time, inference times for devices have
been observed, and then the average inference time for
each device has been calculated. The devices are shown in
Table 6. As seen from the table, there is a difference between
inference times, although the core count and the frequency
of the devices’ CPUs are similar. This difference may be
related to the different characteristics of the mobile pro-
cessor platforms of the devices like GPU and image signal
processor.

Fig. 4   Some visual results of
the networks: (a) Efficient-
Netb0, (b) MobileNetv2

Tr
ue

 C
la

ss

Predicted Class
Monkeypox Others

Others

Monkeypox

Tr
ue

 C
la

ss

Predicted Class
Monkeypox Others

Others

Monkeypox

(a) (b)

Table 5   Comparative results
with other studies that used the
same MSLD database

Network Jaccard Precision Sensitivity F1 Score Accuracy

VGG16 [6] - 0.85 0.81 0.83 81.48
ResNet50 [6] - 0.87 0.83 0.84 82.96
InceptionV3 [6] - 0.74 0.81 0.78 74.07
Ensemble [6] - 0.84 0.79 0.81 79.26
Proposed(MobileNetv2) 0.81 0.90 0.90 0.90 91.11

Journal of Medical Systems (2022) 46:79 Page 7 of 10 79

1 3

Conclusion

This study presents a mobile system to automatically detect
human monkeypox skin lesions. For this purpose, first, a deep-
transfer learning-based system has been trained using MSLD
database images. In this stage, different pre-trained networks
have been retrained using the transfer learning approach, and
the network results have been compared. Then, MobileNetv2
which showed one of the best performance in terms of accuracy
as 91.11% was adapted into an Android mobile application. The
proposed study was also compared with other studies using the
same database and produced better results.

The system allows monkeypox suspects to conduct pre-
liminary screening from home comfort using their mobile
devices. It enables infected people to take action in the early
stages of the infection. Therefore, the system helps to reduce
the spread rate of the human monkeypox outbreak. This
study is one of the pioneering studies for visual monkeypox
detection using mobile devices.

In this study, the authors chose to use the tools provided
by the Android platform and developed an Android applica-
tion. However, as mentioned above, a multi-platform frame-
work like React Native, Flutter, and KMM can also be used
to create mobile applications to target multiple platforms. In

addition, PWAs are another alternative to developing multi-
platform mobile applications.

In the future, the usage of multi-platform frameworks and
PWAs for solving these kinds of problems can be exercised.
Also, the proposed system’s network can be made more
robust using more stable and comprehensive monkeypox
datasets. In addition, the proposed system can be extended
to classify different skin diseases.

Author contributions  All authors of this study developed the system,
wrote and reviewed the manuscript

Funding  The authors did not receive support from any organization
for the submitted work.

Data availability  Data used in this article were obtained from the Kag-
gle (https://​www.​kaggle.​com/​datas​ets/​nafin​59/​monke​ypox-​skin-​lesion-​
datas​et?​resou​rce=​downl​oad).

Declarations 

Ethics Approval  Not applicable

Research involving human and animal participants  Not applicable

Fig. 5   Sample screenshots from the mobile application. The first and second screenshots are sample of true positive, third one is true negative
and the last one is false positive

Table 6   Device information and
performance

Device Model Android Version CPU RAM Inference Time

Device 1 7.1.1 Octa-core Max 2.0GHz 3GB 197 ms
Device 2 10 Octa-core Max 2.2GHz 4GB 91 ms
Device 3 11 Octa-core Max 2.0GHz 4GB 138 ms

Journal of Medical Systems (2022) 46:7979 Page 8 of 10

https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset?resource=download
https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset?resource=download

1 3

Consent to participate  Not applicable

Consent for publication  Not applicable

Conflicts of interest  The authors declare they have no financial interests

References

	 1.	 WHO: Multi-country monkeypox outbreak in non-endemic
countries:Update. Accessed 20 July 2022 (2022). https://​www.​
who.​int/​emerg​encies/​disea​se-​outbr​eak-​news/​item/​2022-​DON388

	 2.	 Bunge, E.M., Hoet, B., Chen, L., Lienert, F.,Weidenthaler, H.,
Baer, L.R., Steffen, R.: The changing epidemiology of human
monkeypoxa potential threat? a systematic review. PLoS
Neglected Tropical Diseases 16, 0010141 (2022). https://​doi.​
rog/​10.​1371/​journ​al.​pntd.​00101​41

	 3.	 Bragazzi, N.L., Kong, J.D., Mahroum, N., Tsigalou, C.,
KhamisyFarah, R., Converti, M., Wu, J.: Epidemiological trends
and clinical features of the ongoing monkeypox epidemic: A
preliminary pooled data analysis and literature review. Journal
of Medical Virology (2022). https://​doi.​org/​10.​1002/​jmv.​27931

	 4.	 Taylor, L.: Monkeypox: Who declares a public health emer-
gency of international concern. BMJ, 1874 (2022). https://​doi.​
org/​10.​1136/​bmj.​o1874

	 5.	 Zumla, A., Valdoleiros, S.R., Haider, N., Asogun, D., Ntoumi,
F., Petersen, E., Kock, R.: Monkeypox outbreaks outside
endemic regions: scientific and social priorities. The Lancet
Infectious Diseases 22, 929–931 (2022). https://​doi.​org/​10.​
1016/​S1473-​3099(22)​00354-1

	 6.	 Ali, S.N., Ahmed, M.T., Paul, J., Jahan, T., Sani, S.M.S., Noor,
N., Hasan, T.: Monkeypox skin lesion detection using deep
learning models: A preliminary feasibility study. arXiv preprint
arXiv:​2207.​03342 (2022)

	 7.	 Ding, C., Tao, D.: Robust face recognition via multimodal deep
face representation. IEEE Transactions on Multimedia 17, 2049–
2058 (2015). https://​doi.​org/​10.​1109/​TMM.​2015.​24770​42

	 8.	 Liu, J., Gu, Y., Kamijo, S.: Customer behavior classification
using surveillance camera for marketing. Multimedia Tools and
Applications 76, 6595–6622 (2017). https://​doi.​org/​10.​1007/​
s11042-​016-​3342-1

	 9.	 Ozbay, F.A., Alatas, B.: Fake news detection within online
social media using supervised artificial intelligence algorithms.
Physica A: Statistical Mechanics and its Applications 540,
123174 (2020). https://​doi.​org/​10.​1016/j.​physa.​2019.​123174

	10.	 Yan, K., Wang, X., Lu, L., Summers, R.M.: Deeplesion: auto-
mated mining of large-scale lesion annotations and universal
lesion detection with deep learning. Journal of Medical Imaging
5, 1 (2018). https://​doi.​org/​10.​1117/1.​JMI.5.​3.​036501

	11.	 Oztel, I., Yolcu, G., Ersoy, I., White, T.A., Bunyak, F.: Deep learn-
ing approaches in electron microscopy imaging for mitochondria
segmentation. International Journal of Data Mining and Bioinfor-
matics 21, 91 (2018). https://​doi.​org/​10.​1504/​IJDMB.​2018.​096398

	12.	 Sahin VH, Oztel I (2021) Developing a message broadcasting
system for natural disasters. International Journal of Engineer-
ing Research and Development 13:13–21, https://​doi.​org/​10.​
29137/​umagd.​664730

	13.	 Gonzlez, D., Patricio, M.A., Berlanga, A., Molina, J.M.: A
super resolution enhancement of uav images based on a con-
volutional neural network for mobile devices. Personal and
Ubiquitous Computing 26, 1193–1204 (2022). https://​doi.​org/​
10.​1007/​s00779-​019-​01355-5

	14.	 Joshi, R., Joseph, A., Mihandoust, S., Madathil, K.C., Cotten,
S.R.: A mobile application-based home assessment tool for

patients undergoing joint replacement surgery: A qualitative
feasibility study. Applied Ergonomics 103, 103796 (2022).
https://​doi.​org/​10.​1016/j.​apergo.​2022.​103796

	15.	 Buono, F.D., Lalloo, C., Larkin, K., Zempsky, W.T., Ball, S.,
Grau, L.E., Pham, Q., Stinson, J.: Innovation in the treatment
of persistent pain in adults with neurofibromatosis type 1 (nf1):
Implementation of the icancope mobile application. Contempo-
rary Clinical Trials Communications 25, 100883 (2022). https://​
doi.​org/​10.​1016/j.​conctc.​2021.​100883

	16.	 Hung, S.-W., Chang, C.-W., Ma, Y.-C.: A new reality: Exploring
continuance intention to use mobile augmented reality for enter-
tainment purposes. Technology in Society 67, 101757 (2021).
https://​doi.​org/​10.​1016/j.​techs​oc.​2021.​101757

	17.	 Amazon: Kindle for Android. 2022. https://​www.​amazon.​com/​dp/​
B004D​LPXAO, Accessed 4 Aug 2022

	18.	 Coca, L.-G., Cusmuliuc, C.G., Iftene, A.: Automatic tarmac crack
identificationapplication. Procedia Computer Science 192, 478–
486 (2021). https://​doi.​org/​10.​1016/j.​procs.​2021.​08.​049

	19.	 Dammak, B., Turki, M., Cheikhrouhou, S., Baklouti, M., Mars, R.,
Dhahbi, A.: Lorachaincare: An iot architecture integrating block-
chain and lora network for personal health care data monitoring.
Sensors 22(4) (2022). https://​doi.​org/​10.​3390/​s2204​1497

	20.	 Breman, J.G., Kalisa-Ruti, Steniowski, M.V., Zanotto, E., Gromyko,
A.I., Arita, I.: Human monkeypox, 1970-79. Bulletin of the World
Health Organization 58, 165–82 (1980)

	21.	 Ladnyj, I.D., Ziegler, P., Kima, E.: A human infection caused by
monkeypox virus in basankusu territory, democratic republic of the
congo. Bulletin of the World Health Organization 46, 593–7 (1972)

	22.	 Heymann, D.L., Szczeniowski, M., Esteves, K.: Re-emergence of
monkeypox in africa: a review of the past six years. British Medi-
cal Bulletin 54, 693–702 (1998)

	23.	 Wilson, M.E., Hughes, J.M., McCollum, A.M., Damon, I.K.:
Human monkeypox. Clinical Infectious Diseases 58, 260–267
(2014). https://​doi.​org/​10.​1093/​cid/​cit703

	24.	 Ahsan, M.M., Uddin, M.R., Farjana, M., Sakib, A.N., Momin,
K.A., Luna, S.A.: Image data collection and implementation of
deep learning-based model in detecting monkeypox disease using
modified vgg16 (2022). http://​arxiv.​org/​abs/​2206.​01862

	25.	 Watts, P., Breedon, P., Nduka, C., Neville, C., Venables, V.,
Clarke, S.: Cloud computing mobile application for remote
monitoring of bells palsy. Journal of Medical Systems 44, 149
(2020). https://​doi.​org/​10.​1007/​s10916-​020-​01605-7

	26.	 Mamoun, R., Nasor, M., Abulikailik, S.H.: Design and develop-
ment of mobile healthcare application prototype using flutter. In:
2020 International Conference on Computer, Control, Electrical,
and Electronics Engineering (ICCCEEE), pp. 1–6 (2021). https://​
doi.​org/​10.​1109/​ICCCE​EE496​95.​2021.​94295​95

	27.	 Cho, N.-B., Cho, S.-R., Choi, S.H., You, H., Nam, S.I., Kim,
H.: Short-term and long-term efficacy of oropharyngolaryngeal
strengthening training on voice using a mobile healthcare applica-
tion in elderly women. Communication Sciences & Disorders 26,
219–230 (2021). https://​doi.​org/​10.​12963/​csd.​21799

	28.	 Berger-Groch, J., Keitsch, M., Reiter, A., Weiss, S., Frosch, K., Priemel,
M.: The use of mobile applications for the diagnosis and treatment of
tumors in orthopaedic oncology a systematic review. Journal of Medical
Systems 45, 99 (2021).10.1007/s10916-021-01774-z

	29.	 A mobile augmented reality application for supporting real-time
skin lesion analysis based on deep learning. Journal of Real-Time
Image Processing 18, 1247–1259 (2021). https://​doi.​org/​10.​1007/​
s11554-​021-​01109-8

	30.	 Krohling, B., Castro, P.B.C., Pacheco, A.G.C., Krohling, R.A.: A
smartphone based application for skin cancer classification using
deep learning with clinical images and lesion information (2021)

	31.	 Doukas, C., Stagkopoulos, P., Kiranoudis, C.T., Maglogiannis, I.:
Automated skin lesion assessment using mobile technologies and

Journal of Medical Systems (2022) 46:79 Page 9 of 10 79

https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388
https://doi.rog/10.1371/journal.pntd.0010141
https://doi.rog/10.1371/journal.pntd.0010141
https://doi.org/10.1002/jmv.27931
https://doi.org/10.1136/bmj.o1874
https://doi.org/10.1136/bmj.o1874
https://doi.org/10.1016/S1473-3099(22)00354-1
https://doi.org/10.1016/S1473-3099(22)00354-1
https://arxiv.org/abs/2207.03342
https://doi.org/10.1109/TMM.2015.2477042
https://doi.org/10.1007/s11042-016-3342-1
https://doi.org/10.1007/s11042-016-3342-1
https://doi.org/10.1016/j.physa.2019.123174
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1504/IJDMB.2018.096398
https://doi.org/10.29137/umagd.664730
https://doi.org/10.29137/umagd.664730
https://doi.org/10.1007/s00779-019-01355-5
https://doi.org/10.1007/s00779-019-01355-5
https://doi.org/10.1016/j.apergo.2022.103796
https://doi.org/10.1016/j.conctc.2021.100883
https://doi.org/10.1016/j.conctc.2021.100883
https://doi.org/10.1016/j.techsoc.2021.101757
https://www.amazon.com/dp/B004DLPXAO
https://www.amazon.com/dp/B004DLPXAO
https://doi.org/10.1016/j.procs.2021.08.049
https://doi.org/10.3390/s22041497
https://doi.org/10.1093/cid/cit703
http://arxiv.org/abs/2206.01862
https://doi.org/10.1007/s10916-020-01605-7
https://doi.org/10.1109/ICCCEEE49695.2021.9429595
https://doi.org/10.1109/ICCCEEE49695.2021.9429595
https://doi.org/10.12963/csd.21799
https://doi.org/10.1007/s11554-021-01109-8
https://doi.org/10.1007/s11554-021-01109-8

1 3

cloud platforms, pp. 2444–2447 (2012). https://​doi.​org/​10.​1109/​
EMBC.​2012.​63464​58

	32.	 Vasefi, F., MacKinnon, N.B., Horita, T., Shi, K., Munia, T.T.K.,
Tavakolian, K., Alhashim, M., Fazel-Rezai, R.: A smartphone appli-
cation for psoriasis segmentation and classification (conference pres-
entation), p. 52 (2017). https://​doi.​org/​10.​1117/​12.​22615​05

	33.	 Abadi, M., Agarwal, A., Barham, P., et al: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems (2015). https://​doi.​org/​
10.​5281/​zenodo.​47241​25, https://​www.​tenso​rflow.​org/

	34.	 TensorFlow Lite: TensorFlow Lite ML for Mobile and Edge
Devices. https://​www.​tenso​rflow.​org/​lite, Accessed 20 Jul 2022

	35.	 Mayya, V., Pai, R.M., Pai, M.M.M.: Automatic facial expression
recognition using dcnn. Procedia Computer Science 93, 453–461
(2016). https://​doi.​org/​10.​1016/j.​procs.​2016.​07.​233

	36.	 Xie, S., Hu, H.: Facial expression recognition with frr-cnn. Elec-
tronics Letters53, 235–237 (2017). https://​doi.​org/​10.​1049/​el.​
2016.​4328

	37.	 Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Deep
structured output learning for unconstrained text recognition
(2014)

	38.	 Wang, P., Wang, P., Fan, E.: Violence detection and face recog-
nition based on deep learning. Pattern Recognition Letters 142,
20–24 (2021). https://​doi.​org/​10.​1016/j.​patrec.​2020.​11.​018

	39.	 Duan, M., Li, K., Yang, C., Li, K.: A hybrid deep learning cnnelm
for age and gender classification. Neurocomputing 275, 448–461
(2018). https://​doi.​org/​10.​1016/j.​neucom.​2017.​08.​062

	40.	 Aydogdu, M.F., Celik, V., Demirci, M.F.: Comparison of Three
Different CNN Architectures for Age Classification. In: 2017 IEEE
11th International Conference on Semantic Computing (ICSC), pp.
372–377 (2017). https://​doi.​org/​10.​1109/​ICSC.​2017.​61

	41.	 Gkioxari, G., Girshick, R., Malik, J.: Contextual action recogni-
tion with r*cnn. In: Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV) (2015)

	42.	 Al-Milaji, Z., Ersoy, I., Hafiane, A., Palaniappan, K., Bunyak, F.:
Integrating segmentation with deep learning for enhanced clas-
sification of epithelial and stromal tissues in h & e images. Pat-
tern Recognition Letters 119, 214–221 (2019). https://​doi.​org/​10.​
1016/j.​patrec.​2017.​09.​015

	43.	 Bao, R., Al-Shakarji, N.M., Bunyak, F., Palaniappan, K.: Dmnet:
Dualstream marker guided deep network for dense cell segmenta-
tion and lineage tracking. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) Workshops, pp.
3361–3370 (2021)

	44.	 Hamad, A., Ersoy, I., Bunyak, F.: Improving nuclei classification
performance in h&e stained tissue images using fully convolutional
regression network and convolutional neural network. In: 2018 IEEE
Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–6
(2018). https://​doi.​org/​10.​1109/​AIPR.​2018.​87073​97

	45.	 Shuvo, M.M.H., Kassim, Y.M., Bunyak, F., Glinskii, O.V., Xie,
L., Glinsky, V.V., Huxley, V.H., Thakkar, M.M., Palaniappan, K.:
Multi-focus image fusion for confocal microscopy using u-net
regression map. In: 2020 25th International Conference on Pat-
tern Recognition (ICPR), pp. 4317–4323 (2021). https://​doi.​org/​
10.​1109/​ICPR4​8806.​2021.​94121​22

	46.	 Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT
Press, USA (2016). http://​www.​deepl​earni​ngbook.​org

	47.	 Matlab: crossentropy. https://​www.​mathw​orks.​com/​help/​deepl​
earni​ng/​ref/​dlarr​ay.​cross​entro​py.​html, Accessed 20 Jul 2022

	48.	 TensorFlow Guide: Transfer learning and fine-tuning. Accessed 20
July2022. https://​www.​tenso​rflow.​org/​guide/​keras/​trans​fer_​learn​ing,
Accessed 20 Jul 2022

	49.	 Google: Android OS. https://​www.​andro​id.​com, Accessed 4
Aug 2022

	50.	 Google: Mobile App Developer Tools - Android Develop-
ers. https://​devel​oper.​andro​id.​com, Accessed 4 Aug 2022

	51.	 Platforms, M.: React Native https://​react​native.​dev, Accessed 4
Aug 2022

	52.	 Google: React Native. https://​flutt​er.​dev, Accessed 4 Aug 2022
	53.	 JetBrains: Kotlin Multiplatform Mobile. https://​kotli​nlang.​org/​

docs/​multi​platf​orm-​mobile-​getti​ng-​start​ed.​html, Accessed 4
Aug 2022

	54.	 Mozilla: Progressive web apps (PWAs) MDN. https://​devel​oper.​
mozil​la.​org/​en-​US/​docs/​Web/​Progr​essive_​web_​apps, Accessed 4
Aug 2022

	55.	 NumPy: NumPy Homepage. https://​numpy.​org, Accessed 20 Jul
2022

	56.	 Kaggle: Monkeypox Skin Lesion Dataset. https://​www.​kaggle.​
com/​datas​ets/​nafin​59/​monke​ypox-​skin-​lesion-​datas​et, Accessed
20 Jul 2022

	57.	 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet:
A Large-Scale Hierarchical Image Database. In: CVPR09 (2009)

	58.	 TensorFlow: TensorFlow Examples Repository. https://​github.​
com/​tenso​rflow/​examp​les, Accessed 20 Jul 2022

	59.	 The Apache Software Foundation: Apache License Version
2.0. https://​apache.​org/​licen​ses/​LICEN​SE-2.0, Accessed 20 Jul
2022

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

Journal of Medical Systems (2022) 46:7979 Page 10 of 10

https://doi.org/10.1109/EMBC.2012.6346458
https://doi.org/10.1109/EMBC.2012.6346458
https://doi.org/10.1117/12.2261505
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.5281/zenodo.4724125
https://www.tensorflow.org/
https://www.tensorflow.org/lite
https://doi.org/10.1016/j.procs.2016.07.233
https://doi.org/10.1049/el.2016.4328
https://doi.org/10.1049/el.2016.4328
https://doi.org/10.1016/j.patrec.2020.11.018
https://doi.org/10.1016/j.neucom.2017.08.062
https://doi.org/10.1109/ICSC.2017.61
https://doi.org/10.1016/j.patrec.2017.09.015
https://doi.org/10.1016/j.patrec.2017.09.015
https://doi.org/10.1109/AIPR.2018.8707397
https://doi.org/10.1109/ICPR48806.2021.9412122
https://doi.org/10.1109/ICPR48806.2021.9412122
http://www.deeplearningbook.org
https://www.mathworks.com/help/deeplearning/ref/dlarray.crossentropy.html
https://www.mathworks.com/help/deeplearning/ref/dlarray.crossentropy.html
https://www.tensorflow.org/guide/keras/transfer_learning
https://www.android.com
https://developer.android.com
https://reactnative.dev
https://flutter.dev
https://kotlinlang.org/docs/multiplatform-mobile-getting-started.html
https://kotlinlang.org/docs/multiplatform-mobile-getting-started.html
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://numpy.org
https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
https://github.com/tensorflow/examples
https://github.com/tensorflow/examples
https://apache.org/licenses/LICENSE-2.0

	Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application
	Abstract
	Introduction
	Related works
	Human monkeypox investigation with computer vision techniques
	Mobile applications for identification of skin lesion images

	Methodology
	Image classification using deep transfer learning
	Mobile application for human monkeypox detection

	Experimental results
	Dataset and data preparation
	Experiments on image classification
	Experiments on mobile application

	Conclusion
	References

