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Abstract

Omic data analysis is steadily growing as a driver of basic and applied molecular biology

research. Core to the interpretation of complex and heterogeneous biological phenotypes

are computational approaches in the fields of statistics and machine learning. In parallel,

constraint-based metabolic modeling has established itself as the main tool to investigate

large-scale relationships between genotype, phenotype, and environment. The develop-

ment and application of these methodological frameworks have occurred independently for

the most part, whereas the potential of their integration for biological, biomedical, and bio-

technological research is less known. Here, we describe how machine learning and con-

straint-based modeling can be combined, reviewing recent works at the intersection of both

domains and discussing the mathematical and practical aspects involved. We overlap sys-

tematic classifications from both frameworks, making them accessible to nonexperts.

Finally, we delineate potential future scenarios, propose new joint theoretical frameworks,

and suggest concrete points of investigation for this joint subfield. A multiview approach

merging experimental and knowledge-driven omic data through machine learning methods

can incorporate key mechanistic information in an otherwise biologically-agnostic learning

process.

Introduction

Today, the search for biological mechanisms at molecular scale can leverage an unprecedented

amount of information. With the recent development of high-throughput technologies, data

collection has received an enormous impulse that has radically changed the perspective toward

molecular biology. The main protagonist of this shift is omic data—namely, experimental pro-

files with large coverage over multiple biological domains. Several levels of knowledge have

become associated with emerging omic technologies [1–3]. The most widespread to date

include DNA sequencing (genomics), microarrays and RNA sequencing (transcriptomics),

DNA methylation and histone modifications (epigenomics), and protein or metabolite mass

spectrometry (proteomics and metabolomics). As technology moves forward, its associated

costs decrease, and a growing wealth of data is being generated. Omic data therefore provide

direct and convenient access to genetic variability and cellular activity. Undoubtedly, these

datasets can be useful only if processed and deciphered through appropriate analytical tools.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007084 July 11, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zampieri G, Vijayakumar S, Yaneske E,

Angione C (2019) Machine and deep learning meet

genome-scale metabolic modeling. PLoS Comput

Biol 15(7): e1007084. https://doi.org/10.1371/

journal.pcbi.1007084

Editor: Jens Nielsen, Chalmers University of

Technology, SWEDEN

Published: July 11, 2019

Copyright: © 2019 Zampieri et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: CA received funding from the

Biotechnology and Biological Sciences Research

Council (BBSRC), grants CBMNet-PoC-D0156 and

NPRONET- BIV-015 (BB/L013754/1) (URLs:

https://bbsrc.ukri.org/; http://www.cbmnetnibb.net/

; https://npronet.com/). GZ and CA were also

supported by the "Health and wellbeing" grand

challenge at Teesside University (URL: https://

www.tees.ac.uk/sections/research/healthwellbeing/

index.cfm). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-4518-5913
http://orcid.org/0000-0001-6357-0439
http://orcid.org/0000-0002-3140-7909
https://doi.org/10.1371/journal.pcbi.1007084
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007084&domain=pdf&date_stamp=2019-07-11
https://doi.org/10.1371/journal.pcbi.1007084
https://doi.org/10.1371/journal.pcbi.1007084
http://creativecommons.org/licenses/by/4.0/
https://bbsrc.ukri.org/
http://www.cbmnetnibb.net/
https://npronet.com/
https://www.tees.ac.uk/sections/research/healthwellbeing/index.cfm
https://www.tees.ac.uk/sections/research/healthwellbeing/index.cfm
https://www.tees.ac.uk/sections/research/healthwellbeing/index.cfm


A fundamental tool for the inspection, interpretation, and exploitation of omic data is

machine (and deep) learning, which has arguably fueled several leaps forward in recent

research and is expected to increasingly drive it in the near future [4, 5]. Machine learning

can be described as a set of algorithms that improve prediction accuracy through experience,

given a certain processable input from which they are able to learn and generalize. Beyond

their predictive power, their diffusion in bioinformatics and computational biology is also due

to the limited assumptions they require compared with other statistical or computational

approaches. This makes them essential in a number of tasks, ranging from the understanding

of RNA folding to estimating the impact of mutations on splicing and from the exploration of

gene expression profiles to reconstructing phylogenetic trees [6–9].

In parallel, the increase in data and knowledge has also favored the development of mathe-

matical models for biomolecular systems. Contrary to data-driven approaches, hypothesis-

driven analysis of large-scale omic domains typically remains prohibitive given the difficulty in

pinpointing the underlying biological mechanisms. There are, however, some exceptions.

Among the various approaches, constraint-based modeling (CBM) of metabolism is receiving

a huge impulse thanks to its wide scope and flexibility, enabling mechanistic insights into the

genotype–phenotype environment relationship via integration with omic data [10]. With

recent advances in technology, we are now able to reconstruct large-scale metabolic reaction

networks of prokaryotic and eukaryotic cells, and genome-scale metabolic models (GSMMs)

are constantly increasing in number and variety across all life kingdoms [11–15].

These two computational frameworks have mostly been used in isolation, having distinct

research communities associated with them. However, we believe that their complementary

characteristics and common mathematical bases make them particularly suitable to be com-

bined. Several works implemented this idea in various ways and were partially surveyed before

[16, 17]. Nevertheless, a comprehensive and systematic overview on this subject is lacking. In

this work, we first review the existing approaches for integrating machine learning and CBM

by compiling a thorough record of previous studies based on a combined classification of the

two frameworks. Then, we suggest possible future research lines to develop new methodologi-

cal approaches at the intersection of the two fields.

We therefore aim at providing a comprehensive and systematic catalog of existing interac-

tions between CBM and machine learning while distinguishing between the various methodo-

logical and applicative aspects concerned. In general, the central idea is that GSMMs can be

used to generate an additional omic layer: the so-called fluxomic data. The multiomic learning

considered here then integrates this newly generated omic with the ones already available. For

instance, concatenation of two datasets following normalization is a viable option. However,

we will describe why this may not be the best approach in practice. Although it is outside of

the scope of this work, we also remark that other computational techniques have successfully

been used to build on CBM approaches and study the multiomic nature of various organisms.

These include Bayesian [18] and metaheuristic optimization algorithms [19, 20], as well as

methods drawn from the theory of games [21], graphs [22], Markov chains [23], and informa-

tion [24].

In the following sections, we first concisely summarize the rationale and scope of machine

learning and CBM of metabolism. Next, we review and classify previous studies in which these

two frameworks were combined. Finally, we discuss similarities and differences among their

mathematical bases, evaluate the advantages and limitations of computationally generating

omic information, and outline aspects that have not been explored so far. To distinguish

among the different types of mathematical models considered, throughout the text we will use

the term “data driven” to refer to machine and deep learning models, whereas “knowledge

driven” will refer to constraint-based models. If the meaning is intended to be more general,
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we will simply use the term “biological model.” Overall, we show that mining and integrating

experimental and GSMM-generated multiomic data with machine learning techniques can

unveil unknown mechanisms in a sample-specific manner, hence identifying relevant targets

for biotechnology and biomedicine. Compared with approaches applying machine learning to

omic data directly, we believe that a multiview approach merging experimentally and GSMM-

generated omic data can include key mechanistic information in an otherwise biology-agnos-

tic learning process.

Data-driven exploration of biomolecular systems

The key problem in an increasingly omic-based biology is the difficulty in extracting knowl-

edge from large and complex datasets. This task can be conveniently tackled through machine

learning algorithms, many of which can be adapted to specific settings and omic types. A num-

ber of recent developments in the application of machine learning to problems in molecular

biology and biomedicine have been critically analyzed in previous surveys, along with their

limitations and challenges [4–9, 25–27]. Here, we concentrate on recalling the main character-

istics of basic methods, with a focus on those suited for the simultaneous analysis of heteroge-

neous data.

Types of machine learning approaches

A fundamental distinction in machine learning is between “supervised” and “unsupervised”

learning approaches. In supervised learning, the goal is to predict one or more targets associ-

ated with a given sample. For instance, pathogenicity resulting from mutations can be pre-

dicted starting from the sequence as a continuous risk score or a discrete risk class. Broadly

speaking, supervised learning methods can be subdivided into two main categories: classifiers,

which aim to predict sample classes (e.g., pathogenic versus nonpathogenic variants), and

regressors, whose task is to estimate numerical quantities (such as pathogenicity risk level).

Several methods, such as support vector machines (SVMs) or artificial neural networks

(ANNs), can be used to solve both classification and regression problems.

In contrast, unsupervised learning allows the exploration of data collections by deconstruct-

ing variation or correlations among samples. Unsupervised learning approaches are largely

classified as either association algorithms, which uncover latent rules or trends in data, or clus-

tering algorithms, which partition samples based on their inherent and often hidden character-

istics. Owing to the large volume of omic data, its condensation or simplification can prove to

be useful in order to facilitate its interpretation. The most popular approaches for data

dimensionality reduction are (1) principal components analysis (PCA), which reduces data

into low-dimensional representations summarizing maximum variance among variables; (2)

factor analysis, which decomposes data based on latent relationships describing the correlation

between variables; and (3) matrix factorization, which breaks down data matrices into

denoised constituents. For instance, nonnegative matrix factorization (NMF) has been used to

infer the ecological interaction networks of different gut microbial communities, starting from

high-dimensional metagenomic samples [28]. Finally, as regards clustering approaches, the

most widespread ones fall within the k-means and hierarchical clustering families, but many

other algorithms are available with several applications [29].

Machine learning for multiomic data

A single type of data usually offers a partial view on biological complexity and limits our

understanding of it. Data-integration methods can facilitate the combined analysis of multiple

omic datasets, which may be heterogeneous, in order to more closely represent genotype–
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phenotype relationships [1, 2, 30–34]. Data may be generated starting from the same samples

through different omic measurements, or even with different omic measurements across dif-

ferent samples measured in the same system. As omic domains are inherently interconnected,

signals missing from a single dataset can be compensated for in a multiomic data–driven

model, therefore decreasing the likelihood of false negatives. At the same time, the mutual

reinforcement of heterogeneous omic signals can limit false positives.

Most successful large-scale data-integration approaches are metadimensional methods,

which simultaneously span multiple data sources and can cope with variable inputs [2]. They

are broadly categorized into “concatenation-based,” “transformation-based,” and “model-

based” integration, whose general characteristics are displayed in Fig 1. Alternatively, they are

also called early-, intermediate-, and late-stage integration methods, respectively. In the

machine learning context, algorithms dealing with data from multiple heterogeneous sources

are referred to as “multiview” or “multimodal” learning algorithms [35, 36].

Concatenation-based integration (Fig 1A) fuses multiple data types together by concatenat-

ing data matrices into a single comprehensive matrix. Next, a learning algorithm is applied to

this combined matrix. An advantage of this approach is the relative ease of applying statistical

methods to any final data matrix. However, combining multiple matrices together can be chal-

lenging because of differences in scaling or inherent biases of each data type. Normalization

techniques can be used to ensure that data of different orders of magnitude converge on the

same scale, but differences in noise and variance can still affect the results [37], and as such,

Fig 1. Omic data–integration methods in machine learning. Multiview omic data–integration methods can be classified into three main domains. (a) Concatenation-

based (early-stage) integration involves combining all omic data into one large matrix before applying ML methods to obtain a data-driven model. (b) Transformation-

based (intermediate-stage) integration involves applying data transformations to obtain a uniform format, which can then permit the combination into one fused dataset.

(c) Model-based (late-stage) integration involves obtaining individual machine learning models separately for each dataset before combining the outcomes rather than

combining data prior to the learning phase. ML, machine learning.

https://doi.org/10.1371/journal.pcbi.1007084.g001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007084 July 11, 2019 4 / 24

https://doi.org/10.1371/journal.pcbi.1007084.g001
https://doi.org/10.1371/journal.pcbi.1007084


this kind of approach can lack reliability. Moreover, a data reduction step may be necessary if

too many variables make the analysis infeasible.

Transformation-based integration (Fig 1B) converts each dataset into an intermediate form

such as a “graph” or a “kernel matrix” (i.e., a matrix describing a precise, mathematically

defined similarity among observations) [38]. The integration of the two datasets is then per-

formed at the level of transformed data, hence resulting in an integrative graph or kernel

matrix, which is used in the learning phase. This approach has the advantage of preserving the

original properties of the data and the capability to combine virtually any data structure or for-

mat by applying the appropriate transformations. The main disadvantage is the difficulty of

detecting interactions among different sources, missing cross-omic correlations and therefore

resulting in hard interpretation.

Model-based integration (Fig 1C) generates machine learning models from each dataset

and subsequently combines them to produce a final data-driven model. This kind of integra-

tion can have even larger flexibility compared with the transformation-based approach. For

instance, in patient-centered studies, it is possible to combine models coming from various

groups of patients for which different data sources have been analyzed. However, this strategy

can miss interaction among different data types as well. Furthermore, it is particularly sensitive

to overfitting, so it is recommended when the data pool is extremely heterogeneous.

All these strategies are commonly applied to heterogeneous datasets obtained from different

experimental sources. However, there are also computational methods for generating data on

the omic levels for which empirical means are inadequate. In particular, we concentrate on

CBM of metabolism, as described in the following section.

Constraint-based analysis of metabolic networks

Metabolism is one of the major biological components that coparticipates with the genotype in

composing the phenotype. Metabolites can generate signals that are received at other omic levels,

whereas metabolic feedbacks can compensate or modify genetic and environmental signals

through complex nonintuitive routes [39, 40]. Unfortunately, omic-scale metabolite probing is still

immature and suffers from major limitations. The main obstacles are high biochemical heteroge-

neity and concentration variations that can occur within subsecond timescales and span several

orders of magnitude [41, 42]. In turn, metabolic reaction fluxes cannot be directly measured at

large scale, and their estimation from indirect measurements presents even more challenges [43].

Genome-scale metabolic models

Despite these experimental difficulties, metabolism remains the domain in molecular biology

with the vastest knowledge, accumulated over the past century. Reconstructions of entire met-

abolic reaction networks have immediately followed after completing the first genomes in the

late 1990s [44, 45]. GSMMs are mathematical representations of such networks and their rela-

tionships with associated enzymes and encoding genes, comprising the metabolic functionality

of a cell [46]. A vast range of computational methods have been developed upon the frame-

work of GSMMs to investigate interactions between genotype, environment, and phenotype

[17, 47, 48]. Acting as integrative platforms for multiomic data, they can also help identify

nonintuitive phenomena in metabolism [49]. Importantly, they also enable evaluation of the

complete metabolic state of cell populations even when metabolome profiling is infeasible.

The mathematical framework of GSMMs is grounded on two physical assumptions. The

first assumption is mass and charge conservation, which guarantees that the total mass of pro-

duced substrates equals the total mass of those consumed. Second, the system must be at steady

state, meaning that internal metabolite concentrations do not change over time. The steady-
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state assumption differentiates CBM from the modeling based on ordinary differential equa-

tions. The latter allows the study of metabolic systems in dynamical conditions, but it is com-

putationally expensive and requires detailed knowledge of initial metabolic conditions and

kinetic reaction coefficients. For these reasons, it is only feasible for small systems and there-

fore cannot capture long-range phenomena or general metabolic reprogramming. Conversely,

GSMMs are restricted to steady-state conditions, but they can span the entire cellular metabo-

lism or even multicellular communities [50].

Modeling fluxes can be crucial for gaining a better understanding of both metabolic activity

and wider biological phenomena [10]. At a reaction and pathway level, flux balance analysis

(FBA) is currently the most widely used tool to estimate the flow of metabolites in metabolic

networks [46]. FBA allows determination of the flux configuration that yields maximal or min-

imal rate through one or more target reactions. In its basic form, it is mathematically defined

as a linear optimization problem targeting a subset of reaction fluxes (Fig 2). Usually, when no

other obvious cellular objective is involved, the maximization of biomass is considered as a

reasonable goal not only for bacteria under evolutionary pressure but also for cancer cells

under a proliferative regime [51]. For other types of cells, identifying the true objective is still a

challenge; therefore, biomass is commonly taken as a reasonable proxy. Various FBA variants

take into account further biological constraints or regularizations and are defined as quadratic,

mixed-integer, or multilevel programs [52].

Fig 2. Constraint-based data integration and fluxome generation. (a) Constraint-based metabolic modeling begins with the construction of a manually curated

GSMM recording all reactions taking place in the network. (b) Coded within the structure of a GSMM is the stoichiometric matrix S, denoting the involvement of

metabolites in each reaction. Constraints are applied to the model to identify a given metabolic goal, represented as the objective function c, and linear or quadratic

optimization is used to maximize or minimize this objective. The steady-state assumption (Sv = 0) sets the product of the stoichiometric matrix S and flux vector v

as invariant. (c) To compute a unique flux distribution, the objective function can be regularized by subtracting a concave function from it. In addition to v being

restricted between default lower and upper limits (vmin and vmax), external multiomic data θ can be used to further constrain fluxes using the mapping function φ(θ),

hence driving the output toward condition-dependent solutions. GSMM, genome-scale metabolic model.

https://doi.org/10.1371/journal.pcbi.1007084.g002
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Condition-specific constraint-based models

In a typical constraint-based metabolic model, fluxes are the variables whose values have to be

determined. Because there are usually a greater number of reactions than metabolites in a

GSMM, the problem is underdetermined—meaning that multiple solutions can satisfy it. In

order to determine biologically meaningful solutions, it is often necessary to further refine the

model by applying additional biological, physical, or chemical constraints. For example, these

may account for enzyme capacity and promiscuity, spatial occupation, metabolite sequestra-

tion, and multiple levels of gene, transcript, and protein regulation [53]. Constraints derived

from experimental data are particularly useful, as they are employed to build GSMMs that

directly reflect observed biological conditions (e.g., those in particular tissues or pathological

states).

The development of condition-specific or context-specific GSMMs constitutes a further

data-integration framework, as shown in Fig 2. In this case, the process starts from raw data

and knowledge on cellular physiology that are aggregated and converted into a GSMM.

Although in the early phases of this field, global reconstructions were built by long manual

efforts to aggregate and make sense of scattered information, methods to partially automate

this process are now available, and in principle, they can be used to construct hundreds of

knowledge-driven models [54–56]. General-purpose GSMMs can then be used as scaffolds

onto which omic data are mapped during the successive integration, thus obtaining newly

refined models with additional constraints. Mapped data can be transcriptomic, proteomic,

and metabolomic profiles or information on splice isoforms or codon usage, as implemented

in a number of works and software packages [57, 58]. Depending on the external data intro-

duced, it is possible to generate GSMMs that reflect specific properties or states of particular

tissues, cell types, microbial strains, or even individual cells.

Transcriptional profiles are the most popular omic to build context-specific GSMMs via an

array of methods utilizing different contextualizing criteria [17, 59]. Switch-based methods uti-

lize a gene expression threshold to turn off reactions associated with lowly expressed genes,

thereby pruning the metabolic network. Conversely, valve-based methods map the transcrip-

tional information on the constraint-based model in a continuous fashion. There are instead

fewer approaches focused on the integration of proteomic and metabolomic data [60]. Com-

monly, algorithms such as iMAT [61], INIT [62], and METRADE [20] provide a framework

for integrating both gene and protein expression data, with IOMA providing the opportunity

to integrate proteomic and metabolomic data [63]. However, more specific approaches for

protein data are being developed. For instance, a method known as GECKO constructs a

GSMM with enzymatic constraints using kinetic and omic data [64]. This is achieved by

expanding the stoichiometric matrix of the GSMM to include rows representing enzymes and

columns representing enzyme usage in reactions, whereas enzyme kinetics (kcat values) is

modeled by pseudostoichiometric coefficients in this matrix. Constraining protein abundance

in this way has the effect of significantly reducing flux variability and improving the accuracy

of the predictions. Methodology and applications for condition-specific GSMMs have been

reviewed in detail elsewhere [53, 59, 65, 66].

Combining constraint-based analysis and machine learning

The integration of CBM of metabolism with machine learning is based on two key ideas. The

first is that genetic and environmental perturbations propagate in a nonlinear fashion through

metabolic networks and assume patterns on a reaction flux level that may be used to gain

mechanistic insights into several research questions. The second is that GSMMs can act as

both an analytical framework to represent biological systems and generators of information to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007084 July 11, 2019 7 / 24

https://doi.org/10.1371/journal.pcbi.1007084


be mined. In other words, flux solutions obtained by a GSMM can be treated like additional

numerical data (another omic layer) and analyzed via learning algorithms. With the knowl-

edge-driven metabolic model being set, the information extracted from it may depend on the

task of interest and on the variables deemed relevant. As a result, it is possible to leverage the

whole array of techniques defined on CBM [47] (see the “Constraint-based analysis of meta-

bolic networks” section). Additionally, constraints at the metabolic level can be used to

enhance the learning in multiomic settings, as explained in this section.

Despite these potential advantages, such integrated methodologies have remained confined

to a few studies so far. In this section—to the best of our knowledge—we outline the existing

examples of integration between machine learning and CBM grouped based on the task type

as shown in Table 1 and Fig 3.

The studies reviewed here and included in the table are grouped by task type: supervised or

unsupervised fluxomic analysis, supervised or unsupervised multiomic analysis, generation of

constraint-based models, and fluxomic data. Each study is annotated with the methodological

building blocks related to the two computational frameworks (CBM and machine learning).

Abbreviations: ANN, artificial neural network; CBM, constraint-based modeling; CHO, Chi-

nese hamster ovary; dFBA, dynamic FBA; FBA, flux balance analysis; FCA, flux coupling anal-

ysis; FVA, flux variability analysis; GLM, generalized linear model; kNN, k-nearest neighbors;

LASSO, least absolute shrinkage and selection operator; ME model, metabolism and gene

expression genome-scale metabolic model; NMF, nonnegative matrix factorization; PCA,

principal component analysis; pFBA, parsimonious FBA; RNN, recurrent neural network;

SVM, support vector machine; SVM-RFE, SVM based on recursive feature elimination; TFBA,

thermodynamics-based FBA; XGBoost, extreme gradient boosted trees.

Supervised fluxomic analysis

The baseline case is when biological targets are predicted based solely on metabolic fluxes

obtained from general-purpose GSMMs. The output of FBA or related techniques can then be

fed to algorithms for supervised analysis without data integration being involved (see Table 1).

For instance, Sridhara and colleagues investigated whether bacterial growth conditions

could be inferred from intracellular flux configurations [67]. Multinomial logistic regression

was used in conjunction with least absolute shrinkage and selection operator (LASSO) regular-

ization to relate growth conditions to simulated metabolic fluxes. The regression enabled pre-

diction of growth conditions for a particular FBA solution by using internal metabolic fluxes

as input, with regularization serving to select the most relevant fluxes and prevent overfitting.

In the context of human metabolism, integration of constraint-based models and machine

learning has been shown to correctly identify side effects of inhibitory drugs with higher accu-

racy than baseline methods [68]. Drug-specific actions were simulated by in silico gene dele-

tions, and the associated metabolic perturbations were estimated through flux variability

analysis (FVA), whose results were fed to an ensemble SVM. Artificially reproduced metabolic

alterations improved the results compared with a predictor used on drug biochemical struc-

tures. In a similar fashion, but for a different objective, a deep neural network and a differential

search algorithm were applied to design gene deletion interventions in E. coli for the produc-

tion of xylitol [69]. Also in this case, FBA coupled with artificial gene knockout served as a gen-

erator of genome-scale fluxomic data. Another recent study tested a flux-based data-driven

approach for the prediction of titer, production rate, and yield across different bioprocessing

settings [70]. Based on an ensemble of state-of-the-art machine learning techniques, flux fea-

tures were shown to boost predictive accuracy in this scenario, typically characterized by

sparse data.
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Table 1. Overview of previous studies that integrated CBM and machine learning, grouped by task type.

Study Data integration approach Machine learning component CBM component Task

Supervised fluxomic analysis

[67] - Regularized multinomial logistic

regression

FBA Prediction of growth conditions

[68] - Bagging SVM, random forest FVA, gene deletion Inhibitory drug side effect prediction

[69] - ANN FBA, gene deletion Prediction of xylitol production

[73] - SVM, ANN, NMF FBA Prediction of bacterial ecological niches

[72] - Random forest dFBA Prediction of ecological interactions

[71] - Discriminant analysis Elementary flux modes Identification of distinguishing metabolic

patterns between conditions

[70] - PCA, SVM, elastic net, random forest,

XGBoost, kNN, ANN, ensemble

learning

FBA Estimation of titer, production rate, and

yield of microbial factories

Unsupervised fluxomic analysis

[74] - Hierarchical clustering FBA Characterization of epistasis in yeast

metabolism

[76] - PCA Random sampling Decomposition of metabolic flexibility

[77] - PCA Elementary flux modes Identification of metabolic patterns

[75] - Hierarchical clustering FBA Exploration of ecological interactions

[78] - PCA Stoichiometric constraints Identification of responsive pathways

[71] - PCA Elementary flux modes Identification of metabolic patterns in

dynamic conditions

Supervised multiomic analysis

[79] Concatenation based SVM FBA, reaction deletion Reaction essentiality prediction

[83] Constraint based Kernel kNN Maximization of consistency between

reaction activity and gene expression

Drug target prediction

[80] Concatenation based Random forest, logistic regression FBA Genetic interactions prediction in yeast

[87] Constraint based,

concatenation based, model

based

RNN, LASSO regression, ensemble

learning

FBA Cross-omic states prediction in Escherichia
coli

[89] Constraint based Decision trees TFBA Estimation of kinetic parameter range and

identification of key enzymes

[81] Concatenation based SVM-RFE FCA Prediction of gene essentiality

[88] Transformation based Sparse-group LASSO Extreme currents Identification of disease-deregulated

pathways

[86] Constraint based,

concatenation based

Elastic net regression, PCA, GLM Bilevel FBA Prediction of lactate production in CHO

cells

[90] Model based ANN, autoencoder FBA, gene deletion Phenotypic predictions in E. coli based on

multiomic data

[84] Constraint based Elastic net regression Bilevel FBA Identification of polyomic predictors of

aging

[85] Constraint based Elastic net regression Geometric FBA Identification of disrupted pathways in

Pseudomonas putida mutants

Unsupervised multiomic analysis

[91] Constraint based Bayesian factor modeling Bilevel FBA Prediction of temporal pathway activation

in E. coli
[84] Constraint based Hierarchical clustering, k-means

clustering

Bilevel FBA Polyomic characterization of aging

[85] Constraint based PCA Geometric FBA Identification of biomarkers for

rhamnolipids biosynthesis

[92] Constraint based, model based ANN Stoichiometric constraints Interpretation of gene expression data in

E. coli

(Continued)
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Importantly, CBM and machine learning can be formulated as a joint problem by embed-

ding stoichiometric constraints in a learning task. As an example of supervised method, a dis-

criminant analysis technique based on metabolic network constraints—called dynamic

elementary mode regression discriminant analysis (dynEMR-DA)—was defined to identify

pathway activation patterns that best discriminate between experimental conditions [71]. The

Table 1. (Continued)

Study Data integration approach Machine learning component CBM component Task

Generation of constraint-based models and fluxomic data

[93] - kNN, decision trees, SVM Stoichiometric constraints Metabolic flux estimation based on general

genetic and environmental conditions

[94] Constraint based PCA FBA, Monte Carlo sampling Characterization of engineered E. coli
strains variation

[95] Constraint based PCA, linear regression FBA Metabolic flux estimation in dynamic

conditions

[96] Concatenation based,

constraint based

Elastic net regression, random forest,

neural networks, ensemble learning

FBA, pFBA, ME model Prediction of proteomic data

https://doi.org/10.1371/journal.pcbi.1007084.t001

Fig 3. Multiomic data analysis by combination of constraint-based modeling with machine learning. (a) Fluxomic analysis involves FBA or related techniques

performed on a general-purpose GSMM, from which the flux data obtained can be used as input for unsupervised or supervised machine learning. (b) To improve the

accuracy of machine learning predictions, multiomic datasets are obtained using high-throughput analytics—e.g., transcriptomics (DNA microarrays, RNA sequencing),

proteomics (2D gel electrophoresis, stable isotope labeling, mass spectrometry), or metabolomics (NMR spectroscopy, isotopic labeling, LC-MS, GC-MS). As these

datasets are obtained from different sources, they must undergo several preprocessing stages such as filtration and normalization to maintain synchronicity, account for

variance, and reduce noise. Condition-specific knowledge-based models are generated by introducing these multiple datasets into GSMMs to obtain more precise flux

estimations, from which machine learning techniques can be applied to infer biologically relevant patterns in the data. (c) Alternatively, machine learning can be directly

applied to single- or multiomic datasets to produce or improve GSMMs or fluxomic data. FBA, flux balance analysis; GC-MS, gas chromatography–mass spectroscopy;

GSMM, genome-scale metabolic model; LC-MS, liquid chromatography–mass spectroscopy; NMR, nuclear magnetic resonance.

https://doi.org/10.1371/journal.pcbi.1007084.g003
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methodology expands the concept of elementary flux modes (EFMs)—which are the simplest

paths in a GSMM that characterize the associated flux space—to dynamic conditions. The

algorithm seeks to determine the EFMs that differ the most in terms of time evolution.

Expanding the analysis of fluxes to an ecological scale, DiMucci and colleagues developed

an approach to predict interactions among bacterial species starting from temporal simula-

tions of cocultures through dynamic FBA (dFBA) [72]. A random forest classifier was trained

on binary vectors representing the exchange reactions in each GSMM, using dFBA relative

yield predictions of cocultures with respect to independent cultures. This data-driven model

allowed better generalization than the simple distance-based criterion commonly employed in

microbial community studies and also allowed inferring the metabolic exchanges underlying

the predicted interactions. In another ecological context, Chien and Larsen proposed that

supervised classification of niches of bacterial species can benefit from the information gener-

ated by metabolic models [73]. They reconstructed GSMMs for 21 Pseudomonas species living

in the endosphere and rhizosphere and simulated 12 media formulations in order to generate

predictive features. A cross comparison of SVM, ANN, and NMF suggested that metabolic

flux features may be more predictive than purely genomic features.

Unsupervised fluxomic analysis

The exploration and statistical characterization of fluxomic profiles extrapolated from a

GSMM can be of interest to shed light on the underlying physiology. In the absence of a well-

defined biological target, unsupervised machine learning approaches can generally character-

ize correlation or variation across multiple samples. This allows clustering metabolic states or

describing them in terms of sparser sets of variables.

This was first realized by Segre and colleagues, who exploited a GSMM to explore epistasis

in yeast metabolism [74]. The task was accomplished by performing agglomerative clustering

on the fitness landscape of single and double deleterious mutants for all genes involved in

metabolism, for which the fitness was defined on FBA growth rate ratios. The analysis identi-

fied a widespread modular organization of genes into groups linked exclusively by buffering or

aggravating epistatic interactions, leading the authors to extend the concepts of modularity

and epistasis based on the observed intermodule connections rather than on intramodule

properties. An analogous approach was employed in the context of gut microbiome ecology,

in which Magnúsdóttir and colleagues performed a large-scale study on the ecological interac-

tions among community members across a combination of Western or high-fiber diets and

aerobic or anaerobic conditions [75]. Similarly, these interactions were evaluated in terms of

hierarchical clustering of the relative growth between interacting and noninteracting pairs pre-

dicted through FBA. The microbes were then profiled based on their interactions, identifying

three major subgroups enriched in species with different carbohydrate fermentation capabili-

ties. Positive interactions were observed mainly among metabolically distant organisms, con-

firming independent studies.

Furthermore, dimensionality reduction techniques can be employed to deconstruct the

entire flux space associated with constraint-based models, as done for E. coli [76]. In this case,

PCA served to filter and synthesize the variation in biochemical reaction fluxes achievable by

the metabolic network. Nontrivial cross correlations among pathway activities can be cap-

tured, and associated metabolic capabilities can be comprehensively evaluated in terms of

imposed constraints.

Finally, as in the supervised scenario, the analysis of multiple flux profiles can benefit from

constraining a learning objective with stoichiometric knowledge. Alternative hybrids of PCA

and stoichiometric flux analysis, termed as principal elementary mode analysis (PEMA) and
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principal metabolic flux mode analysis (PMFA), extract flux modes generated by metabolic

models that contribute the most significantly toward variance while penalizing deviations

from the steady state [77, 78]. These methods are able to overcome some of the shortcomings

of using general PCA for the statistical interrogation of flux distributions—e.g., the overlook-

ing of reaction stoichiometry and the need for a predefined set of pathways. PEMA was also

extended to analyze non-steady-state EFMs [71].

Supervised multiomic analysis

When experimental data is available, it can be aggregated with CBM-generated fluxomes to

build multiomic sets of features and predict targets of interest. Thanks to the peculiar advan-

tages of each individual data-integration approach, there are multiple ways to combine them

depending on the questions addressed and on the available resources. One-stage integration

by machine learning methods is a possibility, as described in the Machine learning for multio-

mic data.

This strategy was first investigated to predict metabolic reaction essentiality in E. coli. FBA-

like approaches coupled with artificial gene deletions can efficiently estimate essential reac-

tions, although this often requires precise knowledge of nutrient availability in a given condi-

tion. The essentiality is usually evaluated merely based on the biomass accumulation rate,

which may be an imprecise estimator in some cases. Plaimas and colleagues [79] investigated

whether it could be possible to improve FBA predictions by combining the estimated growth

rate with additional topological, genomic, and transcriptomic data. By using an SVM as classi-

fier, they successfully verified an improvement in accuracy. An analogous approach was used

by Szappanos and colleagues to predict positive and negative genetic interactions in Saccharo-
myces cerevisiae [80]. A random forest was trained with FBA-based fitness and genetic interac-

tion scores in addition to a large array of gene-pair characteristics such as paralogy, protein

annotations, protein interaction network topology, single deletant fitness, mRNA expression,

quantitative phenotypic correlation, and compartment localization. Traditional features were

shown to give low precision for the majority of gene interactions, whereas FBA-based features

brought significant improvements in predictive precision and recall, indicating that genome-

scale CBM captures relevant information that is missed by gene-level traditional features. The

approach was tested again in the context of gene essentiality prediction by Nandi and col-

leagues [81], who instead employed flux coupling analysis (FCA) as feature generator to take

gene adaptability into account in varying environmental conditions [82].

However, the metabolic capabilities of a cell population vary according to environmental

and genetic conditions. For the sake of prediction, it is therefore important that metabolic

information extracted by GSMMs reflects the differences between these conditions. This can

be achieved through the creation of condition-specific metabolic models (see the “Condition-

specific constraint-based models” section). This constraint-based integration was used for the

first time by Li and colleagues to predict novel drug-reaction interactions in cancer [83]. They

employed a linear programming model to enforce the agreement between gene expression and

metabolic fluxes in order to determine fluxomic profiles relative to 59 cell lines, which were

used for binary classification by a kernel k-nearest neighbor (kNN) model. A similar procedure

was used to explore the molecular biology of aging [84]. Using the transcriptomic data from

the CD4 T cells of 499 healthy participants, personalized CD4 T-cell metabolic models and

their fluxomes were obtained with a continuous gene expression map [20]. Applying elastic

net regression to these individual metabolic fluxes and the chronological ages of the individu-

als allowed establishing metabolic age predictors and their effect sizes. Using these polyomic

predictors, the metabolic age of an individual could be defined and calculated, providing a
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basis for improved prediction of individual aging and life expectancy. A similar strategy was

employed to metabolically and mechanistically evaluate the impact of synthetic mutations in

P. putida starting from corresponding gene expression measurements [85].

Effectively learning from empirical omic profiles and associated GSMM-based metabolic

states necessitates fully exploiting all the varieties of multiomic analysis methods. In this case, a

two-stage integration can be achieved through the creation of condition-specific GSMMs and

the subsequent machine learning–based data integration. This idea was used to predict the

metabolic capabilities of Chinese hamster ovary (CHO) cells for diverse growth conditions

[86]. In the study, it was shown that combining fluxomic and transcriptomic data in mamma-

lian cells can provide a better estimation of secondary metabolite production, such as lactate.

The pipeline includes building bioreactor-specific GSMMs and bilevel FBA optimization [20],

which provided information on the metabolism associated with each growth condition. Later,

both fluxomic and transcriptomic data were used to predict lactate accumulation with

improved accuracy. Considering a wider omic array, Kim and colleagues developed a general

framework for multiomic inference based on various machine learning methods [87]. Their

platform can be used to perform cross-omic predictions among five biological layers: tran-

scriptomic, proteomic, metabolomic, fluxomic, and phenomic. All of them are composed of

experimental data aggregated from a number of studies, except the fluxomic layer, which is the

result of condition-specific FBA following the integration of transcriptomic and proteomic

data.

More sophisticated data-integration pipelines have also been developed. A study used a

method similar to sparse-group LASSO to identify phenotypic extreme currents (ECs) based

on a combination of metabolic network features and gene expression data [88]. Extreme path-

ways are subpathways (i.e., a subset of largely invariant pathways in the metabolic network

that consistently yield steady-state flux), which are decomposed by linking them with a given

phenotype. In other words, all ECs were associated with a gene set; based on gene expression

data, those displaying a statistically significant association to a given clinical phenotype were

identified. Uncertainty in the kinetic properties of enzymes is one of the main challenges in

developing kinetic models of metabolism. Andreozzi and colleagues designed a strategy called

in silico characterization and reduction of uncertainty in kinetic models (iSCHRUNK) to min-

imize such uncertainty [89], in which fluxomic and metabolomic data are integrated with a

GSMM to create a thermodynamically consistent GSMM. Subsequently, decision trees are

used to evaluate kinetic parameters. Finally, a recent work has used CBM to support an ANN.

DeepMetabolism is an ANN method that integrates unsupervised pretraining with supervised

training to build a deep learning model with the ability to predict phenotypic outcomes [90].

In its five-layer autoencoder, the first input gene layer was followed by two encoder layers

(protein layer, phenotype layer), and the last two layers were decoders (reconstructed protein

layer, reconstructed gene layer). Connections between the layers were regulated by biological

priors, with FBA used to set the connectivity between the proteomic and the phenomic layer

and therefore embed metabolic knowledge in the ANN architecture.

Unsupervised multiomic analysis

Like in the supervised case, unsupervised algorithms can be applied on heterogeneous sets of

experimental and GSMM-generated omic profiles. For instance, environmental condition–

specific metabolic modeling was combined with statistical modeling by Angione and col-

leagues to estimate the metabolic pathway activation cascade triggered by different environ-

mental stimuli [91]. The methodology was shown to better characterize the relationships

among different pathways compared with static analysis, especially those occasionally
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interacting depending on the environmental conditions. In the same fashion, varying genetic

conditions can be characterized in terms of associated changes on the metabolic level and

potentially exploited in synthetic biology studies. For instance, decomposition of mutant-spe-

cific fluxomic profiles through PCA led to identifying novel biomarkers for rhamnolipids pro-

duction [85]. Analogously, Yaneske and Angione utilized both agglomerative hierarchical

clustering (AHC) and k-means clustering on transcriptomic data and fluxomic profiles in

order to characterize the aging process in human [84]. Subsequent comparison of the cluster-

ing between transcriptomic and fluxomic data revealed that fluxomic profiles were better pre-

dictors of chronological age and age-associated metabolic biomarkers.

Moreover, metabolism and GSMMs can be used as a basis to understand underlying geno-

mic variation. The Gene Expression Latent Space Encoder (GEESE) is a recently proposed

approach [92] in which transcriptomic information is fed into a deep generative model (specif-

ically, a variational autoencoder) combined with a GSMM. Initially, gene expression data is

provided as an input to the autoencoder, returning reconstructed gene expression vectors that

are then used to train an FBA approximator. The deep generative model is trained to minimize

the loss between the fluxes obtained by passing the reconstructed gene expression through the

approximated FBA and the fluxes generated by the real FBA while keeping the weights of this

approximator constant. Based on this approach, latent patterns in gene regulation could there-

fore be identified while mechanistically accounting for downstream metabolic perturbations.

Generation of constraint-based models and fluxomic data

Besides analyzing fluxomes generated via CBM, machine learning can be combined with CBM

itself to acquire novel fluxomic information. For instance, a suite of different machine learning

algorithms (SVM, kNN, and decision trees) was used to directly predict fluxomic configura-

tions starting from genetic and environmental factors [93]. The training was performed by

aggregating 13C metabolic flux analysis estimations with associated genetic and environmental

information from a cohort of studies. In a second stage, the predicted flux outputs were

adjusted to satisfy stoichiometric constraints using quadratic optimization in order to account

for the flux balance and boost their accuracy.

Although in the previous paragraphs we have presented examples of machine learning

applications on FBA outputs, data mining can even be used as a preliminary step to gain addi-

tional constraints for CBM. For example, Brunk and colleagues [94] applied a series of multi-

variate analysis methods (including PCA) on metabolomic data to better understand inner

correlations and identify key metabolites influencing interstrain variation. Consequently, this

enabled fixing sets of flux constraints inside the E. coli GSMM and achieving a better characteriza-

tion of each culture phase. This strategy also allows estimating metabolic fluxes in conditions that

are not directly accessible to FBA, such as in unsteady-state FBA (uFBA), in which multiple flux

profiles associated with dynamic conditions can be predicted [95]. The underlying idea is to use

PCA and linear regression to define constraints for an FBA model starting from metabolomics

data. Because whole-metabolome measurements are generally difficult to achieve, uFBA also

includes an algorithm to estimate unmeasured metabolite concentration differences on the basis

of those that are measured. The obtained constraint-based model can be used for traditional FBA,

FVA, or related analyses in dynamic conditions. Finally, an ensemble of methods were used to

estimate enzyme catalytic turnover bounds for a whole E. coli GSMM, improving its predictions

on proteome allocation compared with the integration of turnover rates measured in vitro [96]. It

is interesting to note that, in this case, FBA solutions associated with random environmental con-

ditions were also included in the supervised learning phase, corresponding to a fluxomic analysis

as described in the “Supervised fluxomic analysis” section.
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Perspective

As detailed in the previous section, a number of data- and knowledge-driven workflows can be

devised depending on the research goals and on the available resources. Ideally, multiomic set-

tings appear the most promising for effectively grasping meaningful biological patterns, not

only because of the well-known advantages of data integration but also considering the com-

plementary characteristics of experimental and GSMM-based data. In the “Advantages and

limitations of expanding the multiomic array in silico” section, we first articulate this point,

highlighting the strengths and limitations of both omic types. In the “Emerging applications”

section, we outline important scenarios to which we believe this multiomic machine learning

framework could be applied and which are largely or entirely unexplored so far.

At the same time, many novel integrative methods could be developed given the variety of

algorithms existing within the machine/deep learning and CBM frameworks. In particular, in

the last section, we discuss two related aspects that we believe could inspire the design of novel

integrative methods: the importance of interpretability in biological data-driven models and

the connections of both CBM and machine learning to mathematical programming (see the

“Building on common mathematical roots: Toward predictive and interpretable biological

models” section).

Advantages and limitations of expanding the multiomic array in silico

Because of their generation process, fluxomic profiles obtained through a GSMM provide an

alternative and mechanistic perspective on the underlying biology compared with traditional

omics. Both possess complementary benefits and drawbacks in scientific and operational

terms, as outlined in this section, which make them particularly suitable for integration.

As previously pointed out, important differences exist first of all in terms of genetic cover-

age and prior knowledge [97]. Experimentally generated omic data can span vast portions of

the genome, transcriptome, or proteome, despite the limitations of some technologies to

achieve full coverage [98]. CBM is instead normally limited to metabolic networks, although

extensions to other domains have been advanced [99, 100]. Second, generation of traditional

omics requires no prior information, whereas GSMM construction assumes extensive knowl-

edge of the metabolic system under consideration, although a semiautomated knowledge-

driven model creation partially alleviates this burden [54–56]. On one hand, experimental data

generation can be therefore more readily translated to new systems. On the other hand, experi-

mental data is also prone to contain false-positive cues and can sometimes be superficial or

ambiguous in its biological meaning. For instance, the high expression level of a gene does not

necessarily lead to an increased enzyme activity if it is part of an enzymatic complex, as it

would be limited by the expression of the other genes in the complex. Conversely, GSMMs are

usually highly curated and provide a mechanistic description of biological processes, linking

together genes, enzymes, metabolites, and reactions. GSMMs are therefore able to account for

isozymes and enzymatic complexes through gene–protein reaction rules. Compared with

annotations with an abstract structure, they can also describe the functional role of genes more

precisely, as they provide a direct representation of biochemical processes. Despite their well-

defined meaning, the scope and precision of fluxes generated in silico are, however, limited by

the quality of the metabolic model used and by the available knowledge and understanding of

a system, which may often be partial.

If experimentally generated omics are the first step toward a comprehensive understanding

of living systems, the use of condition-specific GSMMs can therefore help contextualize and

interpret them on a large scale. This fusion can also help identify gaps or inconsistencies in

knowledge-driven models and maintain a comprehensive biological scope. Likewise, errors
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arising during experimental measurements might be mitigated through constraint-based inte-

gration, also controlling for biological soundness.

Furthermore, cost and time factors may motivate the integration of the two data types,

albeit to varying degrees between constructing a GSMM or its condition-specific variants and

the calculation of flux data. The initial building and curation of general-purpose knowledge-

driven models can in fact be time-consuming and require up to months or even years, despite

aid from computational pipelines [101]. However, if a baseline GSMM is already available, the

creation of context-specific counterparts and associated flux solutions is generally fast through

dedicated software. Besides, the generation of experimental omic data is notoriously cheaper

than ever, but it remains a nonnegligible cost, especially when dealing with numerous samples.

For cell systems with already-validated GSMMs, FBA and related techniques can therefore

quickly provide an additional omic layer to integrate with the others at extremely low cost.

This consideration is especially important in the case of large sample numbers, which are

essential for machine learning methods to identify robust and biologically meaningful

patterns.

There are nevertheless unsolved issues involving, to some extent, all omic data types and

posing major limitations to studies based on them. In particular, we mention the quality of

estimated biological phenomena and related biases. As previously mentioned, experimental

measurement is subject to intrinsic noise and uncertainty that has to be corrected through

appropriate normalization, and small numbers of technical replicates may undermine the sta-

tistical significance of the observed signals. Additionally, traditional omics are affected by sam-

pling or technology-specific systematic errors [102]—in particular, batch effects [103]. In

some cases, technology-specific issues can even compromise the overall data quality, like in the

sequencing of PCR-challenging regions [98]. Besides, in silico calculation of fluxomes has to

deal with uncertainty and bias on different levels as well. The steady-state assumption poses a

limit to the kind of fluxomes that can be reasonably estimated [104], and in several situations,

it may be unclear how to choose among multiple valid flux solutions. In addition to this,

uncertainties arising in experimental settings may propagate to omic-based condition-specific

GSMMs. As a result, external validation of FBA-predicted fluxes is generally required, at least

on the level of cellular growth or most relevant pathways. Thorough GSMM evaluations are

highly beneficial for the improvement of these platforms, but they have been conducted only

in a limited number of systems, such as E. coli and S. cerevisiae [105–109]. However, as a con-

sequence of the iterative refinement of GSMMs through the accumulation of new knowledge

and data, their coverage and quality are rapidly increasing [14, 110].

All these points are very important to bear in mind for a correct and meaningful analysis

and interpretation of the underlying biology. Overall, knowledge-driven fluxomic data relies

on strong assumptions that require cautious evaluation to ensure biological soundness. At the

same time, experimental data generation has to deal with issues that in some cases risk under-

mining any scientific conclusions. For these reasons, signals obtained from both experimental

and GSMM-based omic studies should always be thoroughly evaluated through careful study

design, appropriate statistical methods, and independent data (when available), without omit-

ting negative results in downstream reports [111, 112].

Emerging applications

Despite the challenges highlighted in the previous section, omic data analysis will probably

remain fundamental in numerous contexts and spread to new ones. Given the complementary

advantages of GSMM-generated fluxomes and other omic data, their integration therefore has

the potential for many novel applicative scenarios. As long as steady-state metabolism is
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deemed relevant to the task at hand, CBM can be employed to extend the omic or multiomic

data array, and machine learning techniques can be used to identify hidden patterns. For

instance, metabolic engineering could enormously benefit from integrative biological models,

which are more efficient and cost-effective than empirical trials [113] in terms of both pathway

design [20, 85] and bioprocess parameters [70, 86, 114]. Further, CBM extensions for model-

ing dynamic conditions can overcome the intrinsic limitations of FBA and open the door to

another range of applications. In spite of this, only a few studies have investigated this scenario

so far, as visible in Table 1.

Our survey also shows that many previous studies dealt with bacterial systems—in particu-

lar, E. coli, which is arguably the organism with the most highly curated GSMMs. However, for

several eukaryotic organisms—including human—constraint-based models are now available

with increasing scope and precision, which constitute a promising platform for integrative bio-

logical models. Initial studies have demonstrated this in the context of human aging and disor-

ders [84, 88], as well as for drug development [68, 83]. The accumulating wealth of data

extracted from human tissues is a particularly valuable resource, which has however yet to be

fully exploited through data- and knowledge-driven approaches. This union has the potential

to unveil novel clinical biomarkers and drug targets if properly implemented in omic studies.

Moreover, there are emerging research areas that are likely to require strong analytical and

automation skills in the near future. In particular, we refer to those applications that require

GSMMs of growing size, such as for cell populations and microbial communities. At present,

CBM can be used to describe multiple cell types, tissues [115], or even the heterogeneity within

cell populations [116]. Given that no cell lives in isolation, all these models will be increasingly

important to understand its interactions and behavior in larger systems. At the same time,

focusing on individual cells is increasingly revealing essential in fields like cancer biology, in

which single-cell technologies are being improved and expanded to new omic layers. Single-

cell RNA-seq alone will make the amount of data generated scale up to the millions of samples,

or even higher numbers [34]. The spread of these technologies can further fuel the emergence

of a larger omic data era, with the associated challenges in terms of data analysis and interpre-

tation. Even in this context, data- and knowledge-driven computational tools appear essential

to cope with these challenges.

Finally, as mentioned previously, CBM is extensible to biomolecular domains other than

metabolism. Efforts have particularly focused on integrated constraint-based models of gene

expression and metabolism [99, 100]. The formulation and validation of novel constraints

could aid in developing further methods for multiomic data mining, but at the same time, it

poses challenges associated with the increase in knowledge-driven model size and

heterogeneity.

In all these contexts, we believe that effectively combining machine learning and CBM

allows achieving a richer and more meaningful mechanistic comprehension of inherently mul-

tiomic system. New integrative approaches are also expected to ultimately contribute to the

progress of applicative fields such as biotechnology, bioengineering, and biomedicine.

Building on common mathematical roots: Toward predictive and

interpretable biological models

One last aspect of pressing importance concerns the trustworthiness of integrative data- and

knowledge-driven models and their capacity to produce novel insights. Interpretability is a

desirable property for any mathematical model, and it constitutes a particularly delicate and

widespread criticality in machine learning. Indeed, most automatically generated models

are complex and provide no direct explanation for their predictions. At the same time,
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interpreting results, generating hypotheses, and testing them is imperative to maintain scien-

tific rigor [117]. As discussed before, in this context, model interpretation relies on model

transparency and post hoc analyses [118]. Transparency refers to the human understanding of

a whole model, a learning algorithm or their parts, variables, and parameters. For example, in

multiple kernel learning, the weights assigned to input kernels can in some sense be regarded

as their contribution to the given task. Alternatively, it is possible to infer relationships

between input and output through additional algorithms or reasoning applied a posteriori. For

instance, some methods can determine data samples whose predictions are similar, or they can

compute local dependencies on input features.

Note that interpretability does not uniquely depend on the data-driven model form but also

on the input preprocessing. A neural network trained on intuitively meaningful features learns

a data representation that can be visualized and reasoned upon more easily than a linear

model trained on heavily processed features.

It can be therefore argued that CBM constitutes a vehicle for obtaining biological knowl-

edge in the form of coherent information equipped with mechanistic relations at a single-reac-

tion level. From this point of view, the generation of flux data from a condition-specific

GSMM can be regarded as an elaborate but transparent feature engineering step, in which a

fluxome is the result of combining available omics with expert knowledge and mathematical

optimization. Therefore, we believe that CBM could be the key to building more interpretable

machine learning models—for instance, by providing variables of clear meaning [68, 72].

Perhaps even more importantly, paths for building more interpretable and mechanistically

meaningful biological models exist also on a methodological level. In particular, it may be use-

ful to consider that both machine learning methods and FBA-based approaches are grounded

in mathematical programming (also called mathematical optimization), even though from dis-

tinct points of view.

In machine learning, optimization tasks target any cost function that is assumed to minimize

the true predictive error and allow the final model to generalize. Like in traditional mathemati-

cal optimization research, this discipline seeks to formulate investigative questions in terms of

tractable and scalable problems. In addition, other qualities such as easy implementation and

interpretation are important, disregarding high accuracy and robustness across wide classes of

problems [119]. Many of these goals are shared also by metabolic CBM. First, tractability and

scalability remain of primary interest, especially with the growing size of GSMMs and microbial

community models. Second, highly precise solutions are not indispensable, as long as they

define the phenotypic state(s) associated with prior assumptions. In fact, the use of regulariza-

tion is starting to be recognized as a standard in FBA, with the goal of identifying more realistic

solutions, especially when the full flux distribution is used for inference or postprocessing [52].

Moreover, the ease in implementation and interpretation of FBA-related approaches is usually

guaranteed by embedding physical, biochemical, or evolutionary assumptions.

This underlying connection can potentially be exploited to develop novel hybrid methods

and provide a second way toward more transparent biological models. For instance, the learn-

ing problem can be formulated by integrating constraints borrowed from a knowledge-driven

model. This idea has been already implemented both in the context of unsupervised fluxomic

analysis [77, 78] and supervised fluxomic analysis [71], as described in the “Combining con-

straint-based analysis and machine learning” section. However, the existing case studies are

limited, and more work is needed to understand how to effectively integrate mechanistic bio-

logical information in data-driven algorithms, especially given their variety and heterogeneity.

Although challenging, the idea appears particularly promising if extended to multiview learn-

ing methods that would thereby fully leverage an expanded combination of data and

knowledge.
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Conclusion

The use of machine and deep learning in computational and systems biology will keep growing

in parallel with the rapid advancement of high-throughput omic technologies. However,

extensions of current methodologies are needed to adapt to the heterogeneous, multidimen-

sional nature of omic data. Here, we have explored the joint application of machine learning

and genome-scale metabolic modeling in the context of multiomic analysis, evaluating

strengths and pitfalls in developing hybrid methods that draw from both fields. Machine learn-

ing is a valuable tool for deconstructing biological complexity for the purposes of condensing

high-volume multiomic datasets and extracting relevant outputs from them. In turn, CBM

makes it possible to analyze metabolic activities associated with distinct properties or states

specific to each cell, tissue, or community. This is achieved through multiomic data integration

and the estimation of an additional (flux)omic layer that is closer to cellular phenotype.

CBM can provide ways to inject mechanistic knowledge within novel multiview methods,

aiding in the achievement of data- and knowledge-driven analysis of biological systems. Given

the increasing recognition of the importance of metabolism and mechanism-aware omic data

analysis in a range of biomedical and biotechnological problems, we envisage that this multio-

mic machine learning approach could be useful to researchers across computational biology.
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34. Colomé-Tatché M, Theis F. Statistical single cell multi-omics integration. Current Opinion in Systems

Biology. 2018; 7:54–59.

35. Sun S. A survey of multi-view machine learning. Neural Computing and Applications. 2013; 23(7–

8):2031–2038.

36. Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integra-

tion. Briefings in bioinformatics. 2016; 19(2):325–340.
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