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Immunohistochemical (IHC) staining is a valuable and unique 
tissue-staining method for pathologic diagnosis of hematolym-
phoid neoplasms using an antigen-antibody reaction [1-6]. It 
was developed as an indirect immunofluorescence technique in 
1941 by Albert Coons at Harvard University [1,7]. As the IHC 
technique evolved to use paraffin-embedded tissues and enzy-
matic markers, it has become an essential and routine tool in 
pathologic diagnoses, notably in hematopathology [2-6]. He-
matolymphoid neoplasms are categorized as B-cell, T-cell, NK/
T-cell, and histiocytic neoplasms according to the IHC profiles 
of CD3 (T-cell marker), CD20 (B-cell marker), CD56 (NK-cell 

marker), CD68 (histiocytic marker), and other markers related 
to the development of hematolymphoid cells. Once the mor-
phologic features that distinguish among the possible groups 
are recognized in differential diagnosis, relevant IHC panels can 
be chosen for subtype determination (Supplementary Fig. S1). 
This process requires the pathologists’ intuition and compre-
hensive integration of both the clinicopathologic findings and 
IHC results because hematolymphoid neoplasms share many 
cytomorphologic and clinicopathologic features across different 
diseases. The accurate subtyping of lymphomas is therefore highly 
dependent on the appropriate choice of IHC panels and the inter-
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pretation of IHC results [1-3,8].
However, increasing knowledge of IHC positivity in each tu-

mor can produce conflicting interpretations in daily practice, es-
pecially in some more complex cases [9]. The pathologic analysis 
of IHC results depends largely on the expertise of pathologists, 
who can be easily biased by their experiences [2,4,6]. New anti-
bodies and IHC data from various tumors are introduced annually, 
and more than 100,000 studies using IHC have been published 
since 2000, making it difficult to memorize the newly developed 
antibodies and recognize the expression characteristics of tumors 
just in the human brain [10-14]. In addition, recent advances in 
digital pathology require an appropriate reference database of 
ancillary tests to integrate medical knowledge and individual 
medical problems [15].

Attempts have been made to address this problem by adopting 
an algorithmic approach or using standardized IHC panels for 
specific differential diagnosis [9,14,16]. However, the clinical sit-
uation of each case is unique, and generalized application of a par-
ticular IHC panel or specific algorithm can be time- and labor-
consuming. 

We therefore developed an expert-supporting system using 
software based on a machine-learning algorithm and an IHC da-
tabase that supports pathological decision-making and differ-
ential diagnosis. We developed the software as a mobile applica-
tion for iOS and Android devices for practical utility. 

MATERIALS AND METHODS

Development of a machine-learning algorithm using a prob-
abilistic decision tree

According to Bayes’ theorem, post-event probability can be 
calculated when pre-event probability is given. Bayes’ theorem is 
stated mathematically as 

	 P(B|A)P(A)
P(A|B) =  ,
	 P(B)

where A and B are events and P(B) ≠ 016 and P(A|B), and P(B|A) 
are the respective conditional probability that the likelihood of 
event A occurring given that B is true and vice versa. P(A) and 
P(B) are the probabilities of observing A and B independently 
of each other [16,17].

A probabilistic decision tree is a predictive modeling approach 
in statistics and data mining. It is often used for machine-learn-
ing algorithms, especially when test node results are binary (Fig. 1). 
We adopted such a tree for our machine-learning algorithm be-

cause IHC results are binary, and the probability can be expressed 
as a database.

To apply the probabilistic decision-tree algorithm, we required 
a database of a 2 × 2 table with tests, diseases, and the probability 
of positivity of each test for each disease (Fig. 2). Test results were 
binary, and the probability of positivity was the number of posi-
tive cases among all cases of the disease. Once test results were 
available, we calculated the probability of each disease by mul-
tiplying prior probability by the probability that each test was pos-
itive or negative to determine the most probably illness by com-
paring post-probabilities. 

 
IHC database build

We assembled a database of IHC expression profiles of the 
lymphoid neoplasms using five primary textbooks and other 
publications, including the World Health Organization (WHO) 
classification of tumors of hematopoietic and lymphoid tissues 
(IARC, Lyon, France) and major IHC textbooks (Supplementa-
ry Table S1) [4,5,18-21]. More than 200 lymphoid neoplasms 
and tumor names were documented according to the WHO 
classification. Tumors without IHC profile data or no diagnostic 
use were excluded. Subtypes of certain tumors were documented 
separately from the primary type if there was a difference in IHC 
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Test A Text B Text C 
Prior 

probability
Post 

probability
Disease 1	 60%	 30%	 0%	 0.3 × 	 0.6 × 0.7 × 0.0	        = 0.000
   (30%)
Disease 2	 20%	 80%	 10%	 0.5 × 	 0.2 × 0.2 × 0.1	        = 0.002
   (50%)
Disease 3	 50%	 50%	 70%	 0.2 × 	 0.5 × 0.5 × 0.7	        = 0.035
   (20%)

Test results	 +	 –	 +	       The probability of disease 3 is the highest 
				                           with the test results

Fig. 1. A probabilistic decision tree for a machine-learning algo-
rithm in diagnostic tests and disease.

Fig. 2. Prior and post probability based on Bayes’ theorem.
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profiles.
The IHC positivity for each tumor was drawn from textbook 

descriptions; if there was exact numerical value was replaced by 
arbitrary expressions such as “always positive,” “often positive,” 
or “rarely/occasionally positive,” positivity was documented as 
follows: always, 95%; often, 75%; in about a half of cases, 50%; 
seldom, 30%; rarely/occasionally, 10%; never, 0%. If the positiv-
ity differed between textbooks, the average value was used. An 
example of the IHC database appears in Supplementary Fig. S2.

Approximately 600 IHC antibody names were documented 
using the textbooks, and their synonyms were recorded and re-
vised with online references (Supplementary Table S2). 

Development of a mobile application

The reactive native (network-free) mobile application “Immu-
noGenius” was developed using NoSQL for iOS and Android 
(Fig. 3), which can be used on iOS and Android devices. It was 
designed to search and select diseases and generate a 2 × 2 table 
with the disease name in the left column and IHC antibody 
names on the first row. Representative IHC profiles appear in 
the corresponding cells as ++ for 75%–100% positivity (posi-
tive cases per all tumors), + for 50%–74%, +/– for 30%–49%, 
–/+ for 10%–29%, and – for 0%–9% with graded shades (Fig. 
3, Supplementary Fig. S3, Supplementary Video 1). Users can 
compare IHC profiles between the selected diseases and add or 
remove rows (diseases) or columns (IHC antibodies) to custom-
ize the table. Additional IHCs can be added using the buttons 
on the right side. Once the user inputs the IHC results for their 
case, the 10 most probable diagnoses as calculated by the diag-

nosis precision algorithm appear below, along with estimated 
probability in percentage (red numbers) (Supplementary Fig. 
S3, Supplementary Video 1, 2). For predictive diagnosis of lym-
phomas, prior probability was set according to epidemiologic 
data for Korea in 2010 (but can be changed to other epidemio-
logic groups later).

Diagnosis precision algorithm validation using patient data

To validate the hit rate of the diagnosis precision algorithm, 
the IHC profile data and diagnoses originally made by patholo-
gists were compared with the top 10 predictive diagnoses pro-
duced by the algorithm. Approximately 1,000 cases of the lym-
phoma-patient IHC profile data were obtained from the archives 
of two independent university hospitals: Yeouido, and Seoul St. 
Mary’s Hospital, College of Medicine, The Catholic University 
of Korea, from 2010 to 2017. Approximately 80 percent of the 
lymphoma cases at Seoul St. Mary’s Hospital were referred from 
various institutes in Korea. Any patient data related to identifi-
cation except the original diagnosis and the IHC results were 
blinded before data processing. The retrieved data were divided 
6:4 for training and validation. Cases with an inconclusive di-
agnosis or inadequate IHC profile (fewer than three antibodies, 
inconclusive results, absence of markers for tumor origins, but 
only prognostic or therapeutic markers such as epidermal growth 
factor receptor or p53) were excluded. An example of a retrieved 
patient IHC profile dataset appeared in Supplementary Fig. S4. 
The diagnosis precision hit rate was determined by the inclusion 
of the original diagnosis in the top 10 predictive diagnoses drawn 
by the algorithm. It was considered inclusive if there was no sig-

Fig. 3. A screenshot of the mobile application “ImmunoGenius.”
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nificant difference in the IHC profile between the original and 
predictive diagnosis, and the only difference was in location if 
two diagnoses shared the same origin of cells (e.g., nodal mar-
ginal zone lymphoma vs. extranodal marginal zone lymphoma). 
Validation of the algorithm was carried out by comparing the 
hit rate of the training and validation data in lymphomas. If no 
statistically significant difference was found between the training 
and validation dataset, the algorithm was considered validated.

Statistical analysis

Time and computational complexity were evaluated by testing 
the mobile application. The hit rate between original and pre-
dictive diagnoses was compared by chi-square tests. Statistical 
analysis was performed using Web-R (“http://web-r.org”), a web-
based statistical analysis program.

RESULTS

IHC database build and recruitment of training and 
validation datasets

A total of 150 hematolymphoid neoplasms and 584 IHC an-
tibodies and their IHC profiles were documented. The obtained 
training and validation data of lymphoma amounted to 639 
and 392 cases, respectively. In the lymphoma cases, an average 
of 8.5 IHC antibodies (range, 1 to 18) were used for diagnosis, 
and 40 types of lymphomas were included. Two cases were ex-
cluded because of inconclusive diagnosis, and 35 cases with fewer 
than 3 IHC tested antibodies were omitted. As a result, 602 cas-
es of lymphomas were used for training. The original diagnoses 
of the training data cases are provided in Table 1. Diffuse large 
B-cell lymphoma, not otherwise specified (DLBCL, NOS) was 
the most common, with 216 cases (34.3%), and the second most 
common was extranodal marginal zone lymphoma of mucosa-
associated lymphoid tissue (MALT), with 78 cases (13.0%). The 
original diagnoses of the validation cases are also provided in Ta-
ble 1. The most and the second most common type were the same 
as DLBCL, NOS, and MALT lymphoma, with similar percent-
ages (145, 37.0% and 74, 18.9%, respectively). 

Training data

The hit rate for training data of the predictive diagnosis (top 
10) was 94.7% (Table 2). Detailed results of discordant cases 
between the original and predictive diagnoses are supplied in 
Table 2. In B-cell lymphomas, the hit rate of the predictive diag-
nosis was relatively high, particularly in DLBCL, follicular lym-
phoma, chronic lymphocytic leukemia/small lymphocytic lym-

phoma (CLL/SLL) and MALT lymphoma with zero error rates. 
The diagnoses showed generally good performance in most B-cell 
lymphomas, with the exception of plasmablastic lymphoma (three 
errors out of three cases, 100%) and one mantle cell lymphoma 
(MCL). In T-cell lymphomas, the algorithm achieved a perfor-
mance that is generally equivalent to that in B-cell lymphomas 
except for T lymphoblastic leukemia/lymphoma (no error in 17 
cases) and extranodal NK/T-cell lymphoma, nasal type (no error 
in 25 cases). In enteropathy-associated T-cell lymphoma, periph-
eral T-cell lymphoma, NOS, anaplastic large cell lymphoma 
(ALCL), anaplastic lymphoma kinase (ALK)–negative, and an-
gioimmunoblastic T-cell lymphoma, the error rates were 50.0%, 
34.7%, 43.8%, and 33.3%, respectively. In Hodgkin lympho-
mas, the error rates were 12.5% in classical Hodgkin lymphoma, 
NOS, and 14.3% in nodular sclerosis subtype.

Validation data

In the validation data, the hit rate of the predictive diagnosis 
(top 10) was 95.7% (Table 2). Detailed results of the discordant 
cases for the original and predictive diagnoses are provided in Ta-
ble 2. In B-cell lymphomas, the hit rate of predictive diagnosis 
was relatively high for DLBCL, follicular lymphoma, CLL/SLL, 
MALT lymphoma, and MCL with zero error rates. Generally good 
performance was seen in most B-cell lymphomas, with the ex-
ception of primary cutaneous follicle center lymphoma (1 error 
out of 2 cases, 50.0%). In T-cell lymphomas, performance was 
generally equivalent to that in B-cell lymphomas with the ex-
ception of T lymphoblastic leukemia/lymphoma (no errors in 7 
cases), extranodal NK/T-cell lymphoma, and nasal type (no er-
rors in 15 cases). In enteropathy-associated T-cell lymphoma, 
primary cutaneous CD8-positive, aggressive epidermotropic 
cytotoxic T-cell lymphoma, peripheral T-cell lymphoma, NOS, 
ALCL, ALK-negative, and angioimmunoblastic T-cell lympho-
ma, the error rates were 50.0%, 50.0%, 33.3%, 42.8%, and 
33.3%, respectively. In Hodgkin lymphomas, the error rates were 
50.0% in nodular lymphocyte-predominant Hodgkin lym-
phoma, 18.2% in classical Hodgkin lymphoma, NOS, 20.0% 
in nodular sclerosis subtype, and 33.3% in lymphocyte-deplet-
ed subtype. 

Precision error rates between training and validation dataset

The error rates of the predictive diagnosis were 5.3% in train-
ing data and 4.3% in validation data. The error rates of both 
groups were not significantly different (p = 0.543) (Table 3). The 
overall hit rate was 95.0% in lymphomas (Table 3).
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DISCUSSION

We verified that it is possible to calculate the probability of a 
specific disease for a particular case, especially lymphomas, using 
IHC results, a probabilistic decision tree, and a mobile applica-

tion. The diagnosis precision drawn by the probabilistic decision-
tree algorithm achieved a hit rate of 95.0% for lymphomas. The 
hit rates between training and validation dataset did not differ 
significantly in lymphomas (94.7% vs. 95.7%, p = 0.543).

The hit rate of the diagnosis precision algorithm was relatively 

Table 1. The original diagnosis of the training and validation dataset of lymphomas

Original diagnosis Training data Validation data

B lymphoblastic leukemia/lymphoma 8 (1.3) 5 (1.3)
Chronic lymphocytic leukemia/small lymphocytic lymphoma 20 (3.3) 11 (2.8)
Extranodal marginal zone lymphoma of MALT (lymphoma) 78 (13.0) 74 (18.9)
Nodal marginal zone lymphoma 4 (0.7) 5 (1.3)
Plasma cell myeloma 3 (0.5) 0����
Follicular lymphoma

Grade 1, 2, 3A 59 (9.8) 16 (4.1)
Grade 3B 3 (0.5) 6 (1.5)

Mantle cell lymphoma 24 (4.0) 19 (4.8)
DLBCL

NOS 216 (34.3) 145 (37.0)
T-cell/histiocyte-rich 2 (0.3) 0����
Primary DLBCL of the CNS 9 (1.4) 0����
CD5+ DLBCL 1 (0.2) 2 (0.5)
EBV positive DLBCL of elderly 1 (0.2) 0����
Anaplastic variant 0���� 4 (1.0)
Primary cutaneous DLBCL, leg type 0���� 1 (0.3)

Primary mediastinal (thymic) large B-cell lymphoma 9 (1.5) 3 (0.8)
Plasmablastic lymphoma 3 (0.5) 0����
Primary effusion lymphoma 1 (0.2) 0����
Burkitt lymphoma 17 (2.8) 11 (2.8)
B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma 3 (0.5) 0����
Primary cutaneous follicle centre lymphoma 0���� 2 (0.5)
T lymphoblastic leukemia/lymphoma 17 (2.8) 7 (1.8)
Extranodal NK/T-cell lymphoma. nasal type 25 (4.2) 15 (3.8)
Adult T-cell leukemia/ lymphoma 1 (0.2) 0����
Enteropathy-associated T-cell lymphoma 6 (1.0) 4 (1.0)
Aggressive NK-cell leukemia 1 (0.2) 0����
Lymphomatoid papulosis type B 1 (0.2) 0����
Mycosis fungoides 0���� 3 (0.8)
Primary cutaneous (CD30-positive T-cell) ALCL 1 (0.2) 0����
Primary cutaneous CD8 positive aggressive epidermotropic  
cytotoxic T-cell lymphoma

0���� 2 (0.5)

Subcutaneous panniculitis-like T-cell lymphoma 0���� 1 (0.3)
Peripheral T-cell lymphoma, NOS 23 (3.8) 12 (3.1)
Angioimmunoblastic T-cell lymphoma 16 (2.7) 7 (1.8)
ALCL, ALK-positive 5 (0.8) 2 (0.5)
ALCL, ALK-negative 9 (1.5) 6 (1.5)
Nodular lymphocyte-predominant Hodgkin lymphoma 0���� 2 (0.5)
Classical Hodgkin lymphoma, NOS 8 (1.3) 11 (2.8)
Nodular sclerosis classical Hodgkin lymphoma 21 (3.5) 5 (1.3)
Mixed cellularity classical Hodgkin lymphoma 7 (1.2) 8 (2.0)
Lymphocyte-depleted classical Hodgkin lymphoma 0 3 (0.8)
Total 602 (100) 392 (100)

Values are presented as number (%).
MALT, mucosa-associated lymphoid tissue; DLBCL, diffuse large B-cell lymphoma; NOS, not otherwise specified; CNS, central nervous system; EBV, Ep-
stein-Barr virus; NK, natural killer; ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase.
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Table 2. Cases with discordant results between the original and predictive diagnosis in training and validation data when searched among 
lymphomas

Original diagnosis
Error/No. (%)

Training data Validation data

B lymphoblastic leukemia/lymphoma 0/8 0/5
Chronic lymphocytic leukemia/small lymphocytic lymphoma 0/20 0/11
Extranodal marginal zone lymphoma of MALT (lymphoma) 0/78 0/74
Nodal marginal zone lymphoma 0/4 0/5
Plasma cell myeloma 0/3 0/0
Follicular lymphoma

Grade 1, 2, 3A 0/59 0/16
Grade 3B 0/3 0/6

Mantle cell lymphoma 1/24 (4.2) 0/19
DLBCL

NOS 0/216 0/145
T-cell/histiocyte-rich 0/2 0/0
Primary DLBCL of the CNS 0/9 0/0
CD5+ DLBCL 0/1 0/2
EBV positive DLBCL of elderly 0/1 0/0
Anaplastic variant 0/0 0/4
Primary cutaneous DLBCL, leg type 0/0 0/1

Primary mediastinal (thymic) large B-cell lymphoma 0/9 0/3
Plasmablastic lymphoma 3/3 (100) 0/0
Primary effusion lymphoma 0/1 0/0
Burkitt lymphoma 0/17 0/11
B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma 0/3 0/0
Primary cutaneous follicle centre lymphoma 0/0 1/2 (50.0)
T lymphoblastic leukemia/lymphoma 0/17 0/7
Extranodal NK/T-cell lymphoma, nasal type 0/25 0/15
Adult T-cell leukemia/ lymphoma 1/1 (100) 0/0
Enteropathy-associated T-cell lymphoma 3/6 (50.0) 2/4 (50.0)
Aggressive NK-cell leukemia 0/1 0/0
Lymphomatoid papulosis type B 0/1 0/0
Mycosis fungoides 0/0 0/3
Primary cutaneous (CD30-positive T-cell) ALCL 0/1 0/0
Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma 0/0 1/2 (50.0)
Subcutaneous panniculitis-like T-cell lymphoma 0/0 0/1
Peripheral T-cell lymphoma, NOS 9/23 (34.7) 4/12 (33.3)
Angioimmunoblastic T-cell lymphoma 8/16 (43.8) 3/7 (42.8)
ALCL, ALK-positive 0/5 0/2
ALCL, ALK-negative 3/9 (33.3) 2/6 (33.3)
Nodular lymphocyte-predominant Hodgkin lymphoma 0/0 1/2 (50.0)
Classical Hodgkin lymphoma, NOS 1/8 (12.5) 2/11 (18.2)
Nodular sclerosis classical Hodgkin lymphoma 3/21 (14.3) 1/5 (20.0)
Mixed cellularity classical Hodgkin lymphoma 0/7 0/8
Lymphocyte-depleted classical Hodgkin lymphoma 0/0 1/3 (33.3)
Total 32/602 (5.3) 17/392 (4.3)

MALT, mucosa-associated lymphoid tissue; DLBCL, diffuse large B-cell lymphoma; NOS, not otherwise specified; CNS, central nervous system; EBV, Ep-
stein-Barr virus; NK, natural killer; ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase.

Table 3. A comparison of precision error rates between the training and validation dataset of lymphomas

Precision diagnosis Training data Validation data Total p-value

Accurate results 570 (94.7) 365 (95.7) 935 (95.0) 0.543
Error results 32 (5.3) 17 (4.3) 49 (5.0)
Total 602 (100) 382 (100) 984 (100)

Values are presented as number (%).
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high in most B-cell lymphomas, including DLBCL, follicular 
lymphoma, CLL/SLL, MALT lymphoma, and Burkitt lymphoma 
with zero errors, which represents the majority of all lymphoma 
cases (approximately two-thirds). One case of MCL showed an 
incorrect predictive diagnosis that was an atypical case of a cy-
clinD1-negative MCL with a CCND1/IGH translocation prov-
en by fluorescence in situ hybridization (IHC results; CD20+, 
Bcl-2+, CD3–, CD10–, Bcl-6–, CD23–, MUM1–, p53–). The 
IHC for CD5 was not available, and this atypical IHC profile 
appeared to explain the incorrect precision. Another case of cy-
clinD1-negative MCL occurred in the validation data set. Al-
though the cyclinD1 was negative, CD5 was positive, and the 
predictive diagnosis included MCL. In plasmablastic lymphomas, 
the predictive diagnosis was incorrect in all three cases. Plasma-
blastic lymphoma shares an IHC profile with plasma cell neo-
plasms, large B-cell lymphomas, and MALT lymphoma, in that 
CD38, CD138, CD79a, are positive and CD30 is positive but 
CD20 is often negative [5,18,19,20]. All three recruited cases 
of plasmablastic lymphoma showed CD20 positivity and were 
presumed to be plasma cell neoplasms such as multiple myelo-
ma and solitary plasmacytoma, diffuse large B-cell lymphoma, 
anaplastic variant (CD30 positive), and extranodal MALT lym-
phoma with plasmacytoid differentiation. The main reason for 
the error in diagnosis precision is thought to be a lack of disease-
specific markers and overlapping IHC profiles similar to those 
of other diseases. Likewise, in primary cutaneous follicle center 
lymphoma of the validation dataset, the similarity of IHC pro-
files to follicular lymphomas appeared to explain the lack of pre-
cision. Because the algorithm does not take into account clinico-
pathologic information such as tumor location, skin versus lymph 
node, in this case, this incoherence can be explained. 

In T-cell lymphomas, by comparison, the algorithm achieved a 
generally equivalent performance compared with B-cell lympho-
mas, with the exception of T lymphoblastic leukemia/lympho-
ma and extranodal NK/T-cell lymphoma, and nasal type. The 
accurate precision in T lymphoblastic leukemia/lymphoma and 
extranodal NK/T-cell lymphoma in the nasal type is due to the 
presence of disease-specific markers such as TdT, and CD56, and 
Epstein-Barr virus–encoded small RNA. However, in adult T-
cell leukemia/lymphoma, enteropathy-associated T-cell lym-
phoma, primary cutaneous CD8-positive, aggressive epidermo-
tropic cytotoxic T-cell lymphoma, peripheral T-cell lymphoma, 
NOS, ALCL, ALK-negative, and angioimmunoblastic T-cell 
lymphoma, error rates were high as 33.3% to 100.0%. Adult T-
cell leukemia/lymphoma shares an IHC profile with peripheral 
T-cell lymphoma, NOS, with no disease-specific markers, but 

distinctive clinicopathologic features [18-20]. Enteropathy-associ-
ated T-cell lymphomas also do not have pathognomic IHC mark-
ers but distinctive clinicopathologic findings and often share an 
IHC profile with peripheral T-cell lymphomas [18-20]. Primary 
cutaneous CD8-positive, aggressive epidermotropic cytotoxic T-
cell lymphoma is a rare subtype of peripheral T-cell lymphoma 
that involves primarily skin, and the IHC profile is not specific 
enough to rule out other diseases by IHC alone [4,5,20]. ALCL, 
ALK-negative is a lymphoma of anaplastic morphology with 
negative ALK, which can often share IHC profiles with ALCL, 
ALK-positive, Hodgkin lymphomas, and peripheral T-cell lym-
phoma, NOS [18-20]. In angioimmunoblastic T-cell lympho-
ma, programmed death-1 (PD-1) has been considered a specific 
marker [22]. However, many other lymphomas often express 
PD-1 at varying rates, and its positivity is often interpreted based 
on characteristic histologic features [4,5,20]. Peripheral T-cell 
lymphoma, NOS, is a different category of nodal and extranodal 
mature T-cell lymphomas that do not correspond to any explicitly 
defined entities by definition [18,19]. Therefore, its IHC profiles 
cover a wide variety of expressions and are often shared by other 
entities in T-cell lymphomas. In summary, many T-cell lympho-
mas often share IHC profiles and have no disease-specific IHC 
markers but can be differentially diagnosed based on clinico-
pathologic findings with or without IHC profiles. 

In Hodgkin lymphomas, the error rates were 50.0% in nodu-
lar lymphocyte-predominant Hodgkin lymphoma (1 out of 2), 
15.8% in classical Hodgkin lymphoma, NOS (3 out of 19), 
15.4% in nodular sclerosis subtype (4 out of 26), 0% in mixed 
cellularity subtype (0 out of 15), and 33.3% in lymphocyte-de-
pleted subtype (1 out of 3). Nodular lymphocyte-predominant 
Hodgkin lymphoma shares the IHC profile with T-cell/histio-
cyte-rich DLBCL and ALCL, ALK-negative, as well as clinico-
pathologic features. Classical Hodgkin lymphoma, including 
subtypes, also showed overlapping IHC profiles to peripheral T-
cell lymphoma, NOS, but a differential diagnosis based only on 
IHC profiles is not feasible, particularly if CD15, a specific Hodg-
kin’s marker, is negative. Integrated and comprehensive diagno-
sis, including the clinicopathologic findings in addition to the 
possible diagnosis by IHC profiles is therefore essential. 

In terms of time and user experience, it is difficult to mathe-
matically compare the amount of time that is consumed during 
the process of diagnosis with or without using this application. In 
general, however, most pathologists gave us positive feedback 
about time-saving and easy-to-use user experiences. 

This study demonstrates the feasibility and clinical utility of 
the diagnosis precision algorithm and corresponding mobile ap-
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plication in differential diagnosis of lymphomas using IHC pro-
files. The overall hit rate of this machine-learning algorithm 
was 95.0% in lymphomas, and the hit rates were not significant-
ly different between training and validation data in lymphoma, 
which showed a relatively good generalization. Significant errors 
were associated with atypical IHC profiles, a lack of site- and 
disease-specific markers, overlapping IHC profiles between dis-
ease entities, mixed/combined tumors, etc. Although this system 
will help pathologists make better decisions during pathologic 
diagnosis by supplying comprehensive IHC information relevant 
to efficient and accurate differential diagnosis, integrated interpre-
tation with contextual information such as clinical and pathologi-
cal findings are recommended, and the supportive use of this appli-
cation is desirable. Further studies of possible recommendations 
for IHC panels for specific situations involving differential diag-
nosis and application of artificial neural network algorithms are 
required to optimize the algorithm’s sensitivity to disease, organ 
incidence, and antibody weight. 
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