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Abstract 

Chondrogenesis is the formation of chondrocytes and cartilage tissues and starts with mesenchymal stem cell (MSC) 
recruitment and migration, condensation of progenitors, chondrocyte differentiation, and maturation. The chon-
drogenic differentiation of MSCs depends on co-regulation of many exogenous and endogenous factors including 
specific microenvironmental signals, non-coding RNAs, physical factors existed in culture condition, etc. Cancer stem 
cells (CSCs) exhibit self-renewal capacity, pluripotency and cellular plasticity, which have the potential to differentiate 
into post-mitotic and benign cells. Accumulating evidence has shown that CSCs can be induced to differentiate into 
various benign cells including adipocytes, fibrocytes, osteoblast, and so on. Retinoic acid has been widely used in the 
treatment of acute promyelocytic leukemia. Previous study confirmed that polyploid giant cancer cells, a type of can-
cer stem-like cells, could differentiate into adipocytes, osteocytes, and chondrocytes. In this review, we will summarize 
signaling pathways and cytokines in chondrogenic differentiation of MSCs. Understanding the molecular mechanism 
of chondrogenic differentiation of CSCs and cancer cells may provide new strategies for cancer treatment.
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Introduction
The cartilage is a connective tissue composed of chon-
drocytes and their surrounding matrix, which mainly 
contains collagen type II and proteoglycans. Chondro-
genic differentiation, the formation of chondrocytes 
and cartilage tissues, originates from the migration and 
condensation of mesenchymal stem cells (MSCs) [1]. 
Next, chondroprogenitor cells form, proliferate, and dif-
ferentiate into chondrocytes [2]. Chondrocytes end up 
as resting cells to form the articular cartilage or undergo 
proliferation, hypertrophy, and apoptosis in a process 
termed endochondral ossification, thereby replacing the 

hypertrophic cartilage with bone [3]. Neural crest cells 
of the neural ectoderm, sclerotome of the paraxial mes-
oderm and somatopleure of the lateral plate mesoderm, 
which give rise to craniofacial bones, axial skeleton and 
skeleton of the limbs respectively, are the main source 
of mesenchymal stem cells [4]. Currently, MSCs are 
reported to be isolated and cultured from a wide range 
of tissues including adipose tissue [5], bone marrow [6], 
synovial membrane [7] and fetal appendages, such as the 
amniotic membrane, umbilical cord, and chorionic plate 
[8–10]. Because of their variable source and easy avail-
ability, MSCs have been widely used in cartilage tissue 
engineering [11]. Not only MSCs, but cancer stem cells 
(CSCs), a group of quiescent cell types that can drive 
cancer growth and reconstruct their heterogeneity, can 
differentiate into mesenchymal phenotypes, such as pros-
tate cancer cell lines or melanoma cancer stem cells into 
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osteocytes and adipocytes [12, 13]. In this review, we 
discuss the regulatory mechanism of MSCs differentiat-
ing into chondrogenic lineages, including signaling path-
ways, key proteins as well as other factors which have 
been shown to have an important role in chondrogenic 
differentiation.

Signaling pathways of chondrogenesis 
in mesenchymal stem cells
The proliferation and differentiation of mesenchymal 
cells to chondrocytes, or chondrogenic differentiation, 
are a complex process regulated by multiple elements, 
which contain intracellular proteins, receptor ligands, 
and transcription factors, and disruption in signaling 
can result in defective chondrocyte production. Signal-
ing pathways involved in lineage determination of MSCs 
towards chondrogenesis is showed in Fig. 1.

TGF‑β pathway exerts positive effects on chondrogenic 
differentiation
According to the interaction between distinct recep-
tors and the ligands on the membrane, TGF-β family is 
divided into the TGF-β (transforming growth factor-β)/
activin/nodal subfamily and BMP (bone morphogenetic 
protein)/growth differentiation factor (GDF)/anti-Mul-
lerian hormone subfamily [14]. According to the par-
ticipation of protein SMAD, intracellular pathways of 
TGF-β are separated into receptor SMAD (R-SMAD)-
dependent and R-SMAD-independent [15]. The former is 
phosphorylated by type I kinase, thereby activating spe-
cific SMAD proteins complex that translocate into the 
nucleus to regulate the activation of target genes, such as 
chondrogenic transcription factor Sox9 [16, 17]. The lat-
ter includes mitogen-activated protein kinase (MAPK) 
pathways involving TGF-β-activated kinase 1 (TAK1) or 
extracellular signal-regulated kinase 1 and 2 [15]. The 
three ligands (TGF-β1, TGF-β2, and TGF-β3) have ability 
to induce chondrogenic differentiation, all of which bind 
to TGF-β type II receptor and TGF-β type I receptor and 
activate intercellular protein SMAD 2 and 3 [18]. TGF-βs 
stimulates the expression of cartilage-specific extracellu-
lar matrix proteins such as type II collagen and aggrecan 
[19, 20]. In a micro-pellet model, a single-day treatment 
of TGF-β1 was a sufficiency of stimulating bone marrow 
stromal cells (BMSCs) differentiation towards cartilage 
[21]. Amniotic MSCs overexpressing TGF-β1 expressed 
cartilage-specific genes and showed intense Safranin O 
and Alcian blue staining [22]. For cartilage tissue engi-
neering, TGF-β1 is widely used to induce chondrogenic 
differentiation in MSCs [23, 24], but several studies have 
stated that TGF-β2 and TGF-β3 are more efficient for 
the chondrogenic induction with higher production of 

collagen II and aggrecan and glycosaminoglycan deposi-
tion [25, 26].

BMPs recruit MSCs, promote condensation or prolif-
eration, and subsequently trigger their differentiation 
[27]. BMPs transduce signals through the formation of 
heteromeric complexes of BMP types II and I receptors 
and phosphorylation of intracellular protein SMAD 1, 5 
and 8. Among the BMP isoforms, the most widely stud-
ied are BMP-2, BMP-3 (osteogenin), BMP-4, BMP-6, 
BMP-7 (also known as osteogenic protein-1), and BMP-9 
[18, 28]. BMP-2/4 enhance the recruitment of mesen-
chymal precursors for cartilage condensations, and regu-
late the condensation size [29]. Human muscle-derived 
stem cells (hMDSCs) transfected with lenti-BMP2/GFP 
vector could enhance the capacity of hMDSCs to differ-
entiate into cartilage, as confirmed by Alcian blue and 
Col2a1 positive staining [30]. BMP4, BMP11, BMP6, 
BMP7, BMP9, BMP13 and BMP14 have been reported to 
up-regulate chondrogenic markers Sox9, Sox5, and Sox6 
[31].

In terms of R-SMAD-independent pathway, deletion of 
Tak1 in limb mesenchyme cells could result in the inac-
tivation of the downstream MAPK target p38, as well 
as impaired the activation of the BMP/SMAD signal-
ing pathway, which the differentiation of the chondro-
cyte lineage was interrupted [32]. Noggin subordinated 
with BMP signaling inhibitors and could be induced by 
TGF-β1 during the recruitment of progenitor cells into 
cartilage elements [33]. ERK1/2 is activated upon TGF-
β1 stimulation or BMP2 administration and acts as the 
passive modulator of chondrogenic differentiation [34, 
35], but this inhibition of chondrogenic differentiation 
was covered by the positive effect of R-SMAD-dependent 
pathway.

Hedgehog (Hh) pathway plays a relevant role 
in chondrogenic differentiation
Hh was first identified in Drosophila body plan [36]. 
Smoothened (Smo) is a receptor, which possesses an 
ability of activating intracellular signals repressed by 
Patched (Ptch) [37]. When secreted by the sending cell, 
Hh ligands bind to Ptch on the receiving cell, and this 
action can relieve the negative effect of Ptch on Smo, 
which initiates Hh signal transmission. In mammals, 
zinc finger proteins Gli1, Gli2, and Gli3 are involved in 
the transcriptional regulation [38], and sonic hedgehog 
(Shh), desert hedgehog (Dhh), and Indian hedgehog 
(Ihh) are ligands in Hh pathway [39]. Dhh is required 
for spermatogenesis and formation of neuronal sheaths 
[40], but rarely been reported in chondrogenic differ-
entiation. There is the high-level expression of Ihh in 
proliferating limb bud mesodermal cells, which sub-
sequently differentiate into osteo-chondroprogenitor 
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after mesenchymal migration and condensation 
[41]. Compared to TGF-β1 and BMP-2, Ihh is also a 
potent inducer of chondrogenic differentiation of pri-
mary MSCs [42]. Shh takes part in morphogenesis 
of the muscle, hair, teeth, lung and gut, patterning of 
body limbs and cell fates of neural progenitors [43]. 
BMSCs transfected with Shh induced chondrogenic 

differentiation in the rotary cell culture system [44]. 
Exogenous Shh could induce the expression of the 
transcription factor Sox9 in the somatic tissue, and 
upregulated Sox9 expression level could induce robust 
chondrogenesis via BMP signals [45]. The Hh signaling 
antagonist HhAntag could modulate the BMP2-medi-
ated the canonical SMAD1/5/8 and non-canonical p38/
MAPK signaling [46] (Fig. 2).

Fig. 1  Signaling pathways and proteins involved in chondrogenic differentiation of mesenchymal stem cells. R-SMAD-dependent TGF-β and 
Hedgehog pathways can promote the overexpression of Sox9, whereas Notch and Wnt pathways can inhibit chondrogenic transcription factor 
Sox9. FGF can act on R-SMAD-independent TGF-β pathway, thus playing a part in chondrogenic differentiation. There are other molecules that 
interact with Sox9, such as osteogenic transcription factor Runx2, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1-α) 
and the member of histone acetyltransferase family P300/CBP
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Notch pathway negatively regulates chondrogenic 
differentiation
Notch signaling works via cell–cell contact, where trans-
membrane ligands on one cell recognize transmembrane 
receptors on its adjacent cells. This interaction can acti-
vate intracellular proteases, such as ADAM metallopro-
tease and γ-secretase complex, thereby contribute to 
proteolytic cleavage of the receptor [47]. After cleavage, 
notch intracellular domain (NICD), the COOH-terminal 
portion of the receptor, is released and translocated to 
the nucleus to form a complex with the transcription fac-
tor CSL (also known as RBP-JK) and the transcriptional 
coactivator mastermind-like 1 [48]. The ultimate complex 
targets the hairy and enhancer of split (Hes) and Hes-
related with YRPW motif (Hey) [49]. Unlike TGF-β and 
BMP pathways, Notch signaling inhibits chondrogenic 
differentiation via interactions between four receptors 
(Notch1–5) and at least five ligands including two mem-
bers of the Jagged (JAG) family and three members of 
the delta-like family (Dll) [48, 50]. This suppression regu-
lates the expression of the chondrogenic transcription 
factor Sox9, whereas it is irrelevant to the regulation of 
cartilage matrix catabolism [51, 52]. Cartilage regenera-
tion induced by placenta-derived mesenchymal stromal 
cell (PMSC) could be promoted by inhibiting the Jag-
ged1 (JAG1) peptides of Notch pathway [53, 54]. Notch 
inhibition of chondrogenic differentiation is regulated by 
the transcription factor Twist1, which cooperates with a 
putative NICD/RBPjK binding element in the promoter 

region [55]. Overexpression of ligand Dll2 could strongly 
promote the activation of p38/MAPK rather than extra-
cellular signal-regulated kinase 1/2 and c-Jun N-terminal 
kinase, thereby inhibiting the chondrogenic differentia-
tion of ATDC5 (a kind of cartilage cell line) [56].

Wnt pathway influences chondrogenic differentiation
Wnt pathway can be grouped into two categories based 
on the participation of β-catenin in signal transduction. 
One is canonical (β-catenin-dependent), and the other 
is non-canonical (β-catenin-independent) [57]. With 
respect to the β-catenin-dependent pathway, Wnt pro-
teins bind a heterodimeric receptor complex, comprised 
of a Frizzled (Fzd) and an LRP5/6 protein [58]. This 
binding inhibits GSK-3β phosphorylation to β-catenin 
and leads to the stabilization of β-catenin. β-catenin in 
stable state accumulates in the nucleus and binds T cell-
specific factor/lymphoid enhancer-binding factor (TCF/
LEF), resulting in activation of target genes [59, 60]. In 
the deficiency of Wnt ligands, the cytoplasmic complex 
consisting of the scaffolding protein Axin, adenomatous 
polyposis coli, casein kinase 1, and GSK-3β can phospho-
rylate β-catenin, resulting in its ubiquitination and subse-
quent proteasomal degradation [61]. The non-canonical 
pathway is split into two branches, the Wnt/calcium path-
way and the planar cell polarity [62]. β-catenin-mediated 
canonical Wnt signaling inhibits chondrogenic differen-
tiation, while non-canonical pathways promote this dif-
ferentiation [18, 63]. As the member of canonical Wnt 

Fig. 2  Integrated regulation of chondrogenesis differentiation from mesenchymal stem cells. Red arrows indicate promoting effect and green 
arrows with lines indicate inhibiting effect
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pathway, Wnt3a plays a dual role on chondrogenic capac-
ity of MSCs [64–66]. The non-canonical factor Wnt5a 
augments cartilage formation, collagen fiber rearrange-
ment, and remarkably enhances glycosaminoglycan and 
collagen deposited in vivo [67]. The synergistic effect of 
Wnt5a and TGF-β3 stimulated the activation of p38/
MAPK pathway, a positive regulator of chondrogenic 
differentiation [68]. TGF-β1-mediated MAP kinase acti-
vation could promote the accumulation of intracellu-
lar β-catenin, and increase the expression of Wnt7a and 
N-cadherin (mesenchymal condensation marker) [69].

Wnt inhibitors and activators also play a significant 
role in cartilage homeostasis and development. As a Wnt 
antagonist, FRZB blocked canonical Wnt signaling and 
increased the production and deposition of glycosami-
noglycan with overexpression of chondrogenic markers 
(Sox9 and Col2a1) [70]. Lithium chloride and CHIR99021 
(CHIR), commercially available Wnt agonists, not only 
stimulate MSC proliferation, but also enhance the chon-
drogenic capacity of MSCs [71].

Fibroblast growth factor (FGF) signaling pathway 
is associated with chondrogenic differentiation
FGF signaling pathway involves in many physiological 
processes comprising digit morphogenesis, limb organo-
genesis, cerebral development and metabolic homeosta-
sis [72]. In terms of limb development, FGFs signaling is 
associated with mesenchymal condensation, chondro-
genic differentiation and hypertrophy, mineral homeo-
stasis and bone formation [73]. There are four members 
of FGF receptors (FGFR1–FGFR4) family with diverse 
FGF-binding capacities and at least 22 FGF ligands that 
can be subdivided into seven groups [74–76]. The FGF 
receptor (FGFR) commonly is composed of an intracel-
lular receptor tyrosine kinase domain, a hydrophobic 
transmembrane region and extracellular ligand-binding 
domains [77]. In the presence of FGF or other ligands, 
FGFR kinases are released from autoinhibition and auto-
phosphorylated, whose phosphorylated tyrosine resi-
dues serve as attachment sites for recruiting interacting 
proteins [78]. The downstream signaling pathways such 
as phosphoinositide 3-kinase/Akt (PI3K–AKT) and pro-
tein kinase C pathways can be activated and transduce 
information into nucleus [79]. In general, FGFR2, FGF2, 
FGF8, FGF9, and FGF18 have been reported to involve in 
chondrogenic differentiation [80, 81]. FGFR2 is an early 
marker of chondrogenesis, whose expression pattern is 
restrained in mesenchymal condensation region before 
occurrence of chondroprogenitor [81, 82]. A gain-of-
function mutation (S252W) of FGFR2 in mice results in 
dwindling proliferation BMSCs, a decline in BMSC chon-
drogenic differentiation via inhibiting mineralization [83], 
and changes in both Wnt signals and MAPK expression 

during human synovium-derived stem cell chondrogenic 
differentiation [84]. Solchaga et al. illustrated that FGF-2 
functioned in the regulation of chondrogenic differen-
tiation through MAPK and Wnt signaling via DUSP 4/6 
and Fzd7, respectively [85]. In addition to FGF-2, FGFR1 
could cooperate with β-catenin and alter the lineage 
commitment of MSCs into chondrocytes [86]. In com-
bination with transforming growth factor-beta (TGF-β), 
FGF9 and FGF18 stimulated early chondrogenic differen-
tiation by shifting the chondrogenic program earlier [87].

Cytokines of chondrogenic differentiation in MSCs
Transcription factor—Sox9
Sox9, sex determining region Y-box  9 [88], pertains to 
the SRY-related high-mobility group (HMG) box (Sox) 
family, whose family proteins are a conserved group of 
transcriptional regulators [89]. The fate and terminal dif-
ferentiation of chondrocyte are regulated by Sox9 via its 
accurate spatial and temporal expression pattern [89–91]. 
Sox9 can be detected in chondroprogenitors and mature 
chondrocytes, but not in hypertrophic chondrocytes, and 
Sox9 directly upregulates genes specifically expressed in 
precartilaginous condensation [92]. Heterozygous muta-
tions of Sox9 in human were first ascertained as the caus-
ative factor of campomelic dysplasia, a skeletal deformity 
with disorder of sexual development and genital ambi-
guities [93]. Mice with heterozygous Sox9 mutant can 
be perinatal mortality and presented palatoschisis and 
crookedness of bony structures originated from cartilage 
precursors [94]. As a part of the SoxE family, Sox9 pos-
sesses a distinct dimerization domain located proximally 
to the HMG box, which can interact with the enhancers 
and promoters of the aggrecan gene (Acan) and type-II 
collagen gene (Col2a1) [95–99], and a unique transacti-
vation domain [100]. Sox9 with downstream transcrip-
tion factors of SoxD family—Sox5 and Sox6 can work 
as chondrogenic Sox Trio [91]. Unlike Sox9, Sox5 and 
Sox6 are similar to one another in structure and func-
tion [101]. Sox5-deleted or Sox6-deleted mice develop 
modest skeletal disorders, yet deletion of these two genes 
could suffer serious cartilage primordia [91]. Zhou et al. 
have reported that the strong transcriptional activity of 
the 48 bp minimal enhancer of Col2a1 gene appears just 
when Sox9, Sox5, and Sox6 (Sox5/6) bind together to the 
sites in the enhancer [102]. In addition to inducing over-
expression of Col2a1 and Acan, Sox Trio inhibits hyper-
trophic gene expression and collagen type X deposition 
[103].

Cartilage matrix protein—Col2a1 and aggrecan
The collagen α1(II) gene, located at 12q13, is a key ele-
ment for production of alpha-1 type II collagen (Col2a1) 
[104], which is a main extracellular matrix protein of 
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cartilage. Mutations in Col2a1 can result in spondyloe-
piphyseal dysplasia and type II achondrogenesis. The 
former is an autosomal dominant disease characterized 
by limb and trunk shortness, pulmonary hypoplasia, 
abdominal enlargement with polyuria and edema [105, 
106]. In chondrogenic differentiation, expression pro-
files of Col2a1 are similar to the expressions of Sox9 in all 
chondroprogenitor cells in mouse and chick embryonic 
development [107–109]. There is a 48-bp gens in intron 1 
sequence of Col2a1 binding with Sox9, which is required 
for cartilage-specific expression [98, 102]. Besides SOX 
family, endogenous Hey-1 and Hes-1 can bind to N-box 
domains of the first intron of Col2a1, which is adjacent 
to the Sox9 enhancer binding site [110]. The response 
element of Runx1 has been identified in the 5-flank-
ing regions of the Col2a1 promoter [111]. Transcription 
factors (Kruppel-like factor-4 and AT-rich interactive 
domain 5B) could combine with the E1 enhancer element 
in Col2a1 and regulate its expression [112]. Aggrecan 
(Acan) is a large chondroitin sulfate proteoglycan con-
sisting of a polypeptide backbone covalently attached to 
one or more glycosaminoglycan chains in growth plate 
cartilage [113, 114]. Four enhancer elements were identi-
fied in the aggrecan gene, two of which (− 80 and − 62) 
showed individual chondrocyte developmental stage 
specificity. The other enhancers specific to chondrogene-
sis, + 28 and − 30, were not associated with chondrocyte 
type [95]. Additionally, transcription factor Sox9 binds to 
the first enhancer of the aggrecan gene with or without 
Sox5 and Sox6 [115, 116]. In addition to Sox9, PAX1/9-
binding site partly overlaps with a Sox9-binding site and 
exhibits as a weak transactivator [117].

Non‑coding RNA in chondrogenic differentiation
MiR-140 is involved in cartilage homeostasis and osteo-
arthritis development. miR-140-5p and miR-140-3p have 
been identified that are products of RNA Dicer exci-
sion at the 3′ and 5′ tail of the pre-miRNA, respectively 
[118]. This miRNA can bind to Sox9 directly or act on 
its upstream genes, such as RALA and SMAD3 [118–
120]. Recent studies have confirmed the bioactivity of 
exosomes carrying miR-140 in chondrogenic differentia-
tion of MSCs [121, 122]. MiR-23a and b are isoforms of 
miR-23 [123]. The former regulated by lncRNA SNHG5 
decreases the expression of SOX6/SOX5 and inhib-
its chondrogenic differentiation, whereas miR-23a-3p 
silencing attenuates the differentiation effect of BMSCs 
[124, 125]. The latter induces differentiation into chon-
drocytes of hMSCs through the downregulation of pro-
tein kinase A signaling [126]. Recently, it was reported 
that FGF2 expression is negatively regulated by miR-23c, 
thereby affecting chondrogenic differentiation [127].

LncRNA DANCR, known as an anti-differentiation 
ncRNA, not only binds to protein-coding genes, but 
also regulates miRNAs, such as miR-1305 and miR-
1275 in chondrogenesis [128–132]. Using CRISPR 
activation (CRISPRa) technology, DANCR improved 
adipose-derived stem cell chondrogenic differentiation 
by inhibiting miR-203a and miR-214 [133]. The lncRNA 
UCA1 has been proved to be relevant to several human 
cancers. The expression of UCA1 increased markedly 
along with chondrocyte differentiation [134]. UCA1 
combined with miR-145-5p/SMAD5 and miR-124-3p/
SMAD4 can regulate chondrogenic differentiation of 
MSCs [135].

According to the bioinformatics analysis of hybridiza-
tion arrays, circRNAs associated with chondrogenic dif-
ferentiation are derived from similar precursor genes, 
such as FKBP5, ZEB1, or SMYD3 [136]. However, no 
experimental studies have reported the specific role of 
circRNAs in the cartilage lineage differentiation of stem 
cells [137].

Biophysical factors in chondrogenic differentiation
Early stage of chondrogenic differentiation is enhanced 
and the expression of chondrogenic markers Col2a1, 
Sox9, and Acan are increased when MSCs are cultured 
under low oxygen tension [138, 139]. Besides the hypoxia 
factor, there are several mechanical cues in cartilage for-
mation [140]. Fluid shear stress (ΔSS) is a potent regula-
tor of chondrogenic differentiation, which is comparable 
to TGF-β1 induction [141, 142]. Hydrostatic pressure has 
an anabolic effect on MSCs chondrogenic differentiation, 
and the loading capacity and time, longitude of chon-
drogenic preprocessing prior to pressurizing, also have 
an effect on chondrogenic differentiation [143]. Lineage 
determination of MSCs is susceptible to material stiff-
ness, which regulates this development through trans-
forming growth factor beta (TGF-β) signaling pathway 
[144]. MSCs on softer substrates are prone to differentia-
tion into chondrogenic lineage [145].

Chondrogenic differentiation of malignant tumors
Cancer stem cells (CSCs), also known as tumor-initiating 
cells, are a small fraction of cells inside tumor tissues. 
They can self-renew and differentiate and are respon-
sible for relapses as well as resistance to chemoradio-
therapy [146, 147]. The ability of cancer cells to switch 
from non-CSCs to CSCs and vice versa is called pheno-
typic plasticity [148]. CSC plasticity takes determina-
tion to malignancy population dynamic and promotes 
cancer cellular progression [149–151]. Therefore, many 
researchers have exploited the plasticity of CSCs as a 
promising therapeutic target. The differentiation therapy 
implies that CSCs could be induced into differentiate into 
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matured cells, and also converted into non-stem cells that 
were sensitive to traditional anticancer reagents [152]. 
The mesenchymal differentiation capacities of CSCs are 
involved in nervous system neoplasms [153, 154], bone 
sarcoma [155, 156], and prostate and cervical cancers [12, 
157]. Polyploid giant cancer cells (PGCCs) induced by 
cobalt chloride have the properties of CSC characteristics 
and a single PGCC can form tumor in nude mice. When 
cultured in adipogenic, osteogenic and chondrogenic 
induction medium, PGCCs could differentiate into adi-
pocytes, osteocytes and chondrocytes, respectively [158].

Potential mechanism of CSCs inducible differentiation
Mesenchymal phenotype is a determinant for differen-
tiation of CSC. Wilms tumors (WTs) are genetically het-
erogeneous kidney tumors. Five WT cell lines expressed 
MSC-specific surface proteins and had the ability to dif-
ferentiation into adipogenic, chondrogenic, osteogenic 
and myogenic lineage [159]. ALDH + malignant phyl-
lodes tumor cells could also be induced to differentiate 
into chondrocytes. CD133 + CSCs from osteosarcoma 
and Ewing’s sarcoma displayed the potency to differ-
entiate into mesenchymal lineages, such as osteoblasts 
and chondrocytes [155, 156]. For epithelial-derived 
neoplasms, the transition between the epithelium and 
mesenchyme is a biological process called as epithelial–
mesenchymal transition (EMT), in which epithelial cells 
obtain mesenchymal cell phenotypes and are related 
to mesenchymal differentiation [160]. Epithelial cells 
transduced with TGF-β1 retrovirus had the functional 
resemblance to MSCs, including a comparable antigenic 
phenotype (positive for CD44), the ability to lineage 
commitment (positive for Alcian blue of chondrocytes) 
[161]. It has been reported that the growth factor fam-
ily (GF) regulated mesenchymal tri-lineage differentia-
tion. Epidermal growth factor receptor (EGFR) inhibitors 
can induce the mesenchymal–epithelial transition and 
impact on EGF-induced EGFR signaling in breast CSC 
mesenchymal differentiation [162]. Transcriptional 
coactivator with PDZ-binding motif (TAZ) interacts 
with the transcription factor TEA domain family mem-
bers (TEAD), which plays pivotal roles in EMT and cell 
growth. TAZ overexpression increases the expression of 
mesenchymal marker CD44 and the differentiation capa-
bility towards osteoblastic and chondrogenic lineage in 
glioma stem cells and murine neural stem cells [163].

Verhaak et al. described a robust gene expression-based 
molecular classification of GBM involved in proneural, 
neural, classical, and mesenchymal subtypes [164]. Anal-
ysis of The Cancer Genome Atlas (TCGA) demonstrated 
that RTVP-1 overexpressed in GBM which expressed 
mesenchymal phenotype, and silencing of RTVP-1 abro-
gated the chondrogenic differentiation of GBM cells in 

response to specific induction media. RTVP-1 promoter 
could bind C/EBP β, a master transcription factors that 
regulated mesenchymal transformation of GBM [165], 
and C/EBP β promoter activity could be suppressed by 
binding with Sox9 [166]. C/EBP β-expressing cells termi-
nated in further increase of mesenchymal gene expres-
sion and obtained mesenchymal properties [167]. In 
gastric signet ring cell adenoma cancer, dysregulation of 
EMT-associated molecules and differentiation towards 
chondrocytes also occurred in KATO-III cell line (a cell 
line of gastric carcinoma) under the induction media 
[168].

The chondrogenic induction medium components in 
CSCs are same as those in MSCs, and include insulin-
transferrin-selenium (ITS), ascorbate, TGF-β and dexa-
methasone. Exogenous TGF-β can stimulate TGF-β 
pathway, thereby accelerate the chondrogenic differ-
entiation. Physiological levels of dexamethasone play a 
positive regulatory role in cartilage formation by directly 
interacting with the TGF-β signaling molecule, SMAD3 
[169]. ITS is a nutritional supplement involved in glucose 
and proline metabolism during collagen synthesis. Ascor-
bate is a requisite cofactor in the production of collagen 
II and sulfated glycosaminoglycan [170]. The molecular 
mechanism of chondrogenic differentiation of CSCs may 
be similar to that of MSCs. Resveratrol inhibited MMP-
induced chondrogenic differentiation via the p38 kinase 
and JNK pathways in chondrosarcoma cells [171]. The 
activation of p38/ERK/JNK pathways in the presence of 
TGF-β1 facilitated the expression of Sox9, collagen II and 
aggrecan [172]. MiR-200b-3p mediated chondrogenic 
differentiations of quercetin-induced pancreatic ductal 
adenocarcinoma CSCs by inhibiting Notch and activat-
ing Numb [173]. Sox9, Col2a1 and Acan was increased 
when transcription factor of notch pathway RBP-JK was 
restrained by DNA methyltransferase 3b [174].

Differentiation therapy of CSCs
Retinoic acid (RA) is a well-known modulator in skel-
eton development, of which functions through a class 
of nuclear hormone receptors, the retinoic acid recep-
tors (RARs) and retinoid-X-receptors (RXRs), to regulate 
gene transcription [175]. RA has successfully used in the 
differentiation therapy of acute promyelocytic leuke-
mia [176]. RA acts on the RARA moiety of PML-RARA 
fusion protein that will be degraded, and contributes 
leukemia cells to terminal differentiation and apoptosis 
[177]. RA inhibited the condensation and proliferation 
and dysregulated Sox9 and Col2a1 in a dose-dependent 
manner through inhibition of Shh/Gli3 pathway [178]. 
Subtype-specific RAR agonists as well as RA had a strong 
inhibitory effect on chondrogenic differentiation with 
decreased the expression levels of Col2a1 and Sox9 [179]. 
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Palovarotene (PVO), a RAR selective agonist, attenuates 
overactivated BMP signaling and restored aberrant chon-
drogenic fate determination of osteochondroma cells 
[180].

Traditional Chinese medicine has been widely accepted 
as an alternative treatment for cancer [173, 181]. In glio-
blastoma stem cells, the expression levels of proteins 
associated with differentiation, such as glial fibrillary 
acidic protein (GFAP), Notch1 and Shh, were increased 
by β-elemene in vitro and in vivo [182, 183]. Antagonist 
of CXCR4 (PRX177561) could regulate the tumor micro-
environment, decrease the expression of CSC markers 
Sox2, Twist, Nanog, and overexpress GFAP in glioma 
[184]. Treatment of CD133 + CSCs derived from human 
GBMs with BMPs decreased cell proliferation in  vitro 
and differentiated into astrocytes [185]. As a typical 
potassium ionophore antibiotic, Salinomycin improves 
epithelial differentiation ability of breast CSCs by means 
of eliminating cancer cells from CSC features and block-
ing cell cycle [186]. The inhibitor of HDACs (Quisinostat) 
stimulates DOX-mediated cytotoxicity in breast CSCs as 
well as non-CSCs from basal-like, mesenchymal-like, and 
luminal-like breast cancer [187]. In hepatocellular car-
cinoma, DW14800, a novel inhibitor of protein arginine 
methyltransferase 5 (PRMT5), promotes the differentia-
tion of CSCs by downregulating the expression of HNF4α 
and enhancing methylation of H4R3me2s [188]. Met-
formin, a well-known anti-diabetic drug, can decrease 
CSC marker expression (CD44 and Sox2) and increase 
the expression of differentiation markers (Kruppel-like 
factor 4 and MUC5AC) in gastric CSCs [189]. IDH1 and 
IDH2 mutations are frequent in many solid cancers, and 
the enzymes encoded by these mutation are endowed 
with new function that facilitate the accumulation of the 
oncometabolite D-2-hydroxyglutarate (D-2HG), which 
has significant impacts on epigenetic regulation, dif-
ferentiation degree, and metabolic patterns [190]. The 
differentiation inducers targeted mutant isocitrate dehy-
drogenase IDH1 and IDH2 have been granted for clinic 
trials. Ivosidenib, an IDH1 inhibitor, showed improved 
progression-free survival versus placebo in the phase III 
clinical trial of patients with advanced cholangiocarci-
noma [191]. In advanced glioma, patients treated with 
ivosidenib were associated with a favorable safety profile, 
prolonged progression-free survival [192].

Conclusion and perspective
Chondrogenic differentiation is a multifactorial and mul-
tistep process. Mesenchymal differentiation into chon-
drocytes is regulated by concurrent signaling pathways, 
among which the TGF-β pathway is the principal and the 
earliest signal in chondrogenic condensation. Engineered 
TGF-β superfamily ligands have been produced and 

tested for in vitro cartilage formation and used for com-
mercial purposes. As transcriptomic and bioinformatics 
technologies have been developed, many of the identified 
ncRNAs have been validated for chondrogenic differen-
tiation. LncRNA DANCR could improve mesenchymal 
differentiation to cartilage lineage by miRNAs (such as 
miR-203a and miR-214). CSCs, a small fraction of can-
cer cells with tumorigenesis, have ability to differentiate 
into non-CSCs because of phenotypic plasticity, which 
can be the basis for differentiation therapy. Retinoic 
acid (RA) has been accepted as the first-line treatment 
in acute promyelocytic leukemia. Retinoid signaling was 
also informed to play a negative role in chondrogenic dif-
ferentiation. Therefore, it may be possible that retinoid 
antagonists directly transform malignant neoplasm into 
benign cartilage tissue. It has been reported that CSCs 
can differentiate along their lineage or undergo mes-
enchymal differentiation through EMT. CSCs could be 
induced to differentiate into adipogenic, osteogenic and 
chondrogenic cells in more than 10 kinds of malignant 
tumors. However, these studies just describe this dif-
ferentiation phenomenon rather than clearly elucidate 
the mechanism underlying chondrogenic differentia-
tion of CSCs. Understanding the molecular mechanism 
of induced differentiation of CSCs may be contribute to 
developing new drugs for cancer treatment.
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