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To the Editor: Computational prediction methods that operate on pairs of objects by 

considering features of each (hereafter referred to as “pair-input methods”) have been 

crucial in many areas of biology and chemistry over the past decade. Among the most 

prominent examples are protein-protein interaction (PPI)1-2, protein-drug interaction3-4, 

protein-RNA interaction5 and drug indication6 prediction methods. A sampling of more than 

fifty published studies involving pair-input methods is provided in Supplementary Table 1. 

In this study we demonstrate that the paired nature of inputs has significant, though not yet 

widely perceived, implications for the validation of pair-input methods.

Given the paired nature of inputs for pair-input methods, one can envision evaluating their 

predictive performance on different classes of test pairs. As an example, 

proteochemometrics modeling3, a well-known computational methodology for predicting 

protein-drug interactions, takes a feature vector for a chemical and a feature vector for a 

protein receptor in order to predict the binding between the chemical and protein receptor3. 

In this case, a test pair may share either the chemical or protein component with some pairs 

in a training set; it may also share neither. We found that pair-input methods tend to perform 

much better for test pairs that share components with a training set than for those that do not. 

As a result, it is necessary to distinguish test pairs based on their component-level overlap 

when evaluating performance. A test set that is used to estimate predictive performance may 

be dominated by pairs that share components with a training set, yet such pairs may form 

only a minority of cases on the population level. In this case, a predictive performance 

estimated on the test set may be impressive, yet it should fail to generalize to the population 

level. Indeed, this component-level overlap issue for the validation of pair-input methods 

was early recognized by some researchers (e.g., by Vert, Yamanishi and others; see 

Supplementary Table 1). However, it has been overlooked by most researchers across 

biology and chemistry, and as a result cross-validations for pair-input methods usually did 

not distinguish test pairs based on the component-level overlap criterion.
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To illustrate the component-level overlap issue, we consider PPI prediction methods with 

the toy example of Fig. 1, in which the protein space is composed of 9 proteins and a 

training set consists of 4 positive and 4 negative protein pairs. This training set is used to 

train a PPI prediction method, which is in turn applied to the full set of 28 test pairs (Fig. 1). 

How well would the trained method perform on the 28 test pairs? To this end, one usually 

performs a cross-validation on the training set. For example, a temporary training set is 

prepared by randomly picking some pairs (Fig. 1) while the rest serve as a temporary test set 

from which predictive accuracy can be measured. This cross-validated predictive 

performance is then implicitly assumed to hold for the full space of 28 test pairs.

The paired nature of inputs leads to a natural partitioning of the 28 test pairs into 3 distinct 

classes (C1 – C3), as shown in Fig. 1: C1, test pairs sharing both proteins with the training 

set; C2, test pairs sharing only one protein with the training set; and C3, test pairs sharing 

neither protein with the training set. To demonstrate that the predictive performance of pair-

input methods differs significantly for distinct test classes, we performed computational 

experiments using large-scale yeast and human PPI data that mirror the toy example of Fig. 
1 (Supplementary Methods). Supplementary Table 2 shows that, for seven PPI prediction 

methods (M1 – M7, chosen to be a representative set of algorithms, Supplementary 
Methods), the predictive performances for the three test classes differ significantly. The 

differences are not only statistically significant (Supplementary Table 3) but also 

numerically large in many cases. M1 – M4 are support vector machine (SVM)-based 

methods, M5 is based on the random forest algorithm, and M6 and M7 are heuristic 

methods. Thus, regardless of core predictive algorithms, significant differences for the three 

distinct test classes are consistently observed. These differences arise partly from the 

learning of differential representation of components among positive and negative training 

examples (Supplementary Discussion).

In a typical cross-validation for pair-input methods, available data are randomly divided into 

a training set and a test set, without regard to the partitioning of test pairs into distinct 

classes. How representative would such randomly generated test sets be of full populations? 

To answer this question, we performed the typical cross-validation using the yeast and 

human PPI data of Supplementary Table 2. Not surprisingly, the C1 class accounted for 

more than 99% of each of the test sets generated for the typical cross-validations, and 

accordingly the cross-validated predictive performances closely match those for the C1 class 

(Supplementary Table 2). In contrast, within the full population (i.e., the set of possible 

human protein pairs), the C1 class represents only a minority of cases: 21,946 protein-

coding human genes7 implies 240,802,485 possible human protein pairs. According to 

HIPPIE8, a meta-database integrating 10 public PPI databases, the space of C1 type human 

protein pairs (i.e. those pairs formed by proteins that are represented among highly confident 

PPIs) accounts for only 19.2% of these cases, compared with 49.2% and 31.6%, 

respectively, for the C2 and C3 classes. Hence, the C1 class is far less frequent at the 

population level than for typical cross-validation test sets, and performance estimates 

obtained by a typical cross-validation should not be expected to generalize to the full 

population level. Given that these yeast and human PPI data sets have also been broadly 
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analyzed by others, this conclusion is very likely to hold generally, at least for pair-input PPI 

prediction methods.

In summary, computational predictions—whether pair-input or not9-10—that are tested by 

cross-validation on non-representative subsets should not be expected to generalize to the 

full test populations. A unique aspect of pair-input methods, as compared with methods 

operating on single objects, is that one additionally needs to take into account the paired 

nature of inputs. We have demonstrated that 1) the paired nature of inputs leads to a natural 

partitioning of test pairs into distinct classes, and 2) pair-input methods achieve significantly 

different predictive performances for distinct test classes. We note that if one is only 

interested in the population of C1 test pairs, then typical cross-validations employing 

randomly generated test sets may be just fine, although this limitation should then be noted. 

For general-purpose pair-input methods, however, it is imperative to distinguish distinct 

classes of test pairs, and we propose that predictive performances should be reported 

separately for each distinct test class. In the case of PPI prediction methods, three 

independent predictive performances should be reported as in Supplementary Table 2. In 

the case of protein-drug interaction prediction methods, one should report four independent 

predictive performances, as either the protein or drug component of a test pair might each be 

found in training data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustrating shortcomings of a typical cross-validation with a toy example of predicting 

protein-protein interactions. Here, the protein space contains 9 proteins and a training set 

consists of 4 interacting and 4 non-interacting protein pairs. The training set is used to train a 

PPI prediction method, which is then applied to the 28 (i.e., 9×8/2 - 8) test pairs shown in 

the triangle. The paired nature of inputs leads to a natural partitioning of the 28 test pairs 

into 3 distinct classes: C1, test pairs sharing both proteins with the training set; C2, test pairs 

sharing only one protein with the training set; and C3, test pairs sharing neither protein with 

the training set. To estimate how well the trained method would perform for the 28 test 

pairs, one would perform a cross-validation on the training set, typically by randomly 

dividing the 8 training pairs into a temporary training set and a temporary test set as shown, 

without regard to the partitioning of test pairs into distinct classes. Predictive performances 

achieved for such randomly generated temporary test sets are then assumed to generalize to 

the target population (i.e., the 28 test pairs in this toy example). As this form of cross-

validation overlooks the partitioning of test pairs into distinct classes, predictive 

performances estimated by it fail to generalize to the population level.
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