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Human cardiac function is characterized by a complex interplay of mechanical deformation
and electrophysiological conduction. Similar to the underlying cardiac anatomy, these
interconnected physiological patterns vary considerably across the human population with
important implications for the effectiveness of clinical decision-making and the accuracy of
computerized heart models. While many previous works have investigated this variability
separately for either cardiac anatomy or physiology, this work aims to combine both
aspects in a single data-driven approach and capture their intricate interdependencies in a
multi-domain setting. To this end, we propose a novel multi-domain Variational
Autoencoder (VAE) network to capture combined Electrocardiogram (ECG) and
Magnetic Resonance Imaging (MRI)-based 3D anatomy information in a single model.
Each VAE branch is specifically designed to address the particular challenges of the
respective input domain, enabling efficient encoding, reconstruction, and synthesis of
multi-domain cardiac signals. Our method achieves high reconstruction accuracy on a
United Kingdom Biobank dataset, with Chamfer Distances between reconstructed and
input anatomies below the underlying image resolution and ECG reconstructions
outperforming multiple single-domain benchmarks by a considerable margin. The
proposed VAE is capable of generating realistic virtual populations of arbitrary size with
good alignment in clinical metrics between the synthesized and gold standard anatomies
and Maximum Mean Discrepancy (MMD) scores of generated ECGs below those of
comparable single-domain approaches. Furthermore, we observe the latent space of our
VAE to be highly interpretable with separate components encoding different aspects of
anatomical and ECG variability. Finally, we demonstrate that the combined anatomy and
ECG representation improves the performance in a cardiac disease classification task by
3.9% in terms of Area Under the Receiver Operating Characteristic (AUROC) curve over
the best corresponding single-domain modeling approach.
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1 INTRODUCTION

Healthy cardiac function of the human heart consists of complex
interactions between anatomical deformations and
electrophysiological conduction patterns which vary
considerably between individuals in the population.
Accounting for this variability is of high importance in clinical
practice as it heavily influences the accuracy of cardiovascular
disease diagnosis and treatment. Consequently, it is also a core
objective of computational modeling approaches of cardiac
anatomy and function to correctly represent these inter-person
differences and enable more personalized and accurate computer
models. Two of the most commonly used modalities in clinical
practice to assess healthy cardiac function on both an individual
and a population level are, respectively, the cardiac Magnetic
Resonance Imaging (MRI) (Stokes and Roberts-Thomson, 2017)
and the Electrocardiogram (ECG) (Macfarlane and Lawrie, 2010).

Due to its high soft-tissue contrast and lack of ionizing
radiation combined with high temporal resolution, cardiac
cine MRI is currently considered the gold-standard for image-
based cardiac function analysis (Stokes and Roberts-Thomson,
2017). It has also been extensively used to determine normal
cardiac behavior and investigate inter-patient differences. To this
end, several image-based atlases of the heart with associated
statistical shape models of cardiac anatomy and function have
been developed for a variety of different populations and cardiac
substructures (Bai et al., 2015; Nagel et al., 2021). In these
approaches, a mean template shape is typically created from a
distribution of image-derived cardiac shapes, followed by
Principal Component Analysis (PCA) to model population
variability (Tavakoli and Amini, 2013; Bai et al., 2015; Piazzese
et al., 2017). More recently, deep learning approaches based on
Variational Autoencoders (VAE) or Generative Adversarial
Networks (GAN) have also been explored for this purpose
(Litjens et al., 2017; Bello et al., 2019; Biffi et al., 2020; Gilbert
et al., 2020; Beetz et al., 2021b; Rezaei, 2021). The resulting
statistical models have a variety of use cases, including the
prediction of certain cardiac disease events (Acero et al.,
2022), the association analysis of cardiac shape and disease
risk factors (Mauger et al., 2019), and the generation of virtual
populations for physiological simulations (Mincholé et al., 2019;
Niederer et al., 2020; Romero et al., 2021).

The ECG offers an easy and non-invasive procedure to capture
and visualize the electrical conduction patterns of the heart and is
therefore widely used in clinical diagnosis and electrophysiology
modeling (Macfarlane and Lawrie, 2010). Similar to cine MRI,
considerable research has been focused on capturing population
variability in the ECG signals. For example, PCA has been applied
to ECG data to derive respiratory signals (Langley et al., 2009),
estimate the effect of diabetes on ECG parameters (Kalpana et al.,
2013), or classify ECG beats (Martis et al., 2013). GAN and VAE-
based approaches have more recently been investigated for the
task of virtual ECG generation and to analyze ECG shape
variations across the population (Delaney et al., 2019; Zhu
et al., 2019; Kuznetsov et al., 2021).

However, in all aforementioned works, inter-subject
variability was modeled based on either MRI or ECG

information separately in a single-domain setting. This
neglects the complex, non-linear relationships between
anatomical deformations and electrophysiological conduction,
and therefore inhibits a more holistic understanding of cardiac
function and its variability across the human population. Hence,
the objective of this work is to combine both cine MRI-based
cardiac anatomy information and ECG-based electrophysiology
information across a whole population in a single data-driven
modeling approach and study their variations and interactions in
this multi-domain setting. To this end, we propose a multi-
domain variational autoencoder framework consisting of
multiple domain-specific branches and a latent space shared
across all branches for cross-domain information exchange.
The design of the individual branches, loss function, and
training procedure are specifically tailored to a multi-domain
dataset consisting of both MRI-based cardiac anatomy
information and ECG-based electrophysiology signals.
Anatomical information is represented as high-resolution and
multi-class 3D point clouds reconstructed from cine MRI
acquisitions and can be efficiently processed by the point
cloud-based deep learning branches. Anatomies at both the
End-Diastolic (ED) and End-Systolic (ES) phases of the
cardiac cycle are used together with the corresponding ECG
signals to give the network access to both spatial and temporal
information.

Similar to the single-domain shape modeling approaches, the
multi-domain VAE has a variety of possible use cases in both
clinical and research settings, such as problem-specific
dimensionality reduction of high-dimensional data,
interpretable shape analysis of both spatial and temporal data,
explainable cardiac disease identification and prediction, or the
generation of virtual population cohorts for mechanical and
electrophysiological computer simulations or to augment
datasets for training machine learning or deep learning
classifiers or regressors.

To the best of our knowledge, this is the first deep learning
method to capture the combined cardiac anatomy and
electrophysiology data in a single model. In summary, our
contributions are as follows:

• We present a novel multi-domain variational autoencoder
capable of modeling combined cardiac anatomy and
ECG data.

• We provide a detailed explanation of the preprocessing
steps, network architecture, loss function, and training
procedure.

• We assess the VAE’s ability to reconstruct multi-domain
data on a United Kingdom Biobank dataset (Petersen
et al., 2015, 2013) of 1,000 cases and compare the
reconstruction performance with multiple single-
domain benchmarks.

• We evaluate the VAE’s capability to generate realistic virtual
populations of combined anatomy and ECG data and
perform a comparative analysis with the gold standard
test set and multiple single-domain benchmarks.

• We investigate the VAE’s latent space with regards to its
interpretability and degree of disentanglement.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 8867232

Beetz et al. Multi-Domain VAEs for ECG-Anatomy Modeling

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


• We develop and evaluate a machine learning classifier for
cardiac disease prediction from the VAE’s latent space.

• We include a detailed discussion of our findings and a
pertinent literature review.

A preliminary version of this work was presented in Beetz et al.
(2022). This paper provides a more comprehensive explanation of
the methodology, additional new experiments including
comparisons with various benchmarks and application to 150
pathological cases, and a substantially expanded discussion and
literature review.

2 MATERIALS AND METHODS

In this section, we describe the multi-domain dataset used for
method development (Section 2.1) and explain the required
preprocessing steps (Section 2.2) as well as our method’s
architecture (Section 2.3, Section 2.4, Section 2.5), loss
function (Section 2.6), and training procedure (Section 2.7).

2.1 Dataset
We conduct our research work using 1,300 subjects from the
United Kingdom Biobank imaging study (Petersen et al., 2013)
for which paired cardiac cine Magnetic Resonance (MR) images
and electrocardiograms were acquired (Petersen et al., 2015). All
cine MR short-axis images had a voxel resolution of 1.8 × 1.8 ×
8.0 mm3 and typical image dimensions of 208 × 168–210, while
the cine MR long-axis images had a voxel resolution of 1.8 × 1.8 ×
6.0 mm3 with typical image dimensions of 208 × 126–180
(Petersen et al., 2015). 1,150 subjects were assumed to be

healthy individuals, while 150 cases suffered from at least one
pathology related to the cardiovascular system. These
cardiovascular disease cases were identified following the same
procedure outlined in Bai et al. (2020), based on the self-reported
disease codes in the United Kingdom Biobank (see
Supplementary Table S1). We select 1,000 presumably
healthy cases for the initial method development and the
experiments in Section 3.2, Section 3.3, Section 3.4, and
Section 3.5. The dataset is randomly split into training,
validation, and test sets of sizes ~800, ~50, and ~150,
respectively, to give the network access to enough cases for
training, while at the same time retaining a sufficiently high
number of cases for method evaluation. We use the remaining
150 healthy and 150 diseased cases for our cardiac disease
classification experiment described in Section 3.6.

2.2 Domain-Specific Data Preprocessing
In order to extract the anatomical and physiological information
required for training our multi-domain VAE from the raw cine
MRI and ECG signals, we first apply various preprocessing steps
to the data from each modality (Figure 1A,B). Regarding the
imaging data (Figure 1A), we first segment both short- and long-
axis images of the cine MRI acquisition into four classes that
delineate the anatomical substructures of interest (Left
Ventricular (LV) cavity, LV myocardium, Right Ventricular
(RV) cavity, and background) using the fully convolutional
neural networks as detailed in Banerjee et al. (2021) and Bai
et al. (2018). Next, we use the obtained segmentation masks from
the short-axis images to identify the ED and ES phases of the cine
MRI sequence for each case as anatomical representations of the
extreme ends of the cardiac cycle (Banerjee et al., 2021). The final

FIGURE 1 | Overview of the proposed combined anatomy and ECG modeling pipeline. We first reconstruct point cloud representations of the 3D biventricular
anatomy at the ED and ES phase of the cardiac cycle (A) and preprocess the raw ECG acquisitions (B) to create a multi-domain dataset. We then use this data to train a
multi-domain variational autoencoder (C) to capture combined cardiac anatomy and electrophysiology information in a singlemodel. The VAE architecture (C) consists of
three separate encoder-decoder branches, one for each network input (ED anatomy, ES anatomy, ECG), that share a common latent space for cross-modal
information exchange. Each branch architecture is specifically tailored to the requirements of the respective input type, i.e. point clouds for anatomy and time series for
ECG processing (Figure 2).

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 8867233

Beetz et al. Multi-Domain VAEs for ECG-Anatomy Modeling

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


3D point clouds of the biventricular anatomy are reconstructed at
both ED and ES phases from the selected slices using the
approach described in Beetz et al. (2021a). For ECG data
(Figure 1B), the United Kingdom Biobank provides both a raw
acquisition consisting of multiple heart beats, as well as a combined
ECG signal that averages the information from multiple cardiac
cycles into a single one-heartbeat representation for each lead. In
this work, we focus on the lead II signals, since they provide a good
view of the P and R waves, are predictive of many cardiac
arrhythmias, and are also used by previous methods (Delaney
et al., 2019; Wang et al., 2019). We choose the average lead II signal
in each case as our ECG data and apply the standardization step, i.e.
subtracting themean value from each data instance and dividing by
the standard deviation, to each resulting time series. The
preprocessed ECG is then combined with the corresponding 3D
point cloud reconstructions of the biventricular anatomy at the ED
and ES phases of each case to form the multi-domain dataset used
for method development.

2.3 Multi-Domain Variational Autoencoder
In order to capture the combined anatomy and ECG data
obtained from the preprocessing steps, we propose a multi-
domain β-VAE (Higgins et al., 2017) architecture with three
branches that share a common latent space for inter-modal
information sharing (Figure 1C).

Each of the three branches has an encoder-decoder structure
and is responsible for processing one of the three inputs, namely

the ED anatomy point cloud, the ES anatomy point cloud, and the
ECG. The encoder outputs of the three branches are tasked with
predicting the mean and standard deviation vectors of the
multivariate Gaussian distribution of the latent space following
the standard variational autoencoder setting (Kingma and
Welling, 2013). A 12-dimensional vector is sampled from this
distribution and passed into each decoder of the three branches
which aim to reconstruct the input of their corresponding
encoder branch. The reparameterization (Kingma and Welling,
2013) trick is applied during training. The architectures of each of
the three branches are specifically designed to enable efficient
processing of the respective data type (i.e. point clouds and time
series) and are described in greater detail in Section 2.4 and
Section 2.5. The two anatomy branches share the same network
architecture (Section 2.4) but maintain separate trainable
network parameters, while the ECG branch exhibits a different
design (Section 2.5).

2.4 Point Cloud Branches
The architecture of the two anatomy branches of the multi-
domain VAE (Figure 2A,B) follows an extended version of the
point completion network (Yuan et al., 2018) and its adaptations
to cardiac image analysis (Beetz et al., 2021b).

The network input point clouds are encoded as sets of
36,000 4-dimensional vectors consisting of the 3D coordinates
and the class label of each point which indicates its cardiac
substructure (LV endocardium, LV epicardium, RV

FIGURE 2 | Overview of the encoder and decoder architectures of both the point cloud (A,B) and time series (C,D) branches of the multi-domain VAE. The input
point cloud (A) encodes the biventricular anatomy as a set (n = 36,000) of 4D vectors (x,y,z coordinates and the class label of each point), while a separate set of 3D point
coordinates is used for each of the three cardiac substructures in the output point cloud (B). The point cloud decoder (B) outputs both a coarse, low-dimensional (2,250
points) and a dense, high-dimensional (36,000 points) representation of the cardiac anatomy. The former represents the final output used for further processing,
while the latter primarily facilitates the training process in this work (Eq. 5) by first focusing on an approximate reconstruction and later putting more emphasis on the
dense output. Both input and output ECG time series (C,D) are represented as 400-dimensional vectors. Both encoders (A,C) are tasked with predicting the shared
latent space z. The time-series decoder (D) follows a symmetric design to its encoder (C) and aims to reconstruct the input ECG signal from the latent space during
training. (Background colors of architecture blocks are consistent with Figure 1)
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endocardium). Point clouds are then passed through the encoder
(Figure 2A), which resembles a multi-class extension of the
Pointnet (Qi et al., 2017a) architecture. Similar to (Qi et al.,
2017b), it consists of two stacked Pointnets that are connected via
a skip connection as well as a pooling and an unpooling step.
Furthermore, we add additional fully connected layers before the
latent space to enable easier information sharing. The encoder
outputs are then concatenated with the respective outputs of the
other two branches before the variational sampling step is
applied. The sampled latent space vector is then provided as
input into the decoder (Figure 2B) where a multi-layer
perceptron (MLP) is first tasked with creating a low-resolution
multi-class point cloud with 2,250 points. This coarse point cloud
aims to represent the biventricular anatomy on a global level and
is primarily used to stabilize the training process of the network in
the early stages. The second step of the decoder follows the design
of FoldingNet (Yang et al., 2017) and processes the previous low-
resolution output, the sampled latent space vector, and a set of
tiled point grids to generate a high-resolution multi-class point
cloud with 36,000 points as the final network output. For both the
low and high resolution output point clouds, each class is
represented by a separate set of 750 and 12,000 3D
coordinates, respectively.

2.5 Time-Series Branches
The architecture of the ECG branch combines convolutional,
pooling, and dense layers to capture both local and global patterns
at different scales (Figure 2C,D). The encoder (Figure 2C)
receives each ECG time series as a 400-dimensional input
vector and passes it through two convolutional blocks, each of
which consists of a 2D convolution, an Exponential Linear Unit
(ELU) activation function, and a batch normalization layer. This
is followed by an average pooling layer and two fully connected
layers, which output the mean and standard deviation vectors of
the multivariate normal distribution of the latent space,
respectively. Next, the sampled vector z from the shared latent
space distribution of the multi-branch autoencoder is fed through
a dense block with two fully connected layers at the beginning of
the decoder (Figure 2D). Subsequently, two transposed 2D
convolutions are applied to obtain the 400-dimensional ECG
time series reconstruction as the final network output.

2.6 Loss Function
Following the formulation of the β-VAE (Higgins et al., 2017)
framework, our loss function Ltotal is composed of the sum of a
reconstruction loss term Lrecon and a regularizing term LKL
weighted by the parameter β, as

Ltotal � Lrecon + β pLKL. (1)
We use the Kullback-Leibler divergence between the latent

space distributionQ (z|X) and the multivariate standard Gaussian
prior distribution P(z) as the regularizing loss term LKL, where X
refers to the VAE inputs and z to the VAE’s latent space. This
encourages each latent space component to follow a normal
distribution with zero mean and standard deviation of one,
which we choose as our prior P(z).

LKL � DKL Q z|X( )‖P z( )[ ] (2)
The reconstruction loss Lrecon consists of three loss terms, one

for each of the three branches in the multi-domain autoencoder.
It incentivizes the VAE to output anatomy and ECG signals that
are as close as possible to the respective inputs, which we consider
to be our physiologically accurate gold standard for network
training.

Lrecon � LED + LES + γ p LECG (3)
We introduce a parameter γ to control the importance of the ECG
reconstruction during training.

We choose the mean squared error between the reconstructed
ECG signals xn and the gold standard ECG signals yn across N time
steps as our ECG loss term LECG to put more emphasis on correctly
capturing less common values, such as the R-peak of the ECG signal.

LECG � 1
N

∑N
n�1

xn − yn( )2 (4)

Each of the two anatomy loss terms LED and LES consists of the
weighted sum of a coarse and a dense loss term over all three
classes C corresponding to the respective cardiac substructures.
We consider each part of the anatomy as equally important in the
loss function and therefore do not use any class-specific weighting
parameter.

LED/ES � ∑C
i�1

Lcoarse,i + α pLdense,i( ) (5)

The coarse loss term measures the difference between the low-
density output of the point cloud decoder and the ground truth,
while the dense loss term compares the high-density output point
cloud with the same ground truth. The weighting parameter α is
used during training to first prioritize a good global structure of
the coarse prediction and then gradually put increasing emphasis
on local accuracy in the dense point cloud prediction.

Both the coarse and dense loss terms are calculated using the
Chamfer Distance (CD) between the point cloud predicted by the
network P1 and the ground truth input point cloud P2.

CD P1, P2( ) � 1
2

1
|P1| ∑

x∈P1

min
y∈P2

‖x − y‖2 + 1
|P2| ∑

y∈P2

min
x∈P1

‖y − x‖2⎛⎝ ⎞⎠
(6)

Since the Chamfer Distance aims to find the closest point in the
ground truth point cloud for each point in the input point cloud
and vice versa, it can be considered as an approximate surface-to-
surface distance on point cloud data between the respective
anatomical shapes.

2.7 Implementation and Training
Our deep learning experiments are conducted on a GeForce RTX
2070 Graphics Card with 8 GB memory. We use TensorFlow
(Abadi et al., 2016) and Scikit-learn (Pedregosa et al., 2011) for
our deep learning and machine learning implementations,
respectively. All VAEs are trained using the Adam optimizer
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(Kingma and Ba, 2014) with a mini-batch size of 4, which we
empirically found to provide a good balance between the memory
and time constraints of our setup and the improved gradient
quality during network training. The training duration is set to
150,000 steps based on the convergence of the loss function in the
validation dataset. We set all loss weighting parameters to small
values (α and β to 0.01, γ to 0.1) at the start of training to focus on
obtaining a good coarse reconstruction of the two anatomy point
clouds. We then gradually increase both α and γ to improve local
prediction quality in both anatomy and ECG outputs. After both
parameters have reached a value of 1, we increase the β parameter
using a variation of the monotonic annealing schedule (Bowman
et al., 2015) to improve the latent space quality. We stop the β
value at 0.25, which we have empirically found to provide a good
balance between overall reconstruction quality and latent space
quality.

3 EXPERIMENTS AND RESULTS

We evaluate the proposed multi-domain VAE in terms of its
performance in multiple tasks. First, we investigate its ability to
correctly reconstruct paired input data from all three domains
(Section 3.2). Second, we assess its ability to generate virtual
populations of realistic ECGs and anatomy point clouds, both
within and across the different domains (Section 3.3, Section
3.4). Third, we analyse the effect of certain latent space changes
on the reconstructed ECG and anatomy shapes to gain a better
understanding of the latent space distribution (Section 3.5).
Finally, we compare the compressed latent space
representation of the proposed multi-domain VAE with its
single-domain counterparts in a cardiovascular disease
classification task (Section 3.6). We propose multiple different
metrics for the outlined experiments to account for the different
data types and objectives (Section 3.1).

3.1 Evaluation Metrics
In order to assess the VAE’s ECG reconstruction quality, we
follow the metrics suggested by Zhu et al. (2019), which allows us
to compare our results with the task of ECG-only generation
without any image-based anatomy information. Accordingly, we
use the Root Mean Squared Error (RMSE) as our first metric to
quantify the distance between predicted ECG time series x and
ground truth ECG time series y in our test dataset, each with a
length of N time steps.

RMSE �

														
1
N

∑N
n�1

xn − yn( )2√√
(7)

In addition, our second ECG reconstruction metric, Percentage
Root Mean Squared Distance (PRD), provides a relative and
normalized quantification of the reconstruction performance.

PRD �

																	
1∑N

n�1x2
n

∑N
n�1

xn − yn( )2√√
p 100 (8)

The anatomy reconstruction quality achieved by our VAE is
evaluated using the average Chamfer Distance (Eq. 6) between
the predicted and ground truth point clouds of the test dataset for
both the ED and ES phases.

Similar to work by Delaney et al. (2019) on ECG-only
generation, we propose the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) between two randomly
generated distributions as a metric to assess the generative
ability of our network. Hereby, K refers to the Gaussian kernel
and x and y refer to the two sample distributions of sequences
with sizes n and m respectively.

MMD � 1
n n − 1( ) ∑ni�1 ∑n

j≠i
K xi, xj( ) + 1

m m − 1( ) ∑mi�1 ∑m
j≠i

K yi, yj( ) − 2
nm

∑n
i�1

∑m
j�1

K xi, yj( )⎡⎢⎢⎣ ⎤⎥⎥⎦12
(9)

In order to evaluate the quality of the generated anatomies at
ED and ES separately, we select the widely used clinical evaluation
metrics LV volume, RV volume, and myocardial mass. In

FIGURE 3 | Qualitative reconstruction results of the proposed method
for three sample cases.
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addition, we choose the Stroke Volume (SV) (Eq. 10) and
Ejection Fraction (EF) (Eq. 11) metrics for both the LV and
RV, to assess the correspondence between the generated
anatomies at ED and ES.

SV � EDV − ESV. (10)
EF � SV

EDV
× 100. (11)

Here, EDV and ESV refer to ED volume and ES volume,
respectively. Furthermore, we select the Area Under the
Receiver Operating Characteristic (AUROC) curve to evaluate
the performance in the binary cardiac disease classification task.

3.2 Reconstruction Ability
We first focus on the network’s ability to accurately reconstruct
both the two input point clouds and the input electrocardiogram.
To this end, we pass the ED point cloud, the ES point cloud, and
the ECG time series of each case of the test dataset through the
network and compare the network’s predicted outputs with the
respective inputs. Figure 3 shows input and prediction data of
three such sample cases.

We observe good global and local alignment between inputs
and predictions of both point cloud and time series data. Class
information in the form of three anatomical substructures is also
accurately reconstructed for both ED and ES point clouds. Next,
we quantify our method’s reconstruction ability on the test
dataset using separate metrics for each modality.

For the ECG data, we select the RMSE (Eq. 7) and PRD (Eq. 8)
metrics to determine our method’s reconstruction error. We
apply min-max normalization to both the input and predicted
time series data before calculating the metrics, in order to
compare the obtained values with the performance of multiple
approaches proposed by Zhu et al. (2019) for single-domain
ECG-only generation using the MIT-BIH dataset (Goldberger
et al., 2000) (Table 1). In addition, we train and evaluate a
separate VAE on only the ECG signals of our
United Kingdom Biobank dataset as a benchmark method for
our multi-domain VAE. It follows the encoder and decoder
architecture presented in Figure 2C,D and uses the same ECG
data and preprocessing steps as our proposed approach, allowing
for a direct comparison (Table 1).

We find that the proposed multi-domain VAE method
achieves lower reconstruction errors than the ones reported by
Zhu et al. (2019) for any of their architectures, both in terms of

RMSE and PRD, despite the more challenging task of combined
anatomy and electrocardiogram generation. However, this result
should only be interpreted as an approximate marker of the
reconstruction quality of our method instead of a direct
outperformance, since different datasets and signal
preprocessing steps were used in each analysis. For example,
while the proposed approach uses the ECG signals averaged to
one cardiac cycle from the United Kingdom Biobank, Zhu et al.
(2019) did not mention the usage of averaged signals. Compared

TABLE 1 | ECG reconstruction results of multiple methods on different datasets.

Method Dataset RMSE PRD

BiLSTM-CNN GAN * MIT-BIH 0.22 51.80
BiLSTM-GRU * MIT-BIH 0.31 74.05
BiLSTM-LSTM * MIT-BIH 0.35 84.80
BiLSTM-MLP * MIT-BIH 0.61 147.73
ECG VAE United Kingdom Biobank 0.16 26.51
Multi-Domain VAE (Proposed) United Kingdom Biobank 0.17 27.45

*Values obtained directly from Zhu et al. (2019)

TABLE 2 | ED and ES anatomy reconstruction results of our method on the test
dataset.

Phase Class Chamfer Distance (mm)

ED LV endocardium 1.37 (±0.40)
LV epicardium 1.29 (±0.29)
RV endocardium 1.42 (±0.29)

ES LV endocardium 1.11 (±0.39)
LV epicardium 1.23 (±0.45)
RV endocardium 1.35 (±0.55)

Values represent mean (±standard deviation)

FIGURE 4 | Five randomly generated sample outputs where each row
presents one case.
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to the VAE trained on only ECG signals on the same
United Kingdom Biobank dataset, our method achieves similar
results for both evaluation metrics.

We quantify the reconstruction ability of our method for
the point cloud data of the test dataset using the Chamfer
Distance (Eq. 6). The resulting values for both ED and ES
reconstructions, split by the three cardiac substructures, are
reported in Table 2.

We find low distance values that are smaller than the voxel
sizes of the image acquisitions (1.8 × 1.8 × 8.0 mm3) used to
generate the 3D point clouds for both the ED and ES phases as
well as for all cardiac substructures. Distances are slightly larger
for the right ventricle compared to left ventricular structures and
for the ED phase than for the ES phase.

3.3 Generative Ability
In order to assess our network’s ability to generate diverse
populations with realistic anatomies and ECGs, we randomly
sample from the latent space distribution and pass the resulting
vectors through the three branches of the decoder. The mean and
standard deviation values of the multivariate normal distribution
of the latent space are determined based on the averaged encoder
outputs of the training data. Hence, every component of the latent
space is involved in the sampling step. Five randomly generated
decoder outputs, each consisting of an ED anatomy point cloud,
an ES anatomy point cloud, and an ECG, are depicted in Figure 4.

We observe that all outputs follow realistic shapes and sizes
while maintaining a good amount of diversity between different
cases. For example, the case in the first row exhibits considerably
larger heart sizes at both ED and ES and a noticeably higher
R-peak in the electrocardiogram as compared to the case in the
fourth row.

Next, we evaluate the multi-domain VAE’s capability for
ECG generation on a population level. To this end, we
synthesize 500 virtual electrocardiogram signals from
randomly sampled latent space vectors and calculate their
MMD (Eq. 9) with respect to the ECGs in our test dataset. We
repeat the same procedure for the ECG-only VAE to enable a
comparison of our multi-domain approach with a single-
domain method on the same dataset. We also randomly
split the test dataset into two subsets and determine the
MMD between these two subsets to obtain a gold standard
benchmark for desired ECG population similarity. The
resulting values are reported in Table 3, together with
MMD scores obtained from different approaches by

Delaney et al. (2019) on the MIT-BIH dataset (Goldberger
et al., 2000) and by Kuznetsov et al. (2021) on the LUDB
dataset (Kalyakulina et al., 2020) for ECG-only generation.

Our method achieves lower MMD scores than all other
methods by a considerable margin. However, similar to the
comparisons of our method’s reconstruction performance, it
should again be noted that the other approaches utilize
different datasets and preprocessing steps. For example,
Delaney et al. (2019) generated ECGs with multiple cardiac
cycles, while Kuznetsov et al. (2021) focused on ECGs
consisting of a single cardiac cycle. Furthermore, we find that
the multi-domain VAE achieves a comparable MMD value as the
ECG-only VAE. Comparing our method’s MMD to the gold
standard MMD achieved on the same test dataset, we observe a
74% lower MMD value.

The population quality of the generated ED and ES anatomies
is assessed by calculating population-wide cardiac anatomy
metrics, which are commonly used in clinical practice, for
both the 500 generated point clouds and the point clouds of
the test dataset that we consider the gold standard for this
analysis. Table 4 depicts the resulting values for the LV and
RV volumes of each phase and the LV mass.

All clinical metrics show high degrees of similarity between
generated and gold standard point cloud populations for both ED
and ES phases, indicating that the VAE was able to successfully
generate realistic virtual anatomies.

3.4 Combined Multi-Domain Generation
While our previous analyses have demonstrated the
population quality of the generated ECGs and anatomies
separately for each domain, we also want to investigate
whether the same holds true for combined distributions of

TABLE 3 | ECG generation results of multiple methods based on different datasets.

Method Dataset MMD

4CNN GAN (Delaney et al., 2019)* MIT-BIH 1.03 × 10–3

4CNN BiLSTM GAN (Delaney et al., 2019)* MIT-BIH 1.13 × 10–3

VAE (Kuznetsov et al., 2021)* LUDB 3.83 × 10–3

Gold standard (test dataset) United Kingdom Biobank 1.40 × 10–4

ECG VAE United Kingdom Biobank 3.05 × 10–5

Multi-Domain VAE (Proposed) United Kingdom Biobank 3.54 × 10–5

*Values obtained directly from Delaney et al. (2019) or Kuznetsov et al. (2021)

TABLE 4 | Clinical metrics of meshed ED and ES anatomy point clouds generated
by our method.

Phase Clinical Metric Gold Standard Ours

ED LV volume (ml) 141 (±30) 139 (±31)
RV volume (ml) 170 (±34) 176 (±37)

ES LV volume (ml) 59 (±15) 58 (±16)
RV volume (ml) 78 (±20) 80 (±24)

ED/ES LV mass (g) 102 (±28) 99 (±29)

Values represent mean (±standard deviation) in all cases
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these outputs. To this end, we first calculate common clinical
metrics combining ED and ES anatomies (LV SV (Eq. 10), RV
SV (Eq. 10), LV EF (Eq. 11), RV EF (Eq. 11)) to assess

mechanical cardiac function for both our generated and test
dataset populations (Table 5).

We observe very good alignment between the clinical function
metrics from all generated and gold standard meshed point
clouds, indicating that our method is capable of synthesizing
accurate ED-ES anatomy pairs.

Results presented up to this point demonstrate the ability of
our method to produce realistic ECG populations, as well as ED
and ES point clouds. In order to evaluate whether the method
generates anatomy and electrocardiogram outputs preserving the
correspondence between them, we select all cardiac anatomy and
function metrics from Table 4 and 5 and concatenate them with
the respective ECG signal to obtain a combined, low-dimensional
representation of anatomy and ECG data for each case. We then
calculate the MMD between the generated and test datasets
consisting of the combined data representations for each case
(Table 6). Similar to Table 3, we also determine the MMD
between two random subsets of the test set as our gold
standard value.

Our method obtains MMD values close to the gold standard
ones, suggesting a good degree of coupling between the generated
anatomy and ECG outputs.

TABLE 5 | Clinical function metrics of meshed point clouds generated by our
method.

Clinical Metric Gold Standard Ours

LV EF (%) 58 (±8) 57 (±9)
LV SV (ml) 82 (±21) 81 (±22)

RV EF (%) 55 (±7) 55 (±8)
RV SV (ml) 92 (±19) 96 (±22)

Values represent mean (±standard deviation) in all cases

TABLE 6 | Difference in randomly generated multi-modal distributions combining
MRI-based anatomy and ECG-based electrophysiology.

Metric Gold standard Ours

MMD 5.02 × 10–4 4.72 × 10–4

Values represent mean in all cases

FIGURE 5 | Effects of varying different latent space components by -3 standard deviations (S.D.) and +3 S.D. from their mean values on the generated ED (A), ES
(B), and ECG (C) outputs.
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3.5 Latent Space Analysis
A desirable feature of a variational autoencoder is the
existence of an interpretable, disentangled latent space, in
which different components are responsible for encoding
various identifiable structural aspects of the generated
output shapes. In order to analyze these characteristics for
the proposed multi-domain VAE, we vary the values of each
latent space dimension in both positive and negative
directions while keeping the mean values for the remaining
dimensions the same, and pass the resulting latent space
vectors through the decoder to obtain outputs that
correspond to the applied latent space changes. Three
sample latent space components with easily visible effects
on the generated multi-domain outputs are depicted in
Figure 5.

Regarding the point cloud outputs, each component’s
variation results in similar changes to the ED (Figure 5A)
and ES (Figure 5B) anatomies, respectively. Component 1
controls the overall size of the point cloud and component 2
causes a tilt in the basal short-axis plane of the heart, while
component 3 converts elongated, thin hearts to shorter and
wider ones. Regarding the ECG data (Figure 5C), component
3 changes both the R-peak height and existence of the S-wave,
component 2 increases the height of the P-wave and T-wave,
while component 1 has an effect on the height and width of the
R-wave as well as the height and sharpness of both the P and
T-waves.

3.6 Cardiac Disease Classification
In order to further explore the VAE’s latent space, we
investigate the utility of its compressed multi-domain
representation of cardiac anatomy and physiology
information for the task of cardiac disease classification,
and compare its performance to similar single-domain

representations. To this end, we first select the 150 healthy
and 150 pathological United Kingdom Biobank cases
described in Section 2.1 and use them as the basis for our
binary disease classification task. We then pass the
corresponding bitemporal anatomy and ECG data of each
case through their respective encoders in the VAE to obtain
the pertinent multi-domain latent space encodings, which
serve as input features for the classification. Next, we
repeat the same procedure using the point cloud encoders
and the time-series encoder separately to calculate the single-
domain encodings of bitemporal anatomy and
electrophysiology information, respectively, for the same
subjects. For each of the three resulting latent space
datasets (multi-domain, anatomy-specific, and ECG-
specific), we train a logistic regression classifier to identify
subjects with cardiac disease. Figure 6 depicts the binary
classification results of the 10-fold cross validation
experiments for each combination of latent space datasets
in the form of AUROC curves. We find that the multi-domain
representation of anatomy and ECG achieves the highest
AUROC score.

4 DISCUSSION

In summary, we have demonstrated in our experimental results
that the proposed multi-domain VAE can excel at a variety of
different tasks despite the challenging multi-domain setting.

4.1 Reconstruction Accuracy
The point cloud branches are able to reconstruct complex 3D
anatomical shapes with high accuracy on both a local and global
level and for both the ED and ES phases of the cardiac cycle
(Figure 3) with Chamfer Distances below the underlying image
resolution (Table 2). This shows the high suitability of the
anatomy-specific network architecture. In addition, it is able to
accurately maintain class information identifying the different
cardiac substructures and cope with anatomies at both the ED
and the ES phase of the cardiac cycle. This indicates that an
introduction of additional class information about important
anatomical substructures or pathological areas (e.g. scar
regions in the myocardium) or a further temporal extension is
possible. In our experiments, we observe slightly higher distance
values for the RV compared to the LV substructures and for the
ED phase compared to the ES phase. We hypothesize that this is
likely caused by the generally larger heart sizes that are
represented by point clouds with the same resolution as the
smaller hearts, which in and of itself leads to larger Chamfer
Distance values. Therefore, we do not presume this to impede any
future applications, as the differences are not due to any
anatomical reasons. Furthermore, we find no erroneous
overlappings of different anatomical substructures (e.g., at the
interventricular septum) despite no loss term specifically
enforcing such consistency. From these findings, we conclude
that the point cloud branches are flexible and robust with respect
to temporal and spatial variations and are able to capture the
complexity of part-whole relationships in 3D structures, all of

FIGURE 6 | Area under curve (AUC) prediction differences in ROC
curves of the cardiac disease classification results based on latent space
representations of VAEs trained on combined anatomy and ECG, only
anatomy, and only ECG data.
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which are crucial for accurate cardiac anatomy modeling. These
results are achieved despite the complex multi-domain setting in
which separate point cloud branches for ED and ES as well as
another ECG-based branch all share a single latent space and are
trained jointly using a weighted combination of several loss
function terms. This indicates that the good reconstruction
performance of the point cloud-specific deep learning
architecture is not limited to the single-domain setting, as in
Beetz et al. (2021b), but can be applied effectively in conjunction
with data from new domains while still maintaining the more
challenging variational setup.

The time-series branches show a similarly good performance in
the reconstruction task with a high degree of visual closeness between
reconstructed and gold standard signals (Figure 3). We also find
considerably lower RMSE and PRD scores thanmultiple benchmarks
(Table 1). However, we interpret this finding as only an approximate
comparison due to the usage of another dataset (MIT-BIH) and
preprocessing steps to train and evaluate the benchmark methods.
Nevertheless, while the MIT-BIH dataset has some differences
compared to the United Kingdom Biobank dataset used in this
work (e.g., ambulatory two-channel ECGvs. 12-lead ECG, 47 subjects
vs. 1,300 subjects, multiple cardiac cycles vs. single cardiac cycle), they
also share many similarities (e.g., both are ECG datasets with normal
and pathological subjects, all compared methods focus on single lead
ECG signals). In addition, we have applied similar filtering steps as
the benchmark approaches (e.g., min-max normalization, same
choice of sequence length) to the ECG signals in order to
improve comparability between the two datasets. Hence, while a
direct comparison with the other methods is limited by the dataset
differences, the results still give an indication that the time-series
branch architecture is able to successfully encode and decode different
temporal patterns of lead II ECG signals. These findings are further
corroborated by the similar reconstruction performance of the ECG-
only VAE and the proposed multi-domain VAE. Since these results
were achieved on the same United Kingdom Biobank dataset, they
enable a direct comparison which is not affected by differences in the
data or preprocessing steps between the methods. Hence, the similar
RMSE and PRD values observed for both methods indicate that the
multi-domainVAEwas able to capture the ECG-specific information
required for the reconstruction task similarly well as a single-domain
ECG approach.

4.2 Generation of Virtual Multi-Domain
Populations
In addition to the multi-domain VAE’s reconstruction ability, we
also find it to be capable of generating arbitrarily-sized virtual
populations of combined bitemporal anatomies and ECGs with a
high degree of realism and correct levels of shape diversity. We
are able to observe this visually in Figure 4, where typical shape
changes in biventricular surfaces (e.g., overall size, basal plane tilt,
ventricular thickness) and ECGs (e.g., R-peak height and width,
P-wave peakedness, small noise levels in the signal) appear in the
generated virtual examples in a similar way as in the real dataset.

The quantitative results further corroborate this finding in
multiple ways. First, the generated ECGs from our VAE achieve
lower MMD scores than the gold standard real ECGs from our

test set (Table 3). On the one hand, the generally small values
indicate that the distribution of real ECG signals is closely
mimicked by the generated ones on both individual and
population levels (Table 3). On the other hand, we
hypothesize that the lower MMD scores for the generated
ECGs are likely caused by the VAE’s ability to act as a
regularizing self-prior and reduce noise. The proposed multi-
domain VAE also achieves a comparableMMD score as the ECG-
only VAE benchmark on the same United Kingdom Biobank
dataset, which indicates that the ECG population was well
captured despite the challenging inclusion of additional
bitemporal anatomy information. Furthermore, our proposed
method obtains lower MMD scores than multiple prior
approaches in its ECG generation task. While this particular
finding should again (similar to the reconstruction task) only be
seen as an approximate comparison due to the usage of different
datasets, it does nevertheless provide further evidence that the
architectural design of the time-series branches can successfully
convert random latent space samples into ECG populations.
Second, the clinical volume-based metrics calculated for the
population of generated anatomies closely resemble the ones
obtained from the true gold standard test dataset, both in
terms of their mean and standard deviation values (Table 4).
This indicates that the point cloud branches are able to synthesize
realistic biventricular shapes that accurately represent the
morphological variety across the whole population. The
network achieves this for both the ED and ES phases showing
its architecture’s ability to function well with temporally related,
but different shape distributions. Third, the clinical function
metrics, which combine volume-based anatomical information
from ED and ES phases, exhibit high degrees of similarity
between the generated and gold standard anatomies in terms
of both mean and standard deviation values (Table 5). This
demonstrates that the synthesized anatomies do not only reflect a
realistic population at ED or ES separately but also when
considered as a combined bitemporal anatomy population.
This correspondence between ED and ES shapes in the
generated population is highly beneficial for multiple follow-
up tasks (e.g. mechanical deformation modeling (Beetz et al.,
2021c)). We also conclude from these results that the ED-ES
correspondence information is likely captured in the shared latent
space of the VAE and that the respective ED and ES point cloud
branches are sufficiently powerful to correctly take into account
cross-temporal information during training. Fourth, when
combining ECG and bitemporal anatomy information in a
unified representation, we find similar MMD values between
synthesized and real gold standard populations (Table 6). This
indicates that good correspondence is present not only between
different cardiac phases but also between the generated ECG and
anatomy data and that both the decoder branches and latent
space information adequately model these inter-domain
relationships. We note that while the selected cardiac metrics
used to represent the anatomy in the unified representation only
act as low-dimensional approximations of the full generated
shapes for the MMD calculations, they were weighted
accordingly to give the anatomical and ECG-based
information a balanced influence in the combined
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representation. In general, since the aforementioned results were
achieved using real ECG data, we hypothesize that the VAE could
also be applied to synthetically-generated ECGs (e.g. via
electrophysiology simulations based on mathematical models)
for the task of generating personalized models of both normal and
pathological data in real-time, which we wish to explore in detail
in our future work.

4.3 Latent Space Quality
The positive results in the data generation tasks are likely
significantly facilitated by the high quality of the latent space,
which we observe to exhibit a good degree of disentanglement
and interpretability (Figure 5). This can be seen by the clearly
distinguishable effects that different individual latent space
components have on the reconstructed anatomy and ECG
outputs. We also find such latent space changes to cause
gradual deformations of the output shapes of all domains
while maintaining a realistic overall appearance even in case of
larger deviations from the mean values. This indicates that the
latent space learnt during training at least approximately
resembles a multivariate normal distribution as enforced by
the Kullback-Leibler divergence loss, as opposed to a more
sparse and disordered representation that might lead to
sudden unrealistic outlier shapes in the generated
distributions. But compared to the zero mean parameterization
of all Gaussians, we achieve better generation results when using
the mean values predicted by the encoders on the training dataset
to parameterize the latent space normal distributions for
sampling. This shows that the actual latent space distribution
still exhibits some differences to the target normal distribution.
Nevertheless, this slight deviation is to be expected as the overall
VAE loss represents a compromise between accurate
reconstruction and latent space quality. We find the weighting
parameter β to be crucially important for determining the optimal
balance for the given dataset empirically, especially considering
our highly challenging multi-domain setting. The similar shape
changes observed in the ED and ES reconstructions corroborate
the good choice of β further and demonstrate that the
aforementioned high interpretabiliy of the latent space is
retained even in the cross-domain case.

4.4 Cardiovascular Disease Classification
As evidenced by the cardiac disease classification results in
Figure 6, the multi-domain latent space representation is able
to successfully capture shape patterns related to both the healthy
hearts and various cardiovascular pathologies in both the ECGs
and the bitemporal anatomies. This offers the possibility to
discover, visualize, and analyze pathology-specific feature
combinations in both ECG and anatomy. One approach to
achieve this would be to compare healthy and pathological
latent spaces in terms of their respective mean representations
or distributions and then reconstruct the corresponding
anatomies and ECGs for each group to visualize the
differences. Another possibility might be to identify the latent
space components that are most predictive during the
classification tasks and study what effects the corresponding
changes in these latent components have on the reconstructed

anatomies. Furthermore, when applying the multi-domain VAE
trained on healthy subjects to diseased cases, we observe a slight
decrease in reconstruction performance compared to unseen
healthy cases, which also indicates that the network has learnt
patterns specific to the healthy subpopulation. These results
provide further proof of the importance of image-based and
ECG shape analysis on both local and global scales for cardiac
disease identification, which is in line with other previous findings
(Mauger et al., 2019; Acero et al., 2022). One crucial difference to
these prior works, however, is the combination of anatomy and
ECG information in a compressed format that we observe to be
more effective than similar approaches relying on either anatomy
or ECG information alone (Figure 6). This multi-domain
approach is particularly advantageous for the selected
cardiovascular disease class containing different pathologies
whose diagnoses are usually based on different modalities (e.g.,
cardiac MRI, ECG). Furthermore, we observe smaller differences
in AUROC values between ECG + anatomy and anatomy-only
information than between ECG + anatomy and ECG-only
information. On the one hand, this might be due to the
individual pathologies considered in the classification task that
might be more easily predicted based on anatomy information.
On the other hand, it could also be caused by our focus on only
lead II ECG signals from a single heartbeat. This provides the
ECG-only classifier with less information, which is in contrast to
the high-dimensional multi-class 3D point cloud data that serves
as input to the anatomy-based classifier. We also note that the
latent space representation was obtained without any prior
explicit training for the task of disease prediction, which
outlines the potential for further improvements in directly
finding pathology-specific compressed shape representation.

4.5 Architectural Design and Training
We have found the architectural design of our network
(Figure 1C) to be highly suitable to process combined ECG
and anatomy input data. The point cloud branch architectures
(Figure 2A,B) are able to apply deep learning operations directly
on point cloud data, which allows surface data of much higher
resolution to be efficiently processed and used for storing
anatomical shape information. This is in contrast to the
widely-used voxelgrid representations (Çiçek et al., 2016; Bello
et al., 2019; Xu et al., 2019), which are considerably less memory-
efficient at managing surface-level data leading to lower
resolution, longer processing times, and ultimately limit the
overall accuracy of the modeled anatomy. Furthermore, each
of the high-dimensional point clouds combines both the left and
right ventricular anatomy and maintains separate labels for the
LV endocardium, LV epicardium, and RV endocardium
substructures. This results in a more holistic and accurate
representation of the true 3D cardiac anatomy compared to
the non-labelled single ventricle approaches and enables a
more detailed and effective study of the structure-function
interactions between MRI-based cardiac anatomy and ECG-
based cardiac electrophysiology information.

As opposed to traditional shape modeling approaches, such as
principal component analysis (Mauger et al., 2019; Acero et al.,
2022), the deep learning architecture is able to capture
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significantly more complex and non-linear shape variations,
which is important for the accurate modeling of the intricate
interactions of both single-domain ECG and anatomy data, but
especially in the multi-domain setting. In addition, no point-to-
point correspondence is required in the point cloud dataset and
no prior shape registration step needs to be applied, which makes
the preprocessing steps considerably simpler, faster, and less
error-prone compared to the PCA (Figure 1A,B). Another
advantage of the VAE framework is its condensed latent space
representation of the input data, which is useful for a variety of
different tasks as shown in this work. The design of the time-
series branches (Figure 2C,D) relies on a combination of
convolutional, pooling, and fully connected layers, as opposed
to recurrent layers such as Long Short-Term Memory (LSTM) or
Gated Recurrent Units (GRU), and its good performance is in line
with previous findings in ECGmodeling (Zhu et al., 2019). For all
branches, we hypothesize that the fully connected layers on both
sides of the latent space in the encoder and decoder architectures
provide the necessary power and flexibility to extract the relevant
information for each domain from the shared latent space, while
still accounting for inter-domain correspondence. Despite no
specifically designed consistency loss between different output
branches, we find that a careful empirical choice of weighting
parameters in Eq. 3 and Eq. 5 in the domain-specific loss function
components is sufficient to obtain high quality outputs both
intra-domain and inter-domain. Finally, we note that the
domain-specific data preprocessing of the proposed approach
offers a certain degree of robustness and flexibility with regards to
changes in the input data (e.g., different image resolutions in the
cine MRI acquisitions), as both the 3D cardiac surface
reconstruction and the ECG preprocessing steps can be
adjusted as required in order to still be capable of creating 3D
anatomy point clouds and ECG time series in a suitable format for
the multi-domain VAE. For example, the same point cloud
resolution can be maintained by the 3D surface reconstruction
method despite changes in the underlying image resolution.

4.6 Limitations
The presented approach to multi-domain cardiac anatomy and
physiology modeling also has some limitations. While it has
previously been shown that the position and orientation of the
heart with respect to the ECG electrodes on the torso significantly
affects the ECG shapes (Mincholé et al., 2019), we did not include
any torso information in this work. However, since the VAE was
trained with paired anatomy and ECG information from real
acquisitions, we hypothesize that the network is at least to some
extent able to implicitly learn the effect of the torso on the output
signals. We also note that since the 3D anatomy models were
derived from 2D cineMRI acquisitions, any limitations (e.g., image
resolution) or errors (e.g. slice misalignment due to inconsistent
breath holds) introduced during the image acquisition or 3D
reconstruction will affect the accuracy of the anatomical shapes.
Similarly, we also note that the United Kingdom Biobank imaging
study uses very established acquisition protocols and certain
quality control measures that might not be fully representative
of a standard clinical environment. While this makes the results
easier to understand, it might also require some adjustments to the

proposed methods in case of their application to different settings
with a possibly larger variety of acquisition conditions and noise.
While this study only focuses on lead II ECGs averaged across
multiple cardiac cycles and thereby foregoes additional
information from other leads and multi-heartbeat patterns, we
believe that the core part of the architecture has the potential to be
extended to the full-cycle 12-lead case. This could be achieved by
first applying the same preprocessing steps to each of the 12 leads
in order to represent each lead signal as a normalized 400-
dimensional vector. The resulting vectors could then be
concatenated and input into the ECG branch of the VAE. The
ECG loss could be easily extended to include multiple leads by
summing or averaging over the lead-specific mean squared errors.
In addition, adjustments to the ECG branch architecture, training
schedule, and possibly the lead-specific weighting terms in the loss
function will likely be necessary to accommodate the increased
difficulty of processing all 12 leads. Another limitation of the
method is that no anatomical information about the atria is
included in the model, which plays an important role in
modeling electrophysiology. However, as the, to the best of our
knowledge, first deep learning approach to combine anatomy and
ECG data in a single data-driven model, we found the utilized
information sources sufficient to demonstrate the feasibility and
show the benefits of a multi-domain cardiac model. Information
from other domains can be included into the model in future work,
for example, as extra classes in the point cloud inputs, additional
time series in the ECG inputs, or as new network branches
altogether.

5 CONCLUSION

In this work, we have developed and evaluated a novel multi-
domainVAEwith the ability to capture combined cardiac anatomy
and physiology information and their intricate interconnections in
a single data-driven model. We have shown that the network can
successfully handle the complex interdependencies of multi-
domain datasets by reconstructing existing cardiac data from
low-dimensional latent spaces with high accuracy and
generating realistic populations of corresponding cardiac
anatomies and ECGs. Furthermore, we have found an
interpretable latent space in the VAE with each component
responsible for a separate morphological change in anatomy
and ECG outputs enabling a more localized analysis of cardiac
health. Finally, we have observed that combined anatomy and ECG
representations improve the identification of cardiovascular
disease compared to single-domain approaches. This shows the
utility and positive synergies of large-scale data integration from
multiple sources in cardiology and opens up promising future
research avenues for possible further multi-domain integration.
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