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Abstract. Therapeutic exercise is an integral component 
of the rehabilitation of patients who have suffered a stroke. 
The objective of the present study was to use immunohisto-
chemistry to investigate the effects of post‑ischemic exercise 
on neuronal damage or death and gliosis in the aged gerbil 
hippocampus following transient cerebral ischemia. Aged 
gerbils (male; age, 22‑24  months) underwent ischemia 
and were subjected to treadmill exercise for 1 or 4 weeks. 
Neuronal death was detected in the stratum pyramidale of 
the hippocampal CA1 region and in the polymorphic layer of 
the dentate gyrus using cresyl violet and Fluoro‑Jade B histo-
fluorescence staining. No significant difference in neuronal 
death was identified following 1 or 4 weeks of post‑ischemic 
treadmill exercise. However, post‑ischemic treadmill exercise 
affected gliosis (the activation of astrocytes and microglia). 

Glial fibrillary acidic protein‑immunoreactive astrocytes and 
ionized calcium binding adaptor molecule 1‑immunoreactive 
microglia were activated in the CA1 and polymorphic layer 
of the dentate gyrus of the group without treadmill exercise. 
Conversely, 4 weeks of treadmill exercise significantly allevi-
ated ischemia‑induced astrocyte and microglial activation; 
however, 1 week of treadmill exercise did not alleviate gliosis. 
These findings suggest that long‑term post‑ischemic treadmill 
exercise following transient cerebral ischemia does not influ-
ence neuronal protection; however, it may effectively alleviate 
transient cerebral ischemia‑induced astrocyte and microglial 
activation in the aged hippocampus.

Introduction

Transient forebrain ischemia induces the damage/death 
of pyramidal neurons in the CA1 region of the hippo-
campus  (1‑3). It has previously been reported that aged 
animals are less vulnerable to ischemia, and ischemia‑induced 
neuronal degeneration occurs much later than in adult 
animals (4‑6).

Microglia, which are primary immune cells that are located 
in the central nervous system, and astrocytes, which act as 
important modulators of neuronal activity, are both involved in 
maintaining homeostasis of the brain microenvironment (7). 
Microglia and astrocytes maintain a resting phenotype under 
physiological conditions; however, in the process of aging 
or pathological conditions, including ischemia‑reperfusion 
injury, they exhibit activation with morphological and func-
tional alterations, including hypertrophy and the release of 
various factors, which have been reported to modulate the 
injury process (8‑10). It is well known that glial cells serve 
complex roles in neuroinflammation and in the regeneration of 
brain tissue following ischemic insults (11,12).
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In the case of stroke, exercise treatment has been used in 
humans to aid the remaining functions (13). In experimental 
animals, exercise reduces astrocyte and microglial activa-
tion in the acute phase following transient focal ischemia in 
rats (14) and traumatic brain injury in mice (15). The effects 
of exercise on glial activation in animal models of brain inju-
ries have previously been investigated; however, long‑term 
alterations to glial activation in the ischemic hippocampus in 
aged animals have yet to be fully elucidated. Therefore, the 
present study aimed to investigate the effects of post‑ischemic 
exercise on neuronal damage and gliosis in the hippocampus 
following transient cerebral ischemia in the aged gerbil, a 
useful animal model for transient cerebral ischemia and aging 
research (16‑19).

Materials and methods

Experimental animals. A total of 35 male Mongolian gerbils 
(Meriones unguiculatus; age, 22‑24 months; weight, 80‑90 g) 
were supplied by the Experimental Animal Center, Kangwon 
National University (Chuncheon, South Korea). Gebrils were 
housed in a conventional facility, at a temperature of 23±3˚C 
and relative humidity of 55±5%, under 12/12 h light/dark 
cycles, and were allowed free access to food and water. Animal 
handling and experimental protocols were approved by the 
Institutional Animal Care and Use Committee of Kangwon 
National University (approval no. KW‑130424‑1). The gerbils 
were randomly divided into five groups: i) Sham group (n=7), 
which underwent sham surgery; ii) ischemia group (n=7), 
which underwent 5 min of transient forebrain ischemia; iii) 
ischemia‑SD4 group (n=7), which had a sedentary routine for 
4 weeks (SD4) from 5 days post‑ischemia; iv) ischemia‑TR1 
group (n=7), which performed 1 week treadmill exercise (TR) 
from 5 days post‑ischemia; and, v) ischemia‑TR4 group (n=7), 
which performed 4 weeks TR from 5 days post‑ischemia. The 
animals were sacrificed 31 days following ischemia; at which 
point, the TR training was concluded in the ischemia‑TR4 
group.

Induction of transient cerebral ischemia. Following the 
method described in our previous study  (20), the gerbils 
were anesthetized with a mixture of 2.5% isoflurane (Baxter 
Healthcare Corporation, Deerfield, IL, USA) in 33% oxygen 
and 67% nitrous oxide. After a sagittal ventral midline inci-
sion, common carotid arteries were carefully separated from 
the respective vagal nerves and were occluded for 5 min using 
nontraumatic aneurysm clips (Yasargil FE 723K; Aesculap 
AG, Tuttlingen, Germany). Following occlusion for 5 min, the 
clips were removed and the wounds were sutured with wound 
clips (12022‑09; Fine Science Tools, Inc., Foster City, CA, 
USA). Normothermic body (rectal) temperature (37±0.5˚C) 
was monitored until the animals completely recovered from 
anesthesia. Sham surgery animals were subjected to the same 
surgical procedures without the occlusion of the bilateral 
common carotid arteries.

Treadmill exercise. The running speed and duration of 
treadmill exercise was determined according to Sim's 
protocol  (21‑23), with modification. Briefly, from 5  days 
post‑ischemia, the gerbils in the TR groups were forced to run 

on a motorized treadmill for 30 min/day and 5 days/week for 
1 or 4 consecutive weeks. The exercise workload consisted 
of running at a speed of 5 m/min for the first 5 min, 7 m/min 
for the next 5 min and then 10 m/min for the last 20 min with 
0˚ inclination. The animals in the SD group were 
placed on the treadmill for 30 min, without being induced to 
run.

Tissue processing for histology. Tissue processing was 
performed according to a previously published procedure (20). 
Briefly, animals (n=7/group) were anesthetized with sodium 
pentobarbital (40 mg/kg, i.p.; JW Pharmaceutical Co., Ltd., 
Seoul, Korea) and perfused transcardially with 4% parafor-
maldehyde. Brain tissues were serially sectioned into 30 µm 
coronal sections.

Cresyl violet (CV) staining. To investigate morphological 
alterations, CV staining was performed according to a previ-
ously published procedure  (24). Briefly, the sections were 
stained with 1% CV acetate (Sigma‑Aldrich; Merck KGaA, 
Darmstadt, Germany) and immersed in serial ethanol baths. 
CV‑stained structures were observed under an AxioM1 light 
microscope (Zeiss AG, Oberkochen, Germany) equipped with 
a camera (Axiocam; Zeiss AG) and photomicrographs were 
captured. The CV‑stained structures were examined in a 
250x250 µm area that included the stratum pyramidale at the 
center of the hippocampal CA1 region, or in the whole dentate 
gyrus, using the image analysis system Optimas version 6.5 
(CyberMetrics, Scottsdale, AZ, USA).

Fluoro‑Jade B (F‑J B) histofluorescence staining. Histo
fluorescence staining was performed according to a previously 
published procedure  (25). F‑J B (high‑affinity fluorescent 
marker for the localization of neuronal degeneration) histo-
fluorescence staining was performed to examine neuronal 
degeneration. Briefly, the sections were immersed in a solution 
containing 1% sodium hydroxide in 80% alcohol, transferred to 
a solution containing 0.06% potassium permanganate diluted 
in water, then transferred to an aquaeous solution containing 
0.0004% F‑J B (Histo‑Chem, Inc., Jefferson, AR, USA). After 
washing 3 times in water, the sections were placed on a slide 
warmer (~50˚C) and examined using an epifluorescent micro-
scope (Zeiss AG) with blue (450‑490 nm) excitation source 
and a barrier filter.

Immunohistochemistry. Immunohistochemistry was 
performed according to our previously published proce-
dure  (24). Briefly, immunostaining was performed using 
mouse anti‑glial fibrillary acidic protein (GFAP; 1:800; 
cat no. MAB360; EMD Millipore, Billerica, MA, USA) for 
astrocytes and rabbit anti‑ionized calcium binding adaptor 
molecule 1 (Iba‑1; 1:800; cat no.  019‑19741; Wako Pure 
Chemical Industries, Ltd., Osaka, Japan) for microglia over-
night at 4˚C. Subsequently, samples were incubated with 
biotinylated horse anti‑mouse immunoglobulin G (1:250; cat 
no. BA2000; Vector Laboratories, Inc., Burlingame, CA, USA) 
or goat anti‑rabbit antibodies (1:250; cat no. BA1000; Vector 
Laboratories, Inc.) for 2 h at room temperature, and strepta-
vidin peroxidase complex (1:200; Vector Laboratories, Inc.) 
for 1 h at room temperature. To establish the specificity of the 
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immunostaining, a negative control test was performed and 
resulted in the absence of immunoreactivity in all structures.

Data analysis. In order to quantitatively analyze the number 
of F‑J B‑positive cells, digital images from seven sections per 
animal were captured using a light microscope (AxioM1; Zeiss 
AG) equipped with a digital camera (Axiocam; Zeiss AG) and 
connected to a PC monitor. The number of F‑J B‑positive cells 
was counted in a 250x250 µm square including the stratum 
pyramidale at the center of the hippocampal CA1 region or 
in the whole dentate gyrus using the image analysis system 
Optimas version 6.5 (CyberMetrics). Cell counts were carried 
out by averaging the counts from each animal.

To quantitatively analyze the density of GFAP‑ and 
Iba‑1‑immunoreactive structures, the corresponding hippo-
campal areas were measured from seven sections per animal. 
Images of all GFAP‑ and Iba‑1‑immunoreactive structures 
were captured through an AxioM1 light microscope (Zeiss AG) 
equipped with a camera (Axiocam; Zeiss AG) and connected to 
a PC monitor. Densities of GFAP‑ and Iba‑1‑immunoreactive 
structures were evaluated on the basis of optical density 
(OD), obtained following the transformation of the mean gray 
level using the formula: OD=log (256/mean gray level). The 
background was subtracted and the OD ratio for each image 
was calibrated as % relative optical density (ROD) using 
Adobe Photoshop version 8.0 (Adobe Systems, San Jose, CA, 
USA) and ImageJ software version 1.49 (National Institutes 

of Health, Bethesda, MD, USA). The mean value of the OD 
of the sham group was designated as 100% and the ROD in 
each group was calibrated and expressed as a percentage of 
the sham group.

Statistical analysis. Data are expressed as the mean ± standard 
error of the mean of at least 2 independent experiments. Data 
from F‑J B immunofluorescence and immunohistochemical 
staining were analyzed using one‑way analysis of variance, 
followed by a post hoc Bonferroni‑Dunn Test using SPSS 
version  17.0 (SPSS, Inc., Chicago, IL, USA). P<0.05 was 
considered to indicate a statistically significant difference.

Results

CV‑positive cells
Sham group. CV staining is presented in Fig. 1. CV‑positive 
cells were detected throughout the hippocampus; in particular, 
they were aggregated in the stratum pyramidale of the hippo-
campus proper (CA1‑3 regions) and the granular cell layer of 
the dentate gyrus (Fig. 1Aa‑d).

Ischemia groups. CV‑positive cells were markedly decreased 
in the CA1 stratum pyramidale, but not in the other subre-
gions, 5 days post‑ischemia (Fig. 1Ba‑d). In the SD4 group, 
the distribution pattern of CV‑positive cells was similar to the 
ischemia group at 5 days post‑ischemia (Fig. 1Ca‑d).

Figure 1. CV staining in the (A) sham, (B and C) ischemia and (Da and E) TR groups. Only a small number of CV‑positive cells were detected in the SP 
(asterisk) of the CA1 region 5 days post‑ischemia. In the SD4, TR1 and TR4 groups, the pattern of CV‑positive cells distribution was similar to the ischemia 
group at 5 days post‑ischemia. Scale bar: (Aa‑Ea) 400 µm, (Ab‑Eb) 40 µm and (Ac‑Ec and Ad‑Ed) 100 µm. CV, cresyl violet; TR, treadmill exercise; SD, 
sedentary routine; DG, dentate gyrus; GCL, granule cell layer; MoL, molecular layer; PoL, polymorphic layer; SO, stratum oriens; SR, stratum radiatum; SP, 
stratum pyramidale.
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TR‑groups. In the TR1 and TR4 groups, the distribution pattern 
of CV‑positive cells in the hippocampus was also similar to 
the SD4 group (Fig. 1Da‑d and Ea‑d).

F‑J B‑positive cells
Sham group. F‑J B staining is presented in Fig. 2. F‑J B‑positive 
cells were not detected in any layers of the hippocampus 
proper and the dentate gyrus (Fig. 2Aa‑d).

Ischemia groups. A total of 5 days post‑ischemia, numerous 
F‑J B‑positive cells were detected in the stratum pyramidale 
of the CA1 region and a small number of F‑J B‑positive cells 
were detected in the polymorphic layer of the dentate gyrus 
(Fig. 2Ba‑d and F). In the SD4 group, the distribution pattern 
and number of F‑J B‑positive cells in the CA1 stratum pyrami-
dale was similar to the ischemia‑group at 5 days post‑ischemia; 

however, the number of F‑J B‑positive cells was significantly 
decreased in the polymorphic layer of the dentate gyrus 
(Fig. 2Ca‑d and F).

TR‑groups. In the TR1 and TR4 groups, the number of F‑J 
B‑positive cells in the CA1 stratum pyramidale and in the 
polymorphic layer of the dentate gyrus was similar to the 
SD4 group and no significant difference in the number of 
F‑J B‑positive cells was observed between the TR1 and TR4 
groups (Fig. 2Da‑d, Ea‑d and F).

GFAP‑immunoreactive astrocytes
Sham group. GFAP staining is presented in Fig. 3. GFAP‑ 
immunoreactive astrocytes in the sham group were easily 
detected in all layers of the hippocampus proper and the 
dentate gyrus. The astrocytes appeared to be at resting 

Figure 2. F‑J B histofluorescence staining in the (A) sham, (B and C) ischemia and (D and E) TR groups. In the sham group, no F‑J B‑positive cells were 
detected. However, at 5 days post‑ischemia, numerous F‑J B‑positive neurons (arrows) were detected in the SP of the CA1 region and in the PoL of the DG. 
In the SD4, TR1 and TR4 groups, the number of F‑J B‑positive neurons (arrows) in the SP of the CA1 region and in the PoL of the DG was similar between 
the groups. Scale bar: (Aa‑Ea) 400 µm, (Ab‑Eb) 40 µm and (Ac‑Ec and Ad‑Ed) 100 µm. (F) Number of F‑J B‑positive cells in the SP of the CA1 and CA2/3 
regions and in the PoL of the DG (n=7/group). Data are presented as the mean ± standard error of mean. *P<0.05 vs. ischemia group at 5 days post‑ischemia. 
F‑J B, Fluoro‑Jade B; TR, treadmill exercise; SD, sedentary routine; DG, dentate gyrus; GCL, granule cell layer; MoL, molecular layer; PoL, polymorphic 
layer; SO, stratum oriens; SR, stratum radiatum; SP, stratum pyramidale.
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form and had a small body with thread‑like thin processes 
(Fig. 3Aa‑d).

Ischemia group. In the SD4 group, numerous GFAP‑ 
immunoreactive astrocytes demonstrated a typical activated 
form that had a punctuated cytosol with thick processes 
(Fig.  3Ba‑d). The density of the GFAP‑immunoreactive 
structures (ROD) was significantly increased in all subre-
gions compared with in the sham group (P<0.05; Fig. 3E); in 
particular, the activation was marked in the CA1 region and in 
the polymorphic layer of the dentate gyrus.

TR groups. In the TR1 group, the morphology of GFAP‑ 
immunoreactive astrocytes in the hippocampus proper and 
the dentate gyrus was similar to the SD4 group (Fig. 3Ca‑d) 
and the ROD of GFAP‑immunoreactive structures was not 
significantly different compared with the SD4 group (Fig. 3E). 
However, in the TR4 group the ROD was significantly 
decreased (P<0.05) compared with in the SD4 and TR1 groups 
(Fig. 3Da‑d and E).

Iba‑1‑immunoreactive microglia
Sham group. Iba‑1 staining is presented in Fig.  4. Iba‑1‑ 
immunoreactive microglia were evenly distributed throughout 
the hippocampus. The microglia appeared to be at resting 
form and exhibited fine processes with web‑like network char-
acteristics (Fig. 4Aa‑d).

Ischemia group. In the SD4 group, Iba‑1‑immunoreactive 
microglia were markedly altered in the CA1 region and in 
the polymorphic layer of the dentate gyrus; they exhibited 
bulky cytoplasm with short and thickened processes, which 
represents the activated form (Fig. 4Ba‑d and E). In particular, 
activated Iba‑1‑immunoreactive microglia were aggregated in 
the stratum pyramidale of the CA1 region. The ROD of the 
Iba‑1‑immunoreactive structures was significantly increased 
(P<0.05) in the CA1 region and the polymorphic layer of the 
dentate gyrus compared with in the sham group (Fig. 4E).

TR groups. In the TR1 group, the distribution pattern 
of Iba‑1‑immunoreactive microglia in the hippocampus 

Figure 3. GFAP immunohistochemistry in the (A) sham, (B) SD4, (C) TR1 and (D) TR4 groups. In the SD4 group, GFAP‑immunoreactive astrocytes (arrows) 
were activated in the CA1 region and in the PoL of the DG. In the TR1 group, the activation was similar to the SD4 group; however, in the TR4 group, the 
activation was significantly decreased compared with the SD4 group. Scale bar: (Aa‑Da) 400 µm, (Ab‑Db) 40 µm and (Ac‑Dc and Ad‑Dd) 100 µm. (E) ROD 
expressed as a percentage of GFAP‑immunoreactive structures (n=7/group). Data are presented as the mean ± standard error of mean. *P<0.05 vs. sham group; 
†P<0.05 vs. SD4 group; #P<0.05 vs. TR1 group. GFAP, glial fibrillary acidic protein; SD, sedentary routine; TR, treadmill exercise; DG, dentate gyrus; GCL, 
granule cell layer; MoL, molecular layer; PoL, polymorphic layer; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; ROD, relative optical 
density.



AHN et al:  LONG-TERM POST-ISCHEMIC EXERCISE ALLEVIATES ISCHEMIA-INDUCED GLIAL ACTIVATION3628

was similar to the SD4 group; however, the activation of 
Iba‑1‑immunoreactive microglia was slightly decreased in the 
CA1 region and the dentate gyrus (Fig. 4Ca‑d). In the TR4 
group, the ROD of activated Iba‑1‑immunoreactive microglia 
was significantly decreased (P<0.05) in the CA1 region and 
the dentate gyrus compared with in the SD4 and TR1 groups 
(Fig. 4Da‑c and E).

Discussion

Ischemic brain damage can lead to the development of 
neuronal damage and gliosis (26), and result in long‑term 
functional disability (27,28). The present study investigated 
the effects of long‑ and short‑term post‑ischemic treadmill 
exercise on neuronal death and glial activation in the aged 
gerbil hippocampus induced by 5 min of transient cerebral 
ischemia.

In the present study, at 5 days post‑ischemia, a distinct 
neuronal loss was observed in the CA1 stratum pyramidale 

and in the polymorphic layer of the dentate gyrus in the 
aged gerbil hippocampus, as determined using CV and F‑J B 
staining. This result is consistent with our previous findings, 
which demonstrated that a significant neuronal loss in the aged 
gerbil hippocampus was detected in the CA1 stratum pyrami-
dale (5) and in the polymorphic layer of the dentate gyrus (29) 
5 days after transient ischemia. At 31 days post‑ischemia in the 
SD4 group, the number of F‑J B‑positive cells (dead neurons) 
in the CA1 region was similar to that at 5 days post‑ischemia. 
Furthermore, the present study is the first, to the best of our 
knowledge, to report that short‑ and long‑term post‑ischemic 
treadmill exercise did not exhibit any neuroprotection in the 
TR1 and TR4 groups; the numbers of F‑J B‑positive neurons 
in the CA1 region and the dentate gyrus were no different 
compared with the SD4 group. It has previously been reported 
that short‑ and long‑term treadmill exercise, initiated prior to 
ischemic neuronal death, exerted a neuroprotective effect by 
suppressing transient cerebral ischemia‑induced apoptosis of 
the neurons in the CA1 region (21‑23). Based on the findings 

Figure 4. Iba‑1 immunohistochemistry in the (A) sham, (B) SD4, (C) TR1 and (D) TR4 groups. Iba‑1‑immunoreactive microglia were activated (arrows) in 
the CA1 region and the PoL of the DG in the SD4 group. In the TR4 group, the activation of Iba‑1‑immunoreactive microglia was significantly decreased 
(asterisks) although the activation in the TR1 group was similar to the SD4 group. Scale bar: (Aa‑Da) 400 µm, (Ab‑Db) 40 µm and (Ac‑Dc and Ad‑Dd) 
100 µm. (E) ROD expressed as a percentage of Iba‑1 immunoreactive structures (n=7/group). Data are presented as the mean ± standard error of the mean. 
*P<0.05 vs. the sham group; †P<0.05 vs. the SD4 group; #P<0.05 vs. the TR1 group). Iba‑1, ionized calcium binding adaptor molecule 1; SD, sedentary routine; 
TR, treadmill exercise; DG, dentate gyrus; GCL, granule cell layer; MoL, molecular layer; SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; 
ROD, relative optical density.
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of the present study and previous studies, it may be concluded 
that treadmill exercise begun after transient cerebral isch-
emia‑induced neuronal degeneration cannot protect neurons 
in the aged hippocampus.

In the present study, the significant activation of 
GFAP‑immunoreactive astrocytes and Iba‑1‑immunoreactive 
microglia was observed in the CA1 region and the dentate 
gyrus of the SD4 group, and their ROD was significantly 
increased compared with in the sham group. However, 
4 weeks of post‑ischemic treadmill exercise significantly 
reduced the number of activated astrocytes and microglia in 
the CA1 region and in the dentate gyrus compared with the 
sedentary control (SD4 group). Conversely, 1 week of tread-
mill exercise did not effectively decrease their activation in 
the ischemic hippocampus. It is well known that ischemic 
hippocampus pathology is closely associated with an acute 
and prolonged inflammatory response, which is character-
ized by the production of inflammatory cytokines and the 
activation of resident glial cells  (30,31). In this regard, 
previous studies have demonstrated that wheel‑running 
exercise attenuated age‑related astrocyte hypertrophy (32) 
and microglial proliferation (33). In addition, chronic exer-
cise inhibited the activation of astrocytes and microglia, 
and other inflammatory‑related factors, including inducible 
nitric oxide synthase, in murine models of Alzheimer's and 
Parkinson's diseases (34,35). The present results, along with 
the aforementioned findings, indicated that long‑term tread-
mill exercise may alleviate increased neuroinflammation in 
the aged gerbil hippocampus induced by transient cerebral 
ischemia.

In conclusion, the present study suggested that 4 weeks of 
treadmill exercise, initiated after neuronal death, cannot influ-
ence neuronal protection; however, the exercise can effectively 
alleviate transient cerebral ischemia‑induced gliosis in the 
hippocampus of aged gerbils.
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