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Abstract

Intestinal mucositis is a commonly encountered toxic side effect in patients undergoing

5-fluorouracil (5-FU)-based chemotherapy. Numerous studies have shown that probiotics

enable improving chemotherapy-induced intestinal mucositis, but the beneficial effects of

probiotics differ depending on the strain. Therefore, in the present studies we suggest

that S. thermophilus ST4 separated from raw milk may assess mucoprotective activity in

5-FU-induced intestinal mucositis. In our causal-comparative study design, fifteen mice

were randomized assigned into three groups (n = 5/each group): control group, 5-FU

group and 5-FU+S. thermophilus ST4 group. The control group was orally administrated

saline only, and the 5-FU group was followed by intraperitoneal injection of 5-FU for 3

days after 10-day saline administration, and the 5-FU+S. thermophilus ST4 group was

intragastrically subjected for S. thermophilus ST4 once per day during the whole experi-

ment, starting from the first day of the experiment, followed by 5-FU intraperitoneal injec-

tion for 3 days after 10-day S. thermophilus ST4 pretreatment. Diarrhea score, pro-

inflammatory cytokines serum levels, intestinal histopathology and short chain fatty acid

were assessed. Here, we demonstrated the beneficial effects of S. thermophilus ST4

derived from raw milk against 5-FU-induced intestinal mucositis, including body weight

reduction, appetite loss and diarrhea. Intrinsically, S. thermophilus ST4 effectively main-

tained epithelium structure in small intestines and colons as well as reduced the intestinal

inflammation. Besides, S. thermophilus ST4 significantly increased the expression of

acetic acid, reinforcing the muco-protective effects. In conclusion, our results demon-

strate that S. thermophilus ST4 supplementation ameliorates 5-FU-induced intestinal

mucositis. This suggests probiotic may serve as an alternative therapeutic strategy for

the prevention or management of 5-FU-induced mucositis in the future.
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Introduction

5-FU is widely used for treatments of a range of cancers, including colorectal cancer, pancre-

atic cancer and breast cancers, whereas it frequently causes intestinal mucositis. Intestinal

mucositis (mucosal barrier injury) characterized by a decrease in villi length and the disrup-

tion of crypt cell homeostasis is attributed to a common toxic side effect of 5-FU [1]. This side

effect causes severe diarrhea, malabsorption, morphological mucosal damage and severe infec-

tion, which limits the safety and clinical applications using 5-FU as a chemotherapy. In fact,

villus blunting and disrupted crypts are often seen in the small intestine upon chemotherapy

due primarily to an upregulation in apoptosis and a downregulate in proliferation [2]. Simi-

larly, in the colon, 5-FU administration significantly confers shortening the colon length, pre-

sumably the shortened colon is closely associated with severe diarrhea. [3]. Moreover, 5-FU-

induced intestinal mucositis increases the production of pro-inflammatory cytokines, such as

tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), which are

the hallmarks of mucositis inflammation [3, 4] and responsible for initiating inflammation in

response to tissue injury and infection during chemotherapy. The suppression of inflamma-

tion and efficient healing abilities of the mucosa are beneficial for the maintenance of homeo-

stasis in response to gut damage. In fact, upon an increase in mucosal repaired capability,

certain cytokines involved in the repaired process had been shown to diminish the severity of

intestinal mucositis both in animal models and clinical trials [5, 6]. Therefore, the strategic

intervention used to block inflammatory processes or to maintain gut homeostasis are of great

beneficial for 5-FU-induced intestinal mucositis.

The term probiotics is defined as “live micro-organisms which, when administered in ade-
quate amounts, confer a health benefit on the host” [7]. They are commonly existed in fer-

mented milks, yogurts and cheese or dietary supplements usually in the dehydrated form [8].

Recently, accumulative evidence supports that probiotic supplements beneficial effects for

human and animal health, especially in improvements of intestinal functionalities and preven-

tion of inflammation intestinal diseases [9]. Eventually, probiotics is known to exhibit anti-

inflammatory effects through increases in the production of short-chain fatty acids (SCFAs),

mainly acetate, propionate, and butyrate, stemming from carbohydrates, fibers, and polyphe-

nols fermented by gut microbiota [10, 11]. Functionally, in the presence of SCFAs, a range of

positive effects have been demonstrated, including maintenance of the normal structure, integ-

rity and function of the intestine [12], modulation of the colonic and intracellular environment

[13], and fuel for the intestinal epithelial cells, promotion of colonic epithelial cells prolifera-

tion and gene expression [14, 15].

Streptococcus thermophilus is a gram-positive, lactic acid production, and ovoid-shape bacte-

rium appearing in pairs or in short chains. Taking advantage of its lactose digestion activity, S.

thermophilus has been utilized to improve individuals with lactose intolerance [16] in addition

to other activities such as antioxidation [17], immune modulation [18], gastrointestinal epithe-

lium homeostasis [19], prevention of chronic gastritis [20], attenuation of diarrhea [21, 22], alle-

viation of ulcer and inflammation [23] and so on. Some studies have shown that the

administration of S. thermophilus strain can reduced some parameters of mucositis in animal

model induced by chemotherapy, such as prevent weight loss, attenuate the diarrhea and intesti-

nal damage [24, 25]. Although S. thermophilus has been granted as a good probiotic in varied

intestinal inflammatory models, for example, alleviation of colitis symptoms in a dextran sulfate

sodium (DSS) model [26, 27], the beneficial effects of probiotics S. thermophilus differ in origins

and/or strains. In the current study, we evaluated the mucoprotective activity of S. thermophilus
ST4 in a 5-FU-induced intestinal mucositis. Our results warrant the development of probiotic

supplements for chemotherapeutic side effects in related to gastrointestinal mucositis.
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Materials and methods

Preparation of 5-FU and S. thermophilus ST4

5-FU was purchased from Sigma (St. Louis, MO, USA). The preparation of 5-FU was firstly

dissolved in saline at a concentration of 5 mg/mL, and then sterile filtered through a 0.2 μm

syringe filter. 5-FU was injected intraperitoneally at a single dose of 50 mg/kg/day for 3 conse-

cutive days to cause intestine mucositis. S. thermophilus ST4 was isolated in raw milk and pro-

vided by Syngen Bio-Tech Co., Ltd. (Tainan, Taiwan). S. thermophilus ST4 was diluted in

sterile water and administered by oral gavage. The mice received 100 μL of suspension con-

taining 5×108 CFU of the probiotics cocktail daily for 17 days as described in Fig 1A.

In vivo experiments

Animal care. Five-week-old male BALB/cByJNarl (BALB/c) mice were purchased from

the National Laboratory Animal Center (Taipei, Taiwan). The mice were housed in a climate-

controlled environment (23 ± 2˚C, relative humidity of 50 ± 5%) with a 12 h of light/dark

cycle and allowed free access to food and water ad libitum. The mice adapted to the environ-

ment for 2 weeks. The animal experimental protocol used in the current study was reviewed

and approved by the Institutional Animal Care and Use Committee of the National Taiwan

Fig 1. S. thermophilus ST4 attenuates 5-FU-induced intestinal mucositis. (A) Experimental design for the animal study. The group of 5-FU+S. thermophilus ST4

indicates that S. thermophilus ST4 was intragastrically subjected for pretreatment once per day for 10 days, followed by 5-FU (50 mg/kg) intraperitoneal injection once

daily for 3 days, and then continuing S. thermophilus ST4 (5×108 CFU/day) intragastrical administration once daily for additional 4 days. The group of 5-FU is the mice

were only treated with 5-FU but no S. thermophilus ST4. Mice without any treatment of both 5-FU and S. thermophilus ST4 were as the control group. Arrows indicate the

dates for the injection of 5-FU. (B) Body weight is shown as a percentage of initial body weight in a diary base. (C) Diary food intake was measured diary for each group.

(D) The severity of diarrhea is scored using the four-grade scale (0–3) starting from 5-FU treatment toward sacrifice. Data are present as mean ± SD. The data with

different superscripted letters are significantly different based on the one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0253540.g001
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University according to the principles of the 3Rs (Replacement, Reduction and Refinement).

The experimental design tried to mimic the 5-FU-indcued mucositis by treating mice with low

dosage of 5-FU along with or without S. thermophilus ST4 to evaluate the multiple effects, such

as body weight change, diarrhea, inflammation, histopathology etc, of the mice on definitive

mucositis in comparison with the saline control. When the loss of body weight was reached up

to 20% compared to that measured at the point before the 5-FU treatment, the experimental

animal was euthanized. Five mice for these three groups are enough for statistical analyses of

data collected.

In vivo intestinal mucositis model. The experimental set-up is illustrated in Fig 1A and

the mice were randomized to one of three groups (n = 5/group) including control group, the

5-FU-induced intestinal mucositis group, and 5-FU+S. thermophilus ST4 (5×108 CFU/day)

group using random number tables to achieve randomization. Intestinal mucositis was

induced on the 11th to 13th days by intraperitoneal injection of 5-FU (50 mg/kg/day) for 5-FU

group and 5-FU+S. thermophilus ST4 group. An injection of saline into mice were used as the

control group. Mice were euthanized on the 18th day.

Disease severity was assessed daily by measuring body weight and diarrhea status, the latter

was graded based on the stool consistency: 0 (normal, normal stool or absent); 1 (slight,

slightly wet and soft stool); 2 (moderate, wet and unformed stool with moderate perianal stain-

ing of the coat); and 3 (severe, watery stool with severe perianal staining of the coat) [21]. All

of data were quantitative collection. For example, fecal samples from each mouse were individ-

ually, i.e. each mouse was placed a single clean cage with no bedding waiting for defacating

2–3 fecal pellets, collected, recorded and labelled in a test tube before they were stored in

-80˚C. There are two variables in the current study, 5-FU and S. thermophilus ST4. In fact,

5-FU treatment enables inducing the phenomenon of mucositis and S. thermophilus ST4 is the

test factor in effect on ameliorating the mucositis. The amounts (concentrations) of both vari-

ables have been tested in our preliminary study (data not shown). Here, we grouped the mice

into 3 groups, saline treatment, 5-FU alone, and 5-FU+S. thermophilus ST4, respectively, to

evaluate the effect of S. thermophilus ST4 on 5-FU-induced mucositis. Then, the mice were sac-

rificed under anesthesia to collect their entire small intestines (mainly jejunum tissue) and

colons (range from cecum to rectum) after removal of fact tissue and colon length (range

excludes the cecum) were measured accordingly.

Morphology and histopathology analysis. For the assessment of pathological changes,

the small intestines and colons were fixed in 10% formaldehyde solution and embedded in par-

affin. Sections with 3–5 μm in thickness were cut, deparaffinized, rehydrated, stained with

hematoxylin and eosin (H&E). The morphological alteration and inflammatory cell infiltration

were examined under a light microscope (DL 882096, LWScientific, Inc., Georgia, USA). The

photos were taken at a final magnification of 100× and 400×.

Immunohistochemical staining of the small intestine. Sections (3 μm thick) were cut

and mounted on a glass slide and followed by deparaffinization in xylene, rehydration in a

graded ethanol series, antigen retrieval using microwave and then endogenous peroxidase

inactivation in immersing specimens in 3% H2O2. To perform immunostaining, slides were

incubated at 4˚C for overnight with rabbit polyclonal anti-F4/80 antibody (Abcam, cat.#

ab6640) at 1: 1000 dilution and followed by another incubation with HPR-conjugated anti-

rabbit secondary antibody (Jackson lab) at 1:2000 dilution at room temperature for 1 hour.

After washes, sections were developed with diaminobenzidine (DAB) and counterstained with

hematoxylin, and then dehydrated in a graded alcohol series, cleared in xylene, and placed

with coverslips. Positive F4/80 cells were counted using Image J1 software (Rasband, W.S.,

ImageJ, U. S. National Institutes of Health, Bethesda, MD, USA).
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Pro-inflammatory cytokines analysis. To quantify cytokines, blood was first collected

from the heart immediately after mice were sacrificed. Blood samples were then centrifuged to

obtain serum. Concentrations of pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) in

serum were measured using corresponding enzyme-linked immunosorbent assay kits (ELISA;

Thermo Fisher Scientific, Inc.) according to the manufacturer’s instruction. Results are

expressed as pg/mL.

Short-chain fatty acids (SCFAs) analysis of feces. SCFAs were quantified according to

the previously published description [28]. Briefly, fresh fecal samples were collected and

homogenized with cold saline (NaCl 0.9%, w/v) at a ratio of 1:10 (w/v) prior to centrifugation

for 10 min at 1,000 g. Collected supernatants were acidified with 20 μL of 50% (w/v) sulfuric

acid containing isocaporic acid as an internal standard. Then, SCFAs were mixed and

extracted by diethyl ether. The extracted samples were directly injected into the GC column

(Agilent J and W HP-INNO Wax GC Column, 30 m, 0.25 mm id, 0.25 μm film thickness). The

GC system consisted of an Agilent 7890A (Agilent Technologies, Palo Alto, CA, USA),

equipped with a flame ionization detector. Helium as carried gas was used for the separation at

a flow rate of 7 mL/min. One μL of each sample was injected with an injector temperature of

140˚C and the detector temperature 250˚C. The conditions were as follows: oven temperature,

initially held at 80˚C for 1 min and then raised to 140˚C at a rate of 20˚C/min, then held at

140˚C for another 1 min, and raised again to 220˚C at a rate of 20˚C/min, and lastly held at

220˚C for 2 more mins.

Statistical analysis

All data were analyzed by GraphPad Prism 6.0 software and presented as means ± SD from the

indicated number of independent experiments. Comparisons of statistical significance between

experimental groups were determined by one-way analysis of variance (ANOVA) using SPSS

for Windows (version 12.0) of variance followed by Duncan’s multiple range method.

Results

Effect of S. thermophilus ST4 treatment on 5-FU-induced body weight loss,

food intake and diarrhea

To evaluate the protective effect of S. thermophilus ST4 on 5-fluorouracil-induced intestinal

mucositis, mice were oral gavage with or without S. thermophilus ST4 prior to 5-FU-induced

intestinal mucositis and monitored their body weight loss, food intake and diarrhea dairy (Fig

1A). On contrary to the control group, the 5-FU group mice resulted in significantly decreased

body weight (about 20%), food intake (about 50%), diarrhea (score from 0 up to 2.5), reluc-

tance to move and hair loose (data not shown). Nevertheless, we found that the administration

of S. thermophilus ST4 apparently ameliorated the aforementioned clinical symptoms of 5-FU-

induced intestinal mucositis toward no significant difference compared to the control group

as shown in Fig 1B–1D. Here, the daily evaluation of intestinal mucositis induced by 5-FU was

followed by weight reduction throughout the experimental period. Compared to the control

group, gradual body weight loss was observed in mice treated with 5-FU, and the mean body

weight (relative mean body weight change (%) was recorded daily and expressed as mean from

baseline at day 11th = 0%) was reduced 19.59% of initial body weight on the 18th day. Intri-

cately, our data showed that the S. thermophilus ST4 obviously rescued 5-FU-induced

impairment in the severity of 5-FU-induced intestinal mucositis resulting from the reductions

in body weight loss only 1.85% as shown in Fig 1B. In addition, the food intake was irreversibly

by 5-FU+S. thermophilus ST4 compared to the 5-FU treated group reduced by 50% (Fig 1C),
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reaching to the same as the control group. Diarrhea was assessed by using the Bowen’s score

system. We classified diarrhea into four grades according to the stool consistency: 0, normal

stool; 1, slightly wet and soft stool indicating mild diarrhea; 2, wet and unformed stool indicat-

ing moderate diarrhea; and 3, watery stool indicating severe diarrhea. accordingly, we

observed and recorded the diarrhea score of each mouse starting on the day of 5-FU treatment.

As shown in Fig 1D, diarrhea scores exhibited a significant reduction and recovery in the 5-FU

+S. thermophilus ST4 treatment compared to the 5-FU-induced group from the most severe

day 14th to day 15th, and the mean diarrhea score changed from 1.0 to 0.1 and from 2.5 to 2.50,

respectively (Fig 1D). Taken together, these data clearly present the potential effect of S. ther-
mophilus ST4 on protecting the 5-FU-induced intestinal mucositis in a mouse model.

Effects of S. thermophilus ST4 on 5-FU-induced intestinal mucositis

To further evaluate histopathological characteristics, we firstly examined the length of the

colon among the different treated groups. In our experiments, the average colon length (7.5

cm) of 5-FU treated mice was significantly shortened compared to that (8.9 cm) of the con-

trol group (Fig 2A), whereas the colon length shorten was markedly alleviated and remained

at the average of 9.2 cm by treatment with S. thermophilus ST4 even under 5-FU treated

condition. Furthermore, we examined the change of small intestines treated with 5-FU

Fig 2. Histopathological examination of 5-FU-induced intestinal mucositis with or without S. thermophilus ST4 treatment. Three groups of

mice as indicated were sacrificed according to the experiment design subjected for measuring (A) colon length and (B and C) for H&E staining of the

small intestine and colon after excised, sectioned, and then stained, respectively. The representative images (100X and 400X magnifications) of each

group are presented. Data are present as mean ± SD. The data with different superscripted letters are significantly different based on the one-way

ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0253540.g002
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followed with or without S. thermophilus ST4 at the microscopic level (Fig 2B and 2C). Mor-

phological analyses indicated that the villus heights to crypts depths of 5-FU treated mice

were dramatically shortened in comparison with the control mice, while the reduction of

small intestine villus heights and crypts depths was markedly alleviated by treatment with S.

thermophilus ST4 as shown in Fig 2B. Our results suggested that the 5-FU-induced mucosi-

tis in small intestines could be prevented by 5-FU+S. thermophilus ST4. Likewise, the obvi-

ous differences were observed in colon morphology after the induction of mucositis

compared to the control group and 5-FU group. 5-FU resulted in the epithelial and crypt

damage in colon tissues, and the crypt depth was dramatically decreased by the mucositis as

shown in Fig 2C. As expected, 5-FU+S. thermophilus ST4 administration exhibited protec-

tive effects on colon damage.

S. thermophilus ST4 suppressed 5-FU-induced pro-inflammatory cytokines

To understand the mechanistic nature of S. thermophilus ST4 suppressed 5-FU-induced

mucositis, we examined expression of inflammatory factors in the presence or absence of

S. thermophilus ST4 in a 5-FU-induced mouse model. Indeed, inflammation is known to

be involved in the pathogenesis of mucositis, and the pro-inflammatory cytokines are con-

sidered as important factors and potential targets for treatment of mucositis. As shown in

Fig 3A–3C, in 5-FU-induced mice, the pro-inflammatory cytokines concentrations of

TNF-α (34.78 pg/mL), IL-1β (66.02 pg/mL) and IL-6 (460.68 pg/mL) were significantly

Fig 3. Reduction of the inflammatory effect by S. thermophilus ST4 in the 5-FU-induced intestinal mucositis mouse model. Despite of elevated expressions of TNF-α
(A), IL-1β (B) IL-6 (C) and F4/80 (a marker for macrophage, D and E) induced by 5-FU, S. thermophilus ST4 enabled significantly diminishing the increase of these

inflammatory factors in serum or in the intestine (D) and the colon (E) of the 5-FU-induced mucositis mice. Data are present as mean ± SD. The data with different

superscripted letters are significantly different based on the one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0253540.g003
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increased in comparison with the control group (TNF-α at 7.10 pg/mL, IL-1β at 46.52 pg/

mL and IL-6 at 34.17 pg/mL), respectively. Similar to the control group, the 5-FU+S. ther-
mophilus ST4 group significantly reduced the concentrations of TNF-α, IL-1β and IL-6 at

4.52, 52.51, and 48.53 pg/mL, respectively, compared to the 5-FU group. In agreement

with the above result, we also found that the S. thermophilus ST4 group gave rise to less

macrophage infiltrations in the small intestine and the colon as shown in Fig 3D and 3E,

in compared to those in 5-FU- induced mice, from 56.52% to 17.58%. To be noted, 5-FU

treatment impaired mucosal epithelium and disrupted crypt-villus structures, which was

accompanied with increase cellular infiltration and macrophage (F4/80 stain) aggregation.

in contrast, 5-FU+S. thermophilus ST4 administration exhibited protective effects on

intestinal mucositis.

Effects of SCFAs production by the S. thermophilus ST4 on 5-FU-induced

intestinal mucositis

To elucidate the essential metabolite in correlation with the anti-inflammatory effect of the S.

thermophilus ST4 on 5-FU-induced intestinal mucositis in the mouse model, we investigated

the fecal concentrations of various short-chain fatty acids among the different groups. Here,

we further revealed a higher concentration of acetic acid in the stool of the 5-FU+S. thermophi-
lus ST4 group (78.86 mmol/g) than that in the control group and 5-FU group (71.28 mmol/g

and 70.69 mmol/g, respectively) as shown in Fig 4, implicating this short-chain fatty acid

rather than other SCFAs, including propionic acid and butyric acid, critical for the protective

effect of S. thermophilus ST4 on intestinal mucositis.

Fig 4. S. thermophilus ST4 promotes SCFAs production of the 5-FU-induced mouse. (A-C) HPLC profiles and (D)

concentration (μmol/g) of SCFAs in feces collected from three groups. Isocaproic acid as an internal standard in

HPLC. Data are present as mean ± SD of 5 mice. The data with different superscripted letters are significantly different

based on the one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0253540.g004
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Discussion

In this present study, we recap 5-FU injected mice resulting in body weight loss, reduced food

intake, and diarrhea in our experimental model, which is related to the negative effects of

intestinal mucositis as previous reports [3, 29, 30]. Apparently, we showed that S. thermophilus
ST4 enabled attenuating the 5-FU-induced body weight loss indicated by the improvement in

food intake. Additionally, S. thermophilus ST4 also alleviated the diarrhea of 5-FU-indcued

mucositis mice. A previous study evaluated S. thermophilus strain (NCIMB 41856) is con-

cluded to promote maintenance of mucosal barrier function and, therefore, indirectly reduce

immune stimulation and inflammation in a DSS mouse model to ameliorate signs of colitis in

an iron-rich condition [27]. However, our current study does obviously see the additional dif-

ferences in histopathology and cytokine production between probiotics treatment group or

non-treatment group in a 5-FU-induced mucositis mouse model. We performed the effect of

5-FU on S. thermophilus ST4 cytotoxicity in vitro, none of which induced cytotoxicity in the S.

thermophilus ST4 that we tested [S1 Appendix]. In addition, we tried to allow the S. thermophi-
lus ST4 colonized on the intestine before 5-FU-induced mucositis to provide a protective

effect. In contrast, the Bailey et al administrated DSS to induce colitis at the beginning in com-

bination with treatment of S. thermophilus strain (NCIMB 41856). Thus, these studies provide

more beneficial effects of S. thermophilus strains on mucositis while the probiotics are applied

to the animal as earlier.

The intestinal epithelium is a single-cell layer composing the largest and most important

barrier whose primary function is to assist in absorption of nutrients across the epithelial lin-

ing in addition to maintaining a physical barrier against the external environment [31]. Effi-

cient absorption is enhanced within the small intestine via finger-like projections called villi,

which greatly augment the surface area in contact with luminal contents [32]. The intestinal

barrier is maintained by epithelial cells joined by tight junctions on their lateral boarders, thus

the selective passage of luminal contents across the cell being formed [32]. To be noted, crypts

are flask-like structures around the base of villi containing proliferative units necessary for

maintaining epithelial integrity of throughout the intestine [32]. In contrast, intestinal shorten-

ing is a phenomenon which is depicted both in experimental colitis model [33] and chemo-

therapy induced mucositis [34], suggesting destruction or inflammation in intestine. For

example, 5-FU-induced mucositis effect on intestinal morphology is often characterized by

decreased crypt length, blunting and fusion of villi, enterocytes hyperplasia and increased apo-

ptosis [35], thereby resulting in the disruption of mucosal integrity as well as the shape changes

of villus and crypt parameters. The gastrointestinal crypt epithelium is particularly vulnerable

to chemotherapy drug toxicity with symptoms including nausea and vomiting, abdominal

pain, distension, and diarrhea [36]. Nevertheless, studies have reported that the oral adminis-

tration of S. thermophilus TH-4 at a dose of 109 CFU/mL, partially attenuated methotrexate-

induced small intestinal damage [24]. Moreover, [25] showed that live TH-4 and supernatant

partially normalized mitotic count and histological severity score while 5-FU-induced intesti-

nal mucositis.

Morphologically, the broken villi in the small intestine and colon were dramatically

increased upon the induction of intestinal mucositis in the current study, while the loss of

crypt structure was occurred in colon segments. We demonstrated that the structures of villus

and crypt in small intestine and colon were significantly protected by S. thermophilus ST4

treatment at 5×108 CFU/day for 17 days, in which S. thermophilus ST4 might remain mucosal

growth during chemotherapy.

Rather than the direct injury to intestinal basal stem cells, 5-FU-induced intestinal mucosi-

tis also leads to a consequence of complex biological events, including reactive oxygen species
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(ROS) generation, immune cells infiltration, and pro-inflammatory cytokines over-production

[37, 38]. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, play a role in amplifying

the severity of chemotherapy-induced intestinal mucositis [39]. In fact, TNF-α is a key factor

in the caveolin-1-mediated internalization of occluding, which elevates gut permeability [40].

Besides, TNF-α is a very potent matrix metalloproteinases produced by neutrophils and acti-

vated macrophages in contribution to the epithelial ulceration and sub-mucosal destruction

[41]. Numerous studies have revealed elevated productions of the inflammasome-dependent

cytokines IL-1β and IL-18 during clinical and experimental chemotherapy-induced mucositis

[42]. Consistently, IL-1β enhances intestinal mucositis pathogenesis by triggering apoptosis of

intestinal crypt epithelial cells via p53-mediated upregulation of p21 and p27 [43]. Moreover,

[44] substantiated the importance of IL-6 in 5-FU-induced small intestine injury using an IL-

6-/- mouse model, also indicating the caspase-3-dependent pathway is involved in IL6-me-

diated apoptosis in the ileum and colon in response to 5-FU treatment. On the other hand, IL-

6 is recognized as an important mediator of gut dysfunction in IBD [45] in concordance with

an increase in IL-6 signaling often observed in the inflamed mucosa of IBD [46]. In fact,

expressions of TNF-α, IL-1β and IL-6 were also found to be increased in response to the 5-FU

treatment, indicating that inflammatory cytokines play a key role in the pathogenesis of muco-

sitis induced by chemotherapy and radiotherapy. Therefore, it is believed that TNF-α, IL-1β
and IL-6 are involved in mucositis and have been the targets of inhibition [4]. Herein, we

showed that TNF-α, IL-1β and IL-6 were significantly increased following 5-FU treatment,

while these increases were attenuated by S. thermophilus ST4 treatment. In combination of

mucositis phenotypes, S. thermophilus ST4 serving as a regimen enables attenuating the sever-

ity of intestinal mucositis induced by 5-FU through the inhibition of pro-inflammatory cyto-

kines expression.

Numerous intestinal diseases are characterized by immune cell activation in association

with the detriment of epithelial barrier function. Based on the model of gastrointestinal muco-

sitis reported by [47], infiltrated phagocytes, such as macrophages and neutrophils, at inflamed

sites, are thought to be responsible for the formation of ROS, which can subsequently alter the

localization of tight junction components such as ZO-1 and occluding [48]. In fact, macro-

phage infiltration is a common feature of inflammation in the chemotherapy-induced intestine

[4]. In consistence with the above, severe damages in small intestine and colon manifested by

villus deformation, loss, and atrophy were accompanied with enhanced macrophage infiltra-

tion in mice by 5-FU treatment. In contrast, S. thermophilus ST4 enables decreasing the infil-

tration of macrophage into distal mucosa and protecting the structural integrity of small

intestine and colon tissue.

SCFAs (short chain fatty acids) can be resulted from bacterial fermentation in the intestine

to provide energy for colonic mucosal epithelial cells and essential for the development and

mediation of the intestinal barrier function [49, 50]. We showed that S. thermophilus ST4 sig-

nificantly increased fecal acetic acid concentration, one of common and functional SCFAs.

Studies have revealed that acetate enables inhibiting fat accumulation in adipose tissue and

then results in suppression of metabolic inflammation via insulin signaling in adipocytes in

rodents [51]. In addition, activation of G-protein-coupled receptor 43 (GPR43) by acetate

markedly protects against gut inflammation in the model of colitis [52]. Reportedly, studies

have observed that Bifidobacteria can protect the host against lethal infection via the produc-

tion of acetate [53]. [54] revealed that acetic acid increased DNA synthesis in a human colonic

epithelial cell line from adenocarcinoma (LS-123 cells) and a non-transformed small intestinal

cell line from germ-free rats (IEC-6 cells).

There are several limitations in this study. One limitation is that we focused on the histologi-

cal effects of small intestines and colon, other parts of the gastrointestinal tract such as stomach
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specimens were not examined. Also this study did not address the possible mechanisms by

which S. thermophilus ST4 might exert their beneficial outcomes to sustain tight junction pro-

teins and transepithelial electrical resistance. These areas should be investigated in the future.

On the other hand, further studies should also focus on the exploration of S. thermophilus
ST4-derived compounds in effect on tight junction expression and intestinal permeability

should be conducted to better elucidate the mechanisms underlying maintenance of intestinal

barrier functions since that we observed a major effect on ameliorating diarrhea in response to

the 5-FU treatment. More clinical works are needed to demonstrate the beneficial effects of S.

thermophilus ST4 in the management of 5-FU-induced intestinal mucositis.

Conclusion

The present work showed that oral administration of probiotic S. thermophilus ST4 enables

attenuating 5-FU-induced intestinal mucositis. The S. thermophilus ST4 markedly improved

the clinical complications such as weight loss, food intake and diarrhea score. Furthermore,

the S. thermophilus ST4 treatment significantly mitigated the histological damage compared to

the 5-FU-induced intestinal mucositis. Similarly, the biochemical changes such as inflamma-

tory cytokines such as TNF-α, IL-1β and IL-6 were markedly alleviated attenuated by the S.

thermophilus ST4 treatment. Furthermore, acetic acid in SCFAs were significantly enhanced

by S. thermophilus ST4. In summary, the present results speculated that the positive effect of S.

thermophilus ST4 is partially if not all attributed by an increase in the content of acetic acid in

correlation with maintenance of inflammatory homeostasis as well as preservation of intestinal

permeability (Fig 5). Based on these findings, our results indicated that oral administration of

probiotic S. thermophilus ST4 can ameliorate 5-FU-induced intestinal mucositis in a mouse

mucositis model. Accordingly, it is of indicative that probiotics may be a potential alternative

therapeutic strategy for the prevention or management of 5-FU-induced intestinal mucositis

in the future. More clinical works are required to demonstrate the beneficial effects of S. ther-
mophilus ST4 and elucidate the correct dosing regimens in the management of 5-FU-induced

intestinal mucositis.

Fig 5. A schematic model for S. thermophilus ST4 attenuating 5-FU-induced intestinal mucositis. Elevation of

SCFAs, for example acetic acid, in intestine enables diminishment of inflammation as well as maintenance of barrier

function in intestine and colon, therefore resulting in increased appetite and in reducing diarrhea in the 5-FU-induced

intestinal mucositis.

https://doi.org/10.1371/journal.pone.0253540.g005
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