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Abstract

Background

Accurate breath detection is essential for the computation of outcomes in the multiple-breath

washout (MBW) technique. This is particularly important in young children, where irregular

breathing is common, and the designation of inspirations and expirations can be

challenging.

Aim

To investigate differences between a commercial and a novel breath-detection algorithm

and to characterize effects on MBW outcomes in children.

Methods

We replicated the signal processing and algorithms used in Spiroware software (v3.3.1, Eco

Medics AG). We developed a novel breath detection algorithm (custom) and compared it to

Spiroware using 2,455 nitrogen (N2) and 325 sulfur hexafluoride (SF6) trials collected in

infants, children, and adolescents.

Results

In 83% of N2 and 32% of SF6 trials, the Spiroware breath detection algorithm rejected

breaths and did not use them for the calculation of MBW outcomes. Our custom breath

detection algorithm determines inspirations and expirations based on flow reversal and cor-

responding CO2 elevations, and uses all breaths for data analysis. In trials with regular tidal

breathing, there were no differences in outcomes between algorithms. However, in 10% of

pre-school children tests the number of breaths detected differed by more than 10% and the

commercial algorithm underestimated the lung clearance index by up to 21%.
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Conclusion

Accurate breath detection is challenging in young children. As the MBW technique relies on

the cumulative analysis of all washout breaths, the rejection of breaths should be limited.

We provide an improved algorithm that accurately detects breaths based on both flow rever-

sal and CO2 concentration.

Introduction

Over recent years, the multiple-breath washout (MBW) technique has emerged as a sensitive

method to identify and monitor early changes in ventilation inhomogeneity, particularly in

children with cystic fibrosis (CF) [1]. During tidal breathing, the MBW test assesses ventilation

distribution and lung volumes by the washout of an inert tracer gas (suflur hexafluoride or

nitrogen) from the lungs [2]. Its primary outcome, the lung clearance index (LCI), is sensitive

to changes in clinical status of patients with CF (e.g. lower respiratory tract infections or pul-

monary exacerbations) [3–5] and is associated with the extent of structural lung disease on

chest CT and ventilation or perfusion impairment on functional MRI [6, 7].

Accurate breath detection (i.e., deciding where an inspiration ends and the consecutive

expiration begins and vice versa) is essential for the MBW technique, as the computation of

the main outcomes (functional residual capacity (FRC) and LCI) requires end-tidal tracer-gas

concentrations [8]. Adults are generally able to perform relaxed or fixed volume tidal breath-

ing during the test and automated breath-detection algorithms can accurately detect breath

starts and ends. In young children, however, irregular breathing with pauses, variable respira-

tory flows, and low respiratory volumes is common [9]. Irregular breathing patterns can chal-

lenge automated breath-detection algorithms, because the analysis of flow and additional

signals (e.g. carbon dioxide) depends on predetermined thresholds [10]. It is also challenging

for users to assess quality and interpret the results from these tests [11].

Recent ATS/ERS statements emphasize the importance of regular tidal volume (VT), stable

end-expiratory lung volume (EELV), and importantly, the transparency of breath detection

algorithms to the operator [8, 9]. However, breath-detection algorithms in commercially avail-

able devices (e.g. Exhalyzer D/Spiroware setup, Eco Medics AG, Duernten, Switzerland) are

not well documented or described in the operators manual [12], and it remains unclear why

certain breaths are rejected from the analysis.

In this study, we aimed to i) investigate the breath detection algorithm used in the Exhalyzer

D MBW system with cross-sensitivity error corrected analysis software (Spiroware1 3.3.1), the

most commonly used nitrogen MBW device used in clinical trials, ii) develop a novel algo-

rithm for automated breath detection based on flow and CO2 signals, and iii) compare the

algorithm used in the commercial software and a recently proposed alternative to our custom

algorithm.

Methods

Study design and population

This was a retrospective observational study on breath-detection algorithms to detect breath

ends in MBW measurements. We included paediatric MBW data from healthy infants (Basel-

Bern Infant Lung Development (BILD) cohort [13]), and patients diagnosed with CF from

infancy to adolescence attending their regular 3-monthly outpatient clinic [14] or study visits
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[15] (Swiss Cystic Fibrosis Infant Lung Development (SCILD) cohort). The Ethics Committee

of the Canton of Bern, Switzerland approved the study protocol (B2019-01072, PB_2017–

02139) and parents gave written consent. We included raw MBW data (2699 trials) from 1045

test occasions in Bern between January 2014 and September 2020. Study participants were cat-

egorized in age groups as infants (0 to 2 years), pre-school age (>2 to 6 years), school age (>6

to 11 years) or adolescents (>12 years; Table 1 and S1 Fig).

Data analysis

Raw data consisted of Spiroware A-Files, which are text files that contain raw flow, oxygen

(O2), carbon dioxide (CO2) and molar mass (MM) signals sampled at 200 Hz. Data were gath-

ered using a mainstream ultrasonic flowmeter (Exhalyzer D, Spiroware, Eco Medics AG,

Duernten, Switzerland) according to current consensus guidelines and quality controlled as

described previously [11, 14, 16].

We developed LungSim 1.01, a custom Python script, to replicate the signal processing and

outcome calculation of MBW trials used in Spiroware analysis software (v3.3.1, Eco Medics

AG, Duernten, Switzerland) [17]. LungSim enabled us to perform all signal processing steps as

previously described [16] (e.g. ambient temperature and pressure (ATP) correction, dynamic

delay correction, body temperature, pressure, saturated with water vapor (BTPS) correction,

filtering, cross-talk correction, breath detection, and drift correction) with individual breath

detection algorithms and subsequent computation of breath tables and MBW outcomes. A

detailed summary of the agreement between Spiroware and LungSim is provided in the

S1 File.

Breath detection algorithms

I. Spiroware 3.3.1 (SPW; reference standard)

Zero-crossings in the mainstream flow signal are defined as a time interval where the airflow

changes its direction (from plus to minus for inspirations or vice versa for expirations). These

flow changes are numbered from 1 to N, with N being the total number of zero-crossings in a

MBW trial. The volume of each inspiration and expiration is calculated by integration of the

flow curve over the corresponding time between zero crossings. Next, a set of conditions are

applied under which raw data might be rejected: First, MBW trials always start with a valid

inspiration (insp) followed by a valid expiration (exp) where “valid” is defined by a minimal

volume criterion (stored in the A-File header as variable “VS”). Second, a breath always starts

with a valid inspiration and ends with a valid expiration, applying specific principles. For an

interval of:

Table 1. Study population characteristics. Displayed as mean (SD) if not indicated otherwise. A-Files are text files that contain raw data on flow, oxygen, carbon dioxide,

and molar mass signals of a multiple-breath washout test. Age on test date as mean (min; max), total breaths detected by Spiroware 3.3.1 (min; max).

Infancy Pre-school School-age Adolescence

Subjects (female) [n] 82 (41) 11 (3) 31 (12) 23 (9)

Visits [n] 100 96 395 453

A-Files [n] 319 240 1041 1093

Age [years] 0.4 (0.1; 1.3) 5.2 (4.0; 6.0) 9.0 (6.0; 12.0) 14.6 (12.0; 18.8)

Weight [kg] 5.9 (2.3) 19.1 (2.0) 28.1 (6.1) 49.2 (10.4)

Height [cm] 61.2 (9.6) 111.5 (4.4) 131.5 (10.0) 157.9 (11.6)

Total breaths detected [min; max] 54; 232 21; 101 20; 228 16; 232

https://doi.org/10.1371/journal.pone.0275866.t001
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i. Expiration, invalid breathing, expiration: the invalid breathing is kept and classified as

one inspiration (regardless of whether there are one or more zero crossings between the

two valid expirations).

ii. Inspiration, invalid breathing, inspiration: the invalid breathing as well as the initial valid

inspiration are rejected.

iii. Expiration, invalid breathing, inspiration: the invalid breathing is discarded.

iv. Inspiration, invalid breathing, expiration: the invalid breathing is discarded.

Data within discarded breaths is deleted from the signals, and not taken into account

for outcome computation (Fig 1).

II. Custom

Based on previously proposed algorithms, we developed a custom breath detection algorithm

[10, 18]. Similar to Spiroware, zero-crossings in the mainstream flow signal are detected, num-

bered, and the corresponding CO2 concentration is calculated. Valid expirations start with a

CO2 concentration close to zero, and end with one above a threshold of 2%. Based on this

assumption, breaths are identified using the synchronized CO2-signal:

i. For expirations: in a sequence of zero-crossings which all have a CO2 concentration

below the threshold of 2%, and which is followed by a zero-crossing with a CO2-concen-

tration above 2%, only the last zero-crossing below 2% is identified as a valid start to an

expiration.

ii. For inspirations: in a sequence of zero-crossings with CO2 concentrations above 2%, fol-

lowed by a zero-crossing below 2%, only the last zero-crossing above 2% is identified as a

valid start to an inspiration.

While the custom and the recently described Horáček breath detection algorithm both rely on

the analysis of flow and corresponding CO2 concentrations, the custom algorithm i) does not

include a lower threshold for CO2, ii) does not include any threshold for the volume ratio

(Vinsp / Vexp) between two intervals, and iii) does not rely on thresholds for the flow signal.

Comparison of algorithms

Raw data was analyzed in LungSim:

1. with the Spiroware breath detection algorithm (SPW)

2. with our custom breath detection algorithm (custom)

3. with a previously published Horáček breath detection algorithm (HOR) (details provided

in the S1 File).

Statistical analysis

Primary outcomes were differences in the total number of detected breaths and resulting dif-

ferences in main MBW outcomes (cumulative expired volume (CEV), functional residual

capacity (FRC), and lung clearance index (LCI)) between breath detection algorithms. Differ-

ences were characterized using paired t-tests. Intergroup differences were compared using

unpaired t-tests. Statistical analysis was performed using STATA 16.1 (StataCorp, College Sta-

tion, USA) and GraphPad Prism 8 (GraphPad Software, San Diego, USA). A p�0.05 was con-

sidered significant.
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Fig 1. Invalid breathing as detected by Spiroware analysis software. Shown are flow and carbon dioxide traces of intervals of inspirations, expirations, and

invalid breathing before re-classification (A) or rejection (B, C, D). The shaded areas indicate reclassified intervals. Blue area: expiration; red area: invalid

breathing; green area: inspiration.

https://doi.org/10.1371/journal.pone.0275866.g001
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Results

Agreement between the Spiroware and custom breath-detection algorithm

There was a systematic difference in the number of total breaths detected for both the N2 and

SF6 trials between the Spiroware and custom breath-detection algorithm. The majority of trials

(81%) differed by two breaths (mean (SD) 1.8 (1.6) breaths, p<0.001), with Spiroware detect-

ing more breaths than the custom algorithm in 98% of trials. The maximum difference in

breaths detected between the Spiroware and custom algorithms was -22.6% (19 breaths out of

84 detected by Spiroware) in a N2-MBW trial and -20.6% (33 breaths out of 160 detected by

Spiroware) in a SF6-MBW trial.

In trials with regular tidal breathing (e.g. infant MBW measurements), there were no con-

siderable differences in outcomes (LCI, FRC, CEV) between the Spiroware and custom

breath-detection algorithms. However, in 10% of pre-school and 6% of school-aged children,

the number of breaths detected differed by more than 10% (Fig 2) with the commercial Spiro-

ware software reporting on average more breaths. These differences in breaths caused a statis-

tically significant increase in lung clearance index in pre-school (mean (SD) 3.1 (4.7) %;

p = 0.007) and school aged children (mean (SD) 3.9 (8.0) %; p = 0.0003; Table 2 and Fig 3)

when using the custom algorithm. As infants (at 6 weeks and 1 year of age) perform the test

during sleep, there were only four measurements (1.2%) with a relevant difference in main

MBW outcomes.

Rejected raw data in Spiroware

In 1960/2374 (82.6%) N2-MBW and 103/319 (32.3%) SF6-MBW trials, the commercial Spiro-

ware breath detection algorithm rejected parts of tidal breaths and did not use them for the cal-

culation of MBW outcomes (incomplete breaths before the first valid inspiration and after the

Fig 2. Relative difference [%] in total breaths detected. Comparison of the Spiroware and custom breath-dection algorithms by age group.

https://doi.org/10.1371/journal.pone.0275866.g002
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last valid expiration are not considered in this analysis). While rejected parts of breaths and

reclassified zero crossings resulted in a loss of raw data, the underlying conditions of the Spiro-

ware algorithm resulted in a greater number of total breaths. On average, we found three or

more occurrences per N2-MBW trial where data between expirations and inspirations (63.4%)

or inspirations and expirations (52.5%) were discarded (Table 3). There were also discarded

sections between two expirations or two inspirations in 38.3% and 25.9% of N2-MBW trials,

respectively. We found considerably fewer rejections among infant SF6-MBW data (Table 3).

Raw data rejection had a substantial effect on LCI. For data rejected between an expiration

and an inspiration, LCI differed by mean (SD) 0.7 (2.5) TO (p<0.001) and for data rejected

between an inspiration and an expiration, the LCI differed by 0.8 (2.9) TO (p<0.001).

Agreement between the Horáček and custom breath-detection algorithm

In contrast to the comparison of the commercial Spiroware and custom breath-detection algo-

rithms, the Horáček and custom algorithms obtained almost similar breath counts (mean (SD)

0.7 (0.9) breaths, p<0.001; S2 Fig) and this difference had minimal effects on MBW outcomes

(S2 Table). Compared to the custom algorithm, we found that the discrimination between

inspiration and expiration in the Horáček algorithm was at times inaccurate (S3 Fig).

Discussion

The objective of this study was to investigate differences between a commercial and novel

breath-detection algorithm and to characterize effects on MBW outcomes in children. We

report considerable differences in MBW breath numbers between algorithms in preschool and

school-age children with irregular breathing patterns. This led to an underestimation of venti-

lation inhomogeneity outcomes by the Spiroware algorithm, and depending on the child’s age

and breathing pattern, the LCI changed by up to 1.7 TO (21%) in preschool and 4.7 TO (58%)

in school-age children. There were no significant differences in breath number or MBW out-

comes in sleeping infants or older children with more regular tidal breathing. The Spiroware

breath-detection algorithm rejected raw data and/or re-classified zero-crossings so that while

raw data was rejected, a greater number of breaths was reported.

Table 2. Impact of breath-detection algorithms on main MBW outcomes. Relative difference (Spiroware–custom; mild (<5%), moderate (5 to 10%), high (>10%)) in

main MBW outcomes (LCI, FRC, CEV) by age group (infants (0 to 2 years), pre-school age (>2 to 6 years), school age (>6 to 11 years), adolescents (>12 years)). Abbrevia-

tions: LCI2.5%: lung clearance index; FRC: functional residual capacity; CEV: cumulative expired volume.

Age group Difference in breaths Difference in LCI2.5% [%] Difference in FRC [%] Difference in CEV [%]

n n% mean SD min max mean SD min max mean SD min max

Infancy mild 312 97.8 0.0 0.2 -3.8 0.0 0.0 0.2 -0.1 3.6 0.0 0.0 -0.1 0.3

moderate 3 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

high 4 1.3 -3.0 1.0 -4.0 -1.8 0.0 0.1 -0.2 0.2 0.3 0.1 0.2 0.4

Pre-school mild 149 62.1 -0.5 2.4 -24.3 2.0 0.3 1.7 -2.5 20.3 -0.1 1.5 -15.3 0.8

moderate 68 28.3 -1.1 1.7 -8.8 1.3 0.1 1.3 -3.4 4.6 -0.2 1.9 -8.7 4.2

high 23 9.6 -3.1 4.7 -21.0 0.8 -0.2 1.5 -4.1 1.6 -0.9 4.6 -19.2 2.8

School age mild 746 71.7 -0.2 1.8 -23.0 31.4 0.0 0.6 -6.7 6.9 -0.1 2.1 -30.7 36.0

moderate 230 22.1 -0.8 3.0 -22.5 10.6 0.0 0.8 -6.8 3.4 -0.2 3.5 -28.0 13.2

high 65 6.2 -3.9 8.0 -57.6 0.9 -0.5 2.1 -13.1 2.9 -3.0 10.6 -77.8 3.6

Adolescence mild 974 89.1 -0.1 0.8 -16.7 8.4 0.0 0.2 -2.5 3.1 0.0 0.8 -18.8 8.0

moderate 106 9.7 -0.6 2.0 -18.9 0.9 -0.1 0.6 -3.3 1.4 -0.4 2.3 -21.0 0.9

high 13 1.2 -2.4 4.8 -17.6 0.0 -0.2 0.5 -1.5 0.8 -1.7 5.0 -16.8 0.9

https://doi.org/10.1371/journal.pone.0275866.t002
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Fig 3. Bland-Altman plots of absolute difference between the commercial and custom breath detection algorithm. Shown are absolute

differences in main MBW outcomes (FRC, CEV, LCI) for pre-school and school-age subjects with a difference in total breaths detected

>10%. Abbreviations: FRC: functional residual capacity; CEV: cumulative expired volume; LCI: lung clearance index.

https://doi.org/10.1371/journal.pone.0275866.g003
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We developed a custom breath detection algorithm for MBW measurements and tested it

on a large dataset consisting of both nitrogen and sulfur hexafluoride MBW measurements

across the entire paediatric age range. Our algorithm requires synchronized flow and carbon

dioxide signals, and expirations are identified by increasing concentrations of measured CO2

above a threshold of 2% at the sensor. In regular tidal breathing, a breath-end corresponds to

the time point when the flow changes its direction from negative to positive. However, variable

and irregular breathing patterns may cause many zero crossings in the flow signal without

actual gas exchange happening. The addition of a minimum volume criterion (for the volume

of inspirations and expirations) has the potential to determine appropriate intervals for zero

crossings but relies on pre-defined volume thresholds. However, an increase or peak in the

synchronized CO2 signal enables the identification of expirations independent of additional

(e.g. body-weight related) thresholds. Thus, the two components i) flow reversal, and ii) pres-

ence of CO2 enable a simple and reliable identification of inspirations and expirations.

Previous breath detection algorithms that made use of the CO2 concentration were

designed for the bedside analysis of breathing patterns of patients receiving intensive care [18],

the surveillance of obstructive sleep apnoea patients equipped with continuous positive airway

pressure (CPAP) facemasks [19], and recently the analysis of distorted breathing patterns in

MBW measurements [10]. The algorithm developed by Brunner et al. in 1985 did not include

a minimum volume criterion and had fixed CO2 cutoffs of zero percent during inspirations

and above zero percent during expirations [18]. However, during the prephase of MBW mea-

surements (before the start of the washout), the subject breathes ambient room air where dur-

ing inspiration an atmospheric CO2 concentration of 0.04% can be expected [20]. In addition,

even slight delays in signal synchronization may influence the CO2 concentration to an extent

where zero percent may not be reached [8]. During expirations, the CO2 concentration should

reach 2% or more as an accumulation of CO2 may cause hypercapnia [21]. Therefore, we

applied a single threshold of 2% to discriminate between inspirations and expirations.

The algorithm described by Horáček et al. improved the thresholds for CO2 (>2% for expi-

rations and<0.5% for inspirations) and added a volume ratio as well as grouping of zero

crossings [10]. However, we found that the discrimination between inspiration and expiration

was at times inaccurate, most likely due to the mandatory volume ratio. A complete compari-

son between the Horáček and custom breath-detection algorithms is provided in the S1 File.

To the best of our knowledge, this is the first study to describe and characterize the rejection

of raw MBW data by breath detection algorithms during the cumulative analysis of MBW out-

comes. While our custom breath detection algorithm does not exclude raw data (segments of

discarded zero crossings are added to the previous interval), the Spiroware algorithm rejects

raw data, which in some cases even results in additional breaths (e.g. case 1 (exp, invalid

breathing, exp) where the invalid breathing is kept and re-classified as an inspiration). This

finding raises the important question of which MBW results should be calculated based on all

Table 3. Rejected data by Spiroware software. Occurrence: number of rejected sections per trial; zero crossings: number of affected zero crossings per trial; exp: expira-

tion; insp: inspiration.

N2 SF6

Occurence Zero crossings Occurence Zero crossings

Case n % mean SD max n % mean SD max

exp, invalid breathing, exp 910 38.3 3.8 4.9 45 39 12.2 8.0 14.2 77

insp, invalid breathing, insp 616 25.9 3.5 4.7 49 47 14.7 3.9 8.6 59

exp, invalid breathing, insp 1506 63.4 9.5 11.6 106 31 9.7 7.0 8.1 30

insp, invalid breathing, exp 1247 52.5 9.2 12.3 134 40 12.5 6.2 5.9 28

Total 1960 82.6 103 32.2

https://doi.org/10.1371/journal.pone.0275866.t003
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breaths and which require additional criteria or selection. As recommended [8], indices of

ventilation distribution should be based on all points of the washout curve (as these are less

susceptible to measurement error than a single time point), and there should ideally be no data

rejection during the critical period (10 breaths before achieving equilibrium and troughout the

washout) that is used for the cumulative analysis (e.g., CEV, FRC, and LCI). However, tidal

breathing parameters and indices based on single breaths (e.g. single breath washout or volu-

metric capnography) are less prone to error by breath detection algorithms as their analysis

does not rely on the change of multiple signals over time [2].

There are very limited data on breath detection algorithms used in commercial MBW analysis

software and their effect on MBW outcomes. While previous studies compared new algorithms to

human experts as a reference, it was also reported that the experts themselves did not achieve

identical breath counts [10, 18]. We therefore compared our custom breath detection algorithm

on over 168,500 breaths with the built in Spiroware algorithm which is already in widespread use.

Over the years, the MBW technique has undergone continuous development which

resulted in improved data analysis, updated analysis software and consequently changes in

MBW outcomes. We recently identified and characterized a substantial sensor-crosstalk error

in the Exhalyzer D device (Eco Medics AG, Duernten, Switzerland) that causes an overestima-

tion of expired tracer gas concentrations, and consequently MBW outcomes [17]. A correction

for this error was developed in collaboration with the manufacturer and is now available as a

software update (Spiroware 3.3.1, Eco Medics AG, Duernten, Switzerland). In this study, we

show that also breath detection algorithms can influence MBW outcomes significantly.

Depending on the child’s age and breathing pattern, the LCI changed by up to 21% in pre-

school and 58% in school-age children, thus exceeding the recently proposed threshold

between test occasions of 15% for preschool children during a period when spirometry may

not yet be reliably performed or when FEV1 may still be normal [22]. Manufacturers should

ensure that the underlying signal processing (including breath detection algorithms) is accu-

rate and provide transparency relating to any deletion of raw data.

Our study represents a comprehensive examination of breath detection algorithms and

their effects on MBW outcomes. We developed a novel breath detection algorithm as a possi-

ble alternative to current algorithms which reject data from the cumulative analysis of nitrogen

and sulfur hexafluoride washouts or misinterpret inspirations and expirations. We did not per-

form a comparison to human experts as previous studies repeatedly reported a lack of agree-

ment between examiners and subsequently between examiners and computerized algorithms

[10, 19]. Further, we focused our analysis to MBW data gathered with the most common setup

for nitrogen MBW in clinical trials (Exalyzer D/Spiroware setup), and therefore the results

may not be generalizable to other devices.

The identification of breath ends and the discrimination between inspirations and expira-

tions remains a challenging task, especially in measurements with irregular breathing. How-

ever, the analysis of MBW outcomes relies on the cumulative analysis of all washout breaths

and the rejection of breaths should be limited. In an era where manufacturers develop devices

for a variety of pulmonary function tests, breath detection algorithms based on flow reversal

and the presence of CO2 could be used as an alternative to current methods.

Conclusion

Accurate breath detection is challenging in young children. As the MBW technique relies on

the cumulative analysis of all washout breaths, the rejection of breaths should be limited.

Breath detection algorithms based on flow reversal and presence of CO2 could be used as an

alternative to current methods.
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