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SUMMARY

Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor 

mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study 

actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, 

including those that are dependent on sarcomere assembly. We confirm 19 known interactors and 

identify a network of RNA-binding proteins, including those with RNA localization functions. In 
vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain 

transcripts to actinin neighborhoods through interactions between its K homology (KH) domain 

and actinin’s rod domain. We combine alanine scanning mutagenesis and metabolic assays to 

disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role 

in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy 

model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction 

partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to 

human disease.
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Ladha et al. combine BioID, human cardiomyocytes, and CRISPR-Cas9 to interrogate the actinin 

interactome. This reveals 324 actinin proximity partners, including RNA-binding proteins that 

bind transcripts encoding ETC functional components. Among these RNA-binding proteins, 

IGF2BP2 directly binds actinin, and actinin-IGF2BP2 interactions regulate ETC transcript 

localization and metabolic adaptation to sarcomere function.

Graphical Abstract

INTRODUCTION

Actinin proteins are ubiquitous spectrin family members that cross-link actin and are 

important for myriad cell functions, including adhesion, migration, contraction, and 

signaling (Liem, 2016). The four human actinin isoforms have distinct expression profiles 

(non-muscle ACTN1 and ACTN4, cardiac muscle ACTN2, and skeletal muscle ACTN3) but 

share homologous amino acid sequences that are organized into three structural domains: 

an actin-binding (AB) domain composed of two calponin-homology domains, a central 

rod domain containing four spectrin-like repeats (SRs), and a calmodulin-like domain 

(CaM) (Ribeiro et al., 2014). While it is thought that actinin evolved initially to regulate 

the early eukaryotic actin-based cytoskeleton (Virel and Backman, 2004), it has acquired 

more elaborate functions in vertebrates, including a mechanical role in the sarcomere, a 

specialized contractile system required for striated muscle function (Murphy and Young, 

2015; Virel and Backman, 2004). Moreover, normal actinin function is important for 
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multiple human organ systems as inheritance of ACTN1, ACTN2, and ACTN4 mutations 

have also been linked to congenital macrothrombocytopenia, hypertrophic cardiomyopathy 

(HCM), and focal segmental glomerulosclerosis of the kidney, respectively (Chiu et al., 

2010; Kaplan et al., 2000; Kunishima et al., 2013).

In the cardiac sarcomere, alpha-actinin-2 (referred henceforth as actinin) is a major 

structural component of the Z-disk, where it is essential for sarcomere assembly and 

function (Chopra et al., 2018). Actinin regulates sarcomere assembly by providing a scaffold 

for protein-protein interactions (PPIs) such as with titin (TTN) and actin through CaM 

and AB domains, respectively (Chopra et al., 2018; Grison et al., 2017; Schultheiss et al., 

1992). Secondary to these interactions, the thin and thick filament sarcomere structures are 

organized to promote twitch contraction. It has also been observed that while the Z-disk 

is one of the stiffest sarcomere structures, actinin demonstrates remarkably dynamic and 

complex molecular interactions (such as with the actin cytoskeleton) that are necessary for 

normal myocyte function (Sanger and Sanger, 2008). Moreover, actinin interaction partners 

have also been described to exit the sarcomere to execute critical roles in cell signaling, 

protein homeostasis, and transcriptional regulation (Lange et al., 2006). Secondary to the 

vast repertoire and dynamics of actinin molecular interactions, there remain extensive gaps 

in our knowledge of not only how actinin regulates sarcomere assembly and function but 

also within other cellular contexts enriched for actinin expression such as at focal adhesions 

in both striated and non-striated cells that may inform how actinin mutations cause human 

disease (Djinovic-Carugo et al., 2002; Foley and Young, 2014).

Here, we studied the actinin proximity interactome in CRISPR-engineered human 

cardiomyocytes using proximity-dependent biotinylation (BioID) (Roux et al., 2012). Our 

study employs induced pluripotent stem cell cardiomyocytes (iPSC-CMs) differentiated 

from human iPSCs that express actinin fused to the promiscuous biotinylating enzyme 

BirA* from the endogenous ACTN2 locus to provide physiological actinin expression 

levels and regulation. We identify 324 actinin proximity partners, including those that 

are dynamically regulated by sarcomere assembly, to reveal molecular insights into this 

process. Our study uncovers actinin interaction partners, including the RNA-binding protein 

IGF2BP2, which we observe to function in electron transport chain (ETC) transcript 

localization to actinin neighborhoods. Disruption of actinin-IGF2BP2 interactions revealed 

an essential role in metabolic adaptation to pathological sarcomere activation induced by an 

HCM mutation. Our study also provides a compendium of proteins that can be studied to 

reveal insights into sarcomere dynamics and other actinin functions.

RESULTS

BioID to identify actinin proximity partners through sarcomere assembly

Actinin is an integral member of the actin cytoskeleton, where it interacts within 

multiprotein complexes such as Z-disks and focal adhesions (Figure 1A). To study actinin 

interactions, we utilized BioID (Gingras et al., 2019), which is a proximity-dependent 

tagging method using BirA*, a modified version of E. coli BirA that exhibits promiscuous 

lysine biotinylation within a 10 nm radius of expression (Figure 1B; Kim et al., 2014). Using 

CRISPR, we fused BirA* with a hemagglutinin (HA) tag to the C terminus of endogenous 
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ACTN2 (Actinin-BirA*) in a human iPSC line (Figure S1A). Following differentiation to 

iPSC-CMs, expression levels of Actinin-BirA* fusion protein was similar to unmodified 

control iPSC-CMs that do no express Actinin-BirA* (non-BirA*) (Figure 1C). To verify that 

Actinin-BirA* functioned similarly to unmodified actinin, we utilized a cardiac microtissue 

(CMT) assay previously applied to study sarcomere mutations that cause heart failure 

(Cohn et al., 2019; Hinson et al., 2015). CMT twitch force was unaltered by Actinin­

BirA* expression (Figure 1D; Video S1). We next verified localization of Actinin-BirA* 

to the Z-disk by both colocalization immunofluorescence (Figures 1E and S1B) and HA 

immunoprecipitation (Figure S1C) that demonstrated Actinin-BirA* pulled down with the 

Z-disk protein TCAP (Hayashi et al., 2004), but not the M-line protein myomesin (Auerbach 

et al., 1999). We observed that 50 μM biotin supplementation provided strong biotinylation 

signal in lysates obtained from Actinin-BirA* cells (Figures 1F and S1D), and biotinylated 

targets overlapped actinin (Figure 1E). Finally, we observed negligible biotinylation in 

biotin-pulsed wild-type (WT) control iPSC-CMs that do not express BirA* (Figure 1G).

To identify actinin proximity partners, we subjected both biotin-pulsed Actinin-BirA* 

and control non-BirA* iPSC-CM lysates to streptavidin immunoprecipitation followed by 

tandem mass tag (TMT) quantitative proteomics (Table S1). Analysis of Actinin-BirA* 

versus control non-BirA* samples identified enrichment of 324 actinin proximity partners 

(log2 fold change [L2FC] ≥ 1 and false discovery rate [FDR] < 0.05; Figure 1H; Table 

S1). We confirmed 38% of previously known actinin interactors using Search Tool for 

the Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et al., 2019; Figure 1I). 

Gene Ontology (GO) analysis of interactors revealed functions in cell adhesion, anchoring 

junction, actin cytoskeleton, contractile fiber, and RNA binding (Figure 1J; Table S1).

Z-disks develop from punctate Z-body precursors (Du et al., 2003), but the actinin 

interactions underlying this process are incompletely understood. To identify actinin 

neighborhoods underlying this transition, into Actinin-BirA* iPSCs, we knocked out cardiac 

troponin T (cTnT-KO; Figure S1E), because cTnT-KO iPSC-CMs assembly only Z-bodies 

unless cTnT is reintroduced by lentiviral transduction as described previously (Pettinato et 

al., 2020). After confirming that biotin-pulsed cTnT-KO and cTnT-WT iPSC-CMs exhibited 

the expected biotinylation of proteins overlapping Z-body and Z-disk structures (Figure 

S1F), respectively, we then performed TMT (Figure S1G; Table S1). We identified 24 

actinin neighborhood proteins that were exclusively enriched in the Z-disk stage (L2FC 

≥ 1 and FDR < 0.05; Table S1), which were significant for GO terms, including RNA 

binding, anchoring junction, and cadherin binding (Figure S1I; Table S1). Only SPHKAP, a 

membrane-anchoring protein associated with heart failure (Aye et al., 2012), was exclusive 

to Z-bodies. In addition, we identified 47 proteins that were more highly enriched in Z-disk 

relative to Z-body stages as defined by relative abundancies in cTnT-WT compared to cTnT­

KO samples (L2FC ≥ 1 and FDR < 0.05; Table S1), which were enriched for GO terms, 

including contractile fiber and actin cytoskeleton (Figure S1J; Table S1). Among the 47 

(Figure S1K), we observed that a muscle myosin (MYH7), as previously described (Rode et 

al., 2016), was one of the most highly enriched proteins in Z-disk relative to Z-body stages 

(Figure S1K), while non-muscle myosin (MYH10) was similar in both stages. In addition, 

we also identified enrichment of other late-assembling proteins, including TCAP and CSRP3 

(White et al., 2014). The most enriched sarcomere assembly partner was SYNPO2L, a 
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known binding partner of actinin that is critical to heart and skeletal muscle development 

(Beqqali et al., 2010). Taken together, we identified actinin interactomes through Z-body and 

Z-disk stages, including stage-specific RNA-binding proteins and stage-enriched myosins 

and late-assembling proteins.

We next focused our analysis on RNA-binding proteins in proximity to actinin, as these 

factors were identified in Z-disks (Figure S1I) and have been less studied relative to actin 

cytoskeletal and sarcomere interactors. Using GO analysis, our study identified 99 proteins 

with general RNA-binding functions (Figure 1J), including those with subfunctions in 

ribosomal assembly, transcription/translation, and RNA metabolism (Figure 1K). Proteins 

involved in RNA metabolism include regulators of RNA splicing, localization, stability, and 

translation (Van Nostrand et al., 2020). Except for SRSF1, which has been implicated in 

cardiac electrophysiology, and PCBP2, which has been implicated in hypertrophic signaling 

(Xu et al., 2005; Zhang et al., 2015), the cardiac functions of many of these proteins are 

unknown. Overall, our BioID study reveals a compendium of actinin interaction partners 

within cardiomyocytes through sarcomere assembly including a network of RNA-binding 

proteins with diverse functions including RNA localization.

Identification of transcripts bound to RNA-binding proteins in actinin neighborhoods

To reveal functional insights into actinin interactions with RNA-binding proteins, we next 

sought to identify gene transcripts bound to RNA-binding proteins in actinin neighborhoods. 

To do this, we performed RNA immunoprecipitation followed by sequencing (RIP-seq) 

(Tenenbaum et al., 2000) using streptavidin affinity purification to pull down RNA-binding 

proteins that were biotinylated because they were localized within ~10 nm of Actinin-BirA* 

(Figure 2A). Principal-component analysis (PCA) demonstrated clustering of Actinin-BirA* 

transcripts compared to non-BirA* controls (Figure 2B), and differential expression analysis 

identified 945 transcripts bound to biotinylated RNA-binding proteins (Table S2). GO 

analysis (Figure 2C) revealed enrichment of ETC and ribosome transcripts (Figures 2D 

and S2A). In contrast, we observed no enrichment for glycolysis transcripts (Figures 2E and 

S2B). 1,113 transcripts were depleted and clustered into GO terms for chromatin and nuclear 

functions (Figure 2C). Cytoskeletal transcripts, including those encoding thin and thick 

filament sarcomere proteins, were also depleted (Figures 2F and S2C). In summary, RIP-seq 

demonstrated that RNA-binding proteins that were in actinin neighborhoods bind specific 

ETC and ribosome transcripts, which provided preliminary evidence that these interactions 

could be important for metabolic and translational functions, respectively.

Following qPCR validation of ETC transcript enrichment identified by RIP-seq (Figure 2G), 

we performed RNA fluorescence in situ hybridization (RNA FISH) with Imaris distance 

quantification (Figure S2D) to validate actinin neighborhood transcripts. We first conducted 

a control RNA FISH experiment excluding only the RNA probe to verify specificity of 

the RNA FISH signals (Figure S2E). Next, we found that RNA puncta encoding ETC 

component NDUFA1 were more likely to be localized near actinin protein relative to the 

sarcomere thick filament transcript TTN that served as a control because it was not RIP-seq 

enriched (Figures 2H, 2J, and S2J). Over 50% of NDUFA1 puncta overlapped actinin, 

but almost no puncta were greater than 1 μm from actinin. We confirmed specificity of 
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the NDUFA1 probe by using small hairpin RNA (shRNA) to knock down NDUFA1 in 

iPSC-CMs, which demonstrated a reduction in NDUFA1 mRNA levels and RNA FISH 

puncta (Figures S2F–S2H). Similar to NDUFA1, we also confirmed actinin proximity 

for NDUFA8 transcripts (Figures 2I and 2J). We next assessed colocalization between 

NDUFA1 and NDUFA8 transcripts, which could reflect potential ETC transcript storage or 

processing mechanisms. While both NDUFA1 and NDUFA8 transcripts localized in actinin 

neighborhoods, they did not overlap each other (Figure S2I). Finally, we confirmed that 

two transcripts that were depleted by RIP-seq analysis, H1 family linker histone HIST1H1E 
and sarcoplasmic reticulum protein HRC, were not associated with actinin neighborhoods 

(Figures 2J, S2K, and S2L). Together, these data validate our RIP-seq study and confirm that 

specific ETC transcripts are localized in actinin neighborhoods.

Fine mapping actinin interactions with the RNA-binding protein IGF2BP2

Informed by RIP-seq results that demonstrated ETC transcripts within actinin 

neighborhoods, we searched for RNA-binding proteins that could regulate this localization. 

We focused on candidate RNA-binding proteins with previously known metabolic functions, 

including IGF2BP2 (Saxena et al., 2007), PCBP1 (Ryu et al., 2017), PCBP2 (Frey et al., 

2014), and SERBP1 (Muto et al., 2018; Figure 1K). After confirming actinin proximity for 

the four hits using streptavidin affinity purification followed by immunoblotting in iPSC-CM 

lysates (Figure 3A), we confirmed that actinin interacts directly or within a complex with 

three of the hits, including IGF2BP2, PCBP1, and PCBP2, using co-immunoprecipitation 

of Actinin-BirA* itself using an HA epitope antibody followed by hit-specific antibodies 

(Figure 3B). Only SERBP1 did not co-immunoprecipitate with actinin, which suggested 

a more complex interaction mechanism. We also studied the type of interaction between 

actinin and IGF2BP2, PCBP1, PCPB2, and SERBP1 using luciferase-based mammalian 

2-hybrid (M2H) assays in HEK293T cells. We began by constructing expression vectors 

encoding full-length or previously identified structural domains of actinin and the four 

RNA-binding proteins. M2H using IGF2BP2 as “prey” and full-length actinin as “bait” 

resulted in luciferase activation, but not for PCBP1, PCBP2 or SERBP1 (Figure 3C). In 

addition, we observed colocalization of IGF2BP2 with actinin by immunofluorescence at a 

subset of iPSC-CM Z-disks (Figure 3D). Taken together, these studies demonstrated four 

candidate RNA-binding proteins in actinin neighborhoods, including IGF2BP2, that directly 

interact with actinin and localize to Z-disks.

Using M2H, we then fine mapped the IGF2BP2-actinin interaction to IGF2BP2’s K 

homology (KH) domain, but not its RNA recognition motif (RRM) (Figure 3E), and 

IGF2BP2’s actinin-binding site to actinin’s rod domain, but not its AB or CaM domains 

(Figure 3F). As actinin’s rod domain consists of four SRs (Figure 3F; Ribeiro et al., 2014), 

we additionally studied single SR deletion constructs, which confirmed that both SR2 and 

SR3 were required for actinin-IGF2BP2 interactions, but not SR1 or SR4 (Figure 3G). To 

fine map the interaction between SR2 and SR3 with IGF2BP2, we utilized alanine scanning 

(Weiss et al., 2000), as we observed that smaller deletions within either SR2 or SR3 

disturbed actinin dimerization as well as IGF2BP2 interactions, which is consistent with 

previous actinin dimerization studies (Djinović-Carugo et al., 1999). To establish a method 

to disrupt actinin-IGF2BP2 interactions, but not actinin dimerization, we took advantage of 
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previous insights from structural studies of SR2 and SR3 domains (Ylänne et al., 2001). 

These domains contribute an acidic surface to actinin, which has been previously proposed 

as a protein interaction hub (Figures 3H and 3I; Ylänne et al., 2001). We designed a series 

of single alanine substitution mutations to disrupt the charge of acidic residues within SR2, 

after excluding residues that were predicted to contribute intrahelical interactions that could 

disrupt actinin dimerization or other actinin functions (Ylänne et al., 2001). M2H results 

of single alanine substitutions within this subset of acidic SR2 residues identified only 

glutamine 445 (E445) as necessary for IGF2BP2 interactions (Figures 3I and 3J) but did not 

disrupt actinin dimerization (Figure 3K). As E445A provided a model to specifically disrupt 

actinin-IGF2BP interactions, we did not study SR3 substitutions.

To validate M2H results for E445A, we next produced recombinant His-tagged WT and 

E445A actinin in E. coli that were independently immobilized on agarose beads as bait, 

followed by elution of IGF2BP2 prey from iPSC-CM lysates. Consistent with M2H results, 

E445A actinin partially disrupted IGF2BP2 interactions relative to WT actinin (Figure S3A). 

Taken together, these interaction studies (summarized in Figure S3B) implicate actinin as 

a proximity interaction hub for at least four RNA-binding proteins, including IGF2BP2, 

that directly bind actinin at SR2 and SR3 domains, which can be disrupted by the E445A 

mutation in actinin.

Actinin-IGF2BP2 interactions regulate ETC transcript localization to actinin neighborhoods 
and metabolic adaptation to hypercontractility in an HCM model

As IGF2BP2 binds ETC transcripts in other cell lines (Janiszewska et al., 2012), we 

tested whether IGF2BP2 could be necessary for ETC transcript localization to actinin 

neighborhoods in iPSC-CMs. We knocked down IGF2BP2 levels using an shRNA (Figure 

4A), and performed RIP-qPCR focused on RIP-seq enriched ETC transcripts NDUFA1, 

NDUFA8, NDUFA11, and COX6B1. IGF2BP2 knockdown decreased streptavidin affinity­

purified ETC transcripts (Figure 4B), but not total cellular ETC transcript levels (Figure 

4C), demonstrating that IGF2BP2 is necessary for ETC transcript localization to actinin 

neighborhoods but not overall transcript stability. To confirm this result, we also sequentially 

precipitated transcripts by IGF2BP2 antibody to first collect all IGF2BP2-bound transcripts, 

followed by streptavidin affinity purification to study the subset of IGF2BP2-bound 

transcripts that have been biotinylated secondary to actinin proximity, which confirmed ETC 

transcript enrichment at IGF2BP2 within actinin neighborhoods (Figure S4A). As additional 

confirmation, we utilized RNA FISH to quantify NDUFA1 puncta relative to actinin after 

IGF2BP2 knockdown. IGF2BP2 knockdown resulted in greater distance between NDUFA1 
puncta and actinin protein (Figures S4B and S4C). In summary, IGF2BP2 regulates the 

localization of ETC transcripts to actinin neighborhoods.

We next interrogated the specific function of actinin-IGF2BP2 interactions in iPSC-CMs. To 

do this, we generated lentivirus encoding E445A or WT actinin, which has been previously 

utilized to study actinin functions in sarcomere assembly (Chopra et al., 2018; Toepfer et al., 

2019). A multiplicity of infection (MOI) of 2 provided robust expression levels that replaced 

>80% of the endogenous protein (Figure S4D) and localized to Z-disks (Figure S4E). We 

first conducted RIP-qPCR to assess whether E445A disrupted ETC transcript localization to 
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actinin neighborhoods. As expected by diminished actinin-IGF2BP2 interactions, E445A 

disrupted actinin neighborhood localization of NDUFA1, NDUFA8, NDUFA11, and 

COX6B1 (Figure 4D), though not to the extent of IGF2BP2 knockdown (Figure 4B), 

given that E445A does not completely abolish all IGF2BP2 interactions. Similarly, E445A 

resulted in greater distance between NDUFA1 puncta and actinin protein (Figure S4F) but 

to a lesser extent than IGF2BP2 knockdown (Figure S4C). Next, we studied the functional 

consequences of E445A on sarcomere structure and function. We found no difference in 

Z-disk length (Figure S4G), a previously utilized assay of sarcomere structure (Pettinato et 

al., 2020), and no difference in sarcomere contractile function using CMT assays (Figure 

S4H). To test whether E445A impacts oxidative phosphorylation as suggested by diminished 

ETC transcript localization to actinin neighborhoods, we quantified oxygen consumption 

rate (OCR) using a Seahorse analyzer (Figure 4E). OCR was also not different (Figure 

4F). In summary, we could not identify baseline sarcomere or oxidative metabolic deficits 

induced by E445A actinin.

To test whether actinin-IGF2BP2 interactions could function in stress responses, we studied 

pathological sarcomere activation using a well-established HCM model resulting from a 

calcium-sensitizing mutation in cardiac troponin T (cTnT-R92Q) (Ferrantini et al., 2017; 

Javadpour et al., 2003; Pettinato et al., 2020). First, we co-transduced cTnT-R92Q or cTnT­

WT along with E445A or WT actinin and measured OCR. We expected to observe increased 

OCR in response to sarcomere activation, because this process consumes substantial ATP 

(Lymn and Taylor, 1971), and cardiomyocytes predominantly utilize oxidative metabolism 

for ATP production (Stanley et al., 2005). cTnT-R92Q increased basal and maximum OCR 

responses relative to cTnT-WT (Figures 4E and 4F). However, in the presence of E445A 

actinin, the OCR response was disrupted relative to WT actinin (Figures 4E and 4F). 

To determine functional consequences of diminished OCR responsiveness to pathological 

sarcomere activation, we took advantage of previous knowledge that cells with disrupted 

OCR are less viable when glucose is replaced by galactose to force oxidative metabolism 

(Aguer et al., 2011; Robinson et al., 1992). To do this, we substituted glucose for galactose 

and measured iPSC-CM cytotoxicity by lactate dehydrogenase (LDH) release assays. When 

glucose was freely available, LDH release was negligible in conditioned media during the 

5-day culture across all models (Figure S4I). However, in glucose-free media supplemented 

with galactose to force oxidative metabolism, we found that cTnT-R92Q induced earlier 

and greater LDH release when co-expressed with E445A actinin compared to WT actinin 

(Figure 4G). Taken together, these results demonstrate that actinin-IGF2BP2 interactions 

function in metabolic responses to sarcomere activation that are critical for cell survival in 

an HCM model.

DISCUSSION

The principal finding of this study is that actinin directly interacts with the RNA-binding 

protein IGF2BP2 in human cardiomyocytes. Disruption of this interaction impairs ETC 

transcript localization to actinin neighborhoods, oxidative metabolism, and cell survival in 

an HCM model associated with pathological sarcomere activation. Our study also provides a 

compendium of over 300 actinin proximity partners involved in numerous cellular functions, 
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including cytoskeletal dynamics and cellular adhesion, as well as molecular insights into 

Z-disk assembly, including Z-body- and Z-disk-specific factors relevant to heart failure.

Our study prioritized establishing actinin functions in RNA biology that was inspired by 

our identification of a large network of RNA-binding proteins within actinin neighborhoods, 

including those with previous functions in RNA localization. In zebrafish, 71% of transcripts 

are localized in spatially distinct patterns (Lécuyer et al., 2007), which provides spatial 

and temporal regulation of gene expression such that local stimuli can regulate translation 

on-site (Martin and Ephrussi, 2009). While the sarcomere has been implicated in the 

regulation of RNA localization and functions (Lewis et al., 2018; Rudolph et al., 2019), 

we find that actinin serves as a PPI hub for several RNA-binding proteins and translational 

machinery, which we exploited to uncover a spatial relationship between ETC transcripts 

and actinin expression. Through follow-up studies, this PPI hub may explain mechanisms 

for the previous observation that intermyofibrillar mitochondria both reside adjacent to 

the Z-disk (Boncompagni et al., 2009) and have higher rates of oxidative phosphorylation 

(Ferreira et al., 2010). We observe that ETC transcript localization to actinin neighborhoods 

is dependent on IGF2BP2, an RNA-binding protein associated with type 2 diabetes by 

genome-wide association studies (Saxena et al., 2007). In our study, partial disruption of 

actinin-IGF2BP2 interactions by substituting glutamic acid to alanine at residue 445 resulted 

in both diminished oxygen consumption rates and cell survival following pathological 

sarcomere activation induced by an HCM mutation. While requiring further study, this 

interaction may also be relevant to the pathogenesis of diabetic cardiomyopathy (Jia et al., 

2018), as IGF2BP2 knockout mice have been shown to exhibit impaired fatty acid oxidation 

in skeletal muscle, where actinin is also highly expressed (Regué et al., 2019), and may 

provide a lever to locally tune energy supply with energy consumption at the sarcomere.

Our study has important limitations, including the use of human iPSC-CMs. These cells 

empowered the opportunity to study sarcomere assembly in a human cellular context 

but do not achieve the maturity of adult cardiomyocytes. In the future, engineering and 

investigating mouse models with Actinin-BirA*, such as has been performed with TTN 

(Rudolph et al., 2020), could further refine and clarify Z-disk interactions in the healthy 

heart and diseases such as heart failure. Our study could also be extended to employ more 

dynamic approaches such as with the recently described TurboID enzyme (Branon et al., 

2018), which exhibits improved biotinylation kinetics and labeling efficiencies compared 

to BirA*. Our RIP-seq approach is also limited by the inability to directly label actinin­

proximal transcripts, which could be enabled by the recently developed method of APEX­

RIP (Kaewsapsak et al., 2017). Finally, our determination of RNA transcript localization 

was performed using confocal microscopy, which is resolution limited relative to super­

resolution microscopy methods.

In summary, we provide a catalog of actinin neighborhood partners, including those 

regulated by sarcomere assembly and molecules not well studied in sarcomere biology, 

including RNA-binding factors that regulate RNA localization. We identify how interactions 

between actinin and IGF2BP2 contribute to cardiomyocyte metabolic adaptations to stress, 

which we suggest could be a mode of localized metabolic regulation in proximity to the 

energy-consuming sarcomere. Further exploration and refinement of these interactions could 
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reveal therapeutic targets and pathophysiology for diseases of the cardiomyocyte that cause 

heart failure, diabetes, and monogenic disorders associated with actinin mutations.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Requests for information and resources should be directed to the Lead 

Contact, Dr. J. Travis Hinson (travis.hinson@jax.org).

Materials availability—Materials generated in this study are available from the Lead 

Contact upon reasonable request.

Data and code availability

• Genome sequencing datasets for RIP-sequencing are deposited at GEO under 

accession numbers: GSE144806. Quantitative proteomics data deposited to the 

ProteomeXchange Consortium identifier PXD018040.

• No unique code was generated for the analysis.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

PGP1 iPSCs (Coriell #GM23338) were used for all studies, which have been extensively 

characterized including whole genome sequencing and karyotyping as part of the ENCODE 

project (ENCBS368AAA). iPSCs were maintained on Matrigel-coated tissue culture plates 

(Corning 354230) in mTeSR1 (STEMCELL Technologies 85875). iPSCs were passaged at 

80%–90% confluency utilizing Accutase (BD 561527) and 10 μM ROCK inhibitor Y-27632 

(Tocris 1254). iPSC-CMs were directly differentiated by sequential modulation of Wnt/β­

catenin signaling, as previously described (Cohn et al., 2019; Lian et al., 2013). On Day 

13 of differentiation, iPSC-CMs were purified by metabolic enrichment using glucose-free 

DMEM (GIBCO 11966025) supplemented with 4 mM lactate (Sigma 71718) for 24–48 

hours (Tohyama et al., 2013). Following selection, iPSC-CMs were trypsinized (GIBCO 

25200056) and re-plated onto fibronectin-coated tissue culture plates (GIBCO 33016015). 

iPSC-CMs were maintained in RPMI-B27. For proximity-labeling experiments, Actinin­

BirA* and control non-BirA* iPSC-CMs were maintained in DMEM (GIBCO 11965092) 

supplemented with homemade biotin-free B27 following metabolic enrichment (Gafni et al., 

2013; Irie et al., 2015). For BioID studies, Actinin-BirA* and control non-BirA* iPSC-CMs 

were treated with 50 μM biotin for 24 hours followed by a 2-hour washout phase in 

biotin-free media before collection. All iPSC-CM analyses were performed on Day 25–30 

unless otherwise noted.

METHOD DETAILS

Plasmid Cloning—The homologous recombination (HR) targeting vector (System 

Biosciences HR220PA-1) was modified prior to being used in genome-editing experiments. 

A gene fragment for BirA* (R118G)-HA tag was designed, obtained (IDT) and cloned into 
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the parent vector via Gibson assembly (NEB E2621). ACTN2 ~800bp 5′ and 3′ HR arm 

gene fragments (IDT) were then cloned into the appropriate cloning sites (sequences in 

Table S3). All HR vector propagation steps were performed in DH5α E.coli (NEB C2987). 

For hairpin (shRNA) experiments, the pLKO.1 puro lentiviral plasmids containing either 

shScramble (Addgene 1864), shIGF2BP2 or a1 (sequence in Table S3) were assembled 

using T4 DNA ligase (NEB M0202S) and propagated in NEB Stable E.coli (NEB C3040). 

For overexpression experiments, PCR amplified products of actinin (primer sequences in 

Table S3) were cloned into a modified pLenti CMV backbone (Addgene 17448) using HIFI 

DNA Assembly Master Mix (NEB 26261S) and propagated in NEB Stable E.coli (NEB 

C3040) (Campeau et al., 2009). For cTnT expression, vectors were obtained as previously 

described (Pettinato et al., 2020).

CRISPR studies—Genome editing was performed utilizing a CRISPR/Cas9 protocol 

adapted from previous studies (Cohn et al., 2019; Hinson et al., 2015). 8×106 iPSCs 

were electroporated with 20 μg pCas9-GFP (Addgene 44719), 20 μg of the appropriate 

hU6-driven sgRNA (designed using https://zlab.bio/guide-design-resources), and 20 μg 

of the HR targeting vector to generate ACTN2-BirA* knock-in iPSCs (Ding et al., 

2013). Electroporated cells were transferred to a Matrigel-coated 100 mm dish containing 

mTeSR1 and 10 μM Y-27632. The following day, selection was started with 50 μg/mL 

Hygromycin B (Invitrogen 10687010) to isolate single iPSC clones, which were then 

manually picked, expanded, and screened via Sanger sequencing. Isogenic knockout of 

TNNT2 was performed similarly, but in the absence of an HR vector and with GFP-based 

FACS enrichment in place of antibiotic selection.

Streptavidin immunoprecipitation—After biotin washout, Actinin-BirA* and control 

non-BirA* iPSC-CMs were rinsed three times with room temperature PBS. Cells were 

lysed with lysis buffer (50 mM Tris-Cl pH7.4, 500 mM NaCl, 0.2% SDS, 1x protease 

inhibitor, 1mM DTT, ddH2O). Lysates were sonicated (Branson 250) two times on ice 

with 2 minutes between each cycle (30 pulses, 30% duty cycle, output level3). Samples 

were centrifuged to pellet cell debris and cleared lysate were added to magnetic Dynabeads 

MyOne Streptavidin C1 beads (Invitrogen 65001), which were prewashed with PBS and 

lysis buffer. Immunoprecipitation was performed on a rotator overnight at 4°C. The 

following day, the beads were resuspended in wash buffer 1 (2% SDS, ddH2O), rotated 

for 8 minutes at room temperature, and then re-collected using a magnetic separation stand. 

The same steps were then repeated with wash buffer 2 (0.1% deoxycholic acid, 1% Triton 

X-100, 1mM EDTA, 500 mM NaCl, 50 mM HEPES pH7.5, ddH2O) and wash buffer 3 

(0.5% deoxycholic acid, 0.5% NP-40, 1 mM EDTA, 250 mM LiCl, 10 mM Tris-Cl pH7.4, 

ddH2O). Finally, the washed beads were resuspended in PBS, snap frozen, and sent for 

quantitative proteomics.

HA immunoprecipitation—Actinin-BirA* and control non-BirA* iPSC-CMs were 

collected at Day 25 and HA-tag IP was conducted using reagents supplied in HA-tag 

IP/Co-IP Application set (Thermo Scientific 26180Y). The subsequent protein immunoblots 

were conducted as outlined in the immunoblot section.
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RNA Immunoprecipitation (RIP)—After biotin washout, Actinin-BirA* and control 

non-BirA* iPSC-CMs were rinsed three times with room temperature PBS. Cells were lysed 

with ice-cold RIP buffer (150 mM KCl, 25 mM Tris-Cl pH7.4, 5 mM EDTA, 0.5 mM DTT, 

0.5% NP40, 1x protease inhibitor, 100 U/ml RNase inhibitor, RNase-free water). Cell debris 

was pelleted and cleared lysate was added to magnetic Dynabeads MyOne Streptavidin 

C1 beads (Invitrogen 65001), which were prewashed with PBS and RIP buffer. Samples 

and beads were incubated on a rotator overnight at 4°C. The following day, the beads 

were washed three times with ice-cold RIP buffer – all steps were performed in a 4°C 

room. Samples were then incubated with Proteinase K at 55°C for 30 minutes. Beads were 

resuspended in TRIzol (Invitrogen 15596018), RNA extraction was performed immediately 

followed by RNA-sequencing.

Tandem Immunoprecipitation—After biotin washout, Actinin-BirA* and control non­

BirA* iPSC-CMs were rinsed three times with room temperature PBS and then lysed in 

RIP buffer. Cleared lysates were incubated with Dynabeads Protein G (Invitrogen 10003D) 

pre-bound to either IgG antibody (MBL PM035) or IGF2BP2 antibody (MBL RN008P). 

Samples and beads were incubated on a rotator overnight at 4°C. The following day, the 

Protein G beads were washed three times with RIP buffer and then incubated for 12 hours 

with rotation at 4°C in RIP buffer containing IMP2 peptide (Genescript). The supernatant 

was then mixed with magnetic Dynabeads MyOne Streptavidin C1 beads (Invitrogen 

65001), which were prewashed with PBS and RIP buffer. The following day, the streptavidin 

beads were three times washed with ice-cold RIP buffer – all steps were performed in a 4°C 

room. Samples were then incubated with Proteinase K at 55°C for 30 minutes. Beads were 

resuspended in TRIzol, RNA extraction was performed immediately followed by cDNA 

synthesis (outlined in Quantitative PCR section).

QUANTITATIVE PROTEOMICS

Bead digestion—After conducting streptavidin immunoprecipitation, streptavidin beads 

were snap frozen and sent to the Thermo Fisher Center for Multiplexed Proteomics 

(TCMP) at Harvard Medical School. For each tandem mass tag (TMT) mass spectrometry 

experiment, three biological replicates per condition were submitted.

The beads were washed three times with 50 mM Tris buffer, pH 8.0 to remove any trace 

of detergents and unspecific binders followed by resuspension in 1M Urea, 50 mM Tris, 

pH 8.0 and initially digesting it with Trypsin (5 ng/μl) at 37°C for one hour under shaking. 

After initial trypsin incubation, samples were centrifuged briefly and the supernatant were 

collected in tubes. Beads were further washed three times with 1M Urea, 50 mM Tris, pH 

8.0 and washed fractions were pooled in the same tubes and left to digest overnight at 

room temperature. The following morning, digested peptides were reduced first with 5 mM 

TCEP, followed by alkylation with 10 mM Iodoacetamide, quenching alkylation with 5 mM 

DTT and finally quenching the digestion process with TFA. Acidified digested peptide were 

desalted over C18 stagetip following protocol described before (Ong et al., 2002). Briefly, 

the tips were prepared placing a small disc of Empore material 3M in an ordinary pipette 

tip, preparing a single tip for each sample. Tips were cleaned and secured with Methanol, 

activated with 50% acetonitrile, 0.1% TFA, equilibrated with 0.1% TFA. Acidified digested 
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sample was added to the column and finally washed twice with 0.1% TFA solution. Liquid 

was passed through the pipette tip with a centrifugation. Peptides were then eluted with 80% 

acetonitrile, 0.1% TFA buffer thrice and dried in a speedvac. Dried desalted nine peptides 

samples were reconstituted with 200 mM EPPS buffer, pH 8.0 and labeled with respective 

first 9 of a 10-plex tandem mass tag (TMT) reagent. The 9-plex labeling reactions were 

performed for 1 hour at room temperature. Modification of tyrosine residues with TMT 

was reversed by the addition of 5% hydroxyl amine for 15 minutes and the reaction was 

quenched with 0.5% TFA. Samples were combined, further desalted over stage-tip, finally 

eluted into an Autosampler Inserts (Thermo Scientific), dried in a speedvac and reconstituted 

with 5% Acetonitrile-5% TFA for MS analysis.

Liquid chromatorgraphy-MS3 spectrometry (LC-MS/MS)—Labeled peptide sample 

from the previous step was analyzed with an LC-MS3 data collection strategy (McAlister et 

al., 2014) on an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) equipped 

with a Thermo Easy-nLC 1200 for online sample handling and peptide separations. 

Resuspended peptides from the previous step was loaded onto a 100 μm inner diameter 

fused-silica micro capillary with a needle tip pulled to an internal diameter less than 5 

μm. The column was packed in-house to a length of 35 cm with a C18 reverse phase resin 

(GP118 resin 1.8 μm, 120 Å, Sepax Technologies). The peptides were separated using a 180 

min linear gradient from 5% to 42% buffer B (90% ACN + 0.1% formic acid) equilibrated 

with buffer A (5% ACN + 0.1% formic acid) at a flow rate of 500 nL/min across the column.

The scan sequence for the Fusion Orbitrap began with an MS1 spectrum (Orbitrap analysis, 

resolution 120,000, scan range of 350 – 1350 m/z, AGC target 1 × 106, maximum 

injection time 50 ms, dynamic exclusion of 90 s). The “Top10” precursors was selected 

for MS2 analysis, which consisted of CID (quadrupole isolation set at 0.7 Da and ion 

trap analysis, AGC 9 × 103, Collision Energy 35%, maximum injection time 80 ms). The 

top ten precursors from each MS2 scan were selected for MS3 analysis (synchronous 

precursor selection), in which precursors were fragmented by HCD prior to Orbitrap 

analysis (Collision Energy 55%, max. AGC 1 × 105, maximum injection time 120 ms, 

resolution 50,000 and isolation window set to 1.2 – 0.8).

LC-MS3 data analysis—A suite of in-house software tools were used for .RAW file 

processing and controlling peptide and protein level false discovery rates, assembling 

proteins from peptides, and protein quantification from peptides. MS/MS spectra were 

searched using the SEQUEST (Eng et al., 1994) algorithm against a Uniprot composite 

human database (human release 2017–10) with both the forward and reverse sequences. 

Database search criteria are as follows: tryptic with two missed cleavages, a precursor 

mass tolerance of 50 ppm, fragment ion mass tolerance of 1.0 Da, static alkylation of 

cysteine (57.02146 Da), static TMT labeling of lysine residues and N-termini of peptides 

(229.162932 Da), and variable oxidation of methionine (15.99491 Da). Peptide spectral 

matches were filtered to a 1% false discovery rate (FDR) using the target-decoy strategy 

combined with linear discriminant analysis. The proteins were filtered to a < 1% FDR. TMT 

reporter ion intensities were measured using a 0.003 Da window around the theoretical m/z 

for each reporter ion in the MS3 scan. Proteins were quantified only from peptides with 
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a summed SN threshold of > 200 and MS2 isolation specificity of 0.5. Peptide spectral 

matches with poor quality MS3 spectra were excluded from quantitation (< 200 summed 

signal-to-noise across 10 channels and < 0.5 precursor isolation specificity).

Before analysis, proteins previously reported to non-specifically bind BirA* were removed 

(Roux et al., 2018). For analysis, TMT raw intensity values (raw data in Table S1) 

underwent Log2-fold-change (L2FC) calculation and enrichment analysis. For actinin 

proteome analysis (Figure 1), data from experiments 1 and 2 were utilized to determine 

significantly enriched proteins by calculating the L2FC of proteins from Actinin-BirA* 

relative to control non-BirA*. Proteins considered to be significantly enriched were those 

with L2FC ≥ 1 and false discovery rate (FDR) < 0.05 (using two-way ANOVA followed 

by a two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli to correct for 

multiple comparisons (Benjamini et al., 2006)). For sarcomere assembly actinin proteome 

analysis (Figure S1), data from experiment 2 was similarly analyzed to first determine 

enriched proteins using cTnT-WT-Actinin-BirA* relative to control non-BirA* (n = 294 

hits with L2FC ≥ 1 and FDR < 0.05). These enriched proteins were then analyzed for 

sarcomere-dependency status by calculating the L2FC of proteins from cTnT-WT-Actinin­

BirA* relative to cTnT-KO-Actinin BirA*, with significant hits being defined as those 

with L2FC ≥ 1 and FDR < 0.05 (n = 47). Additionally, Z-disk exclusive hits were those 

significantly enriched in cTnT-WT-Actinin-BirA* relative to control non-BirA*, but not in 

the cTnT-KO-Actinin-BirA* relative to control non-BirA* (n = 24 hits with L2FC ≥ 1 and 

FDR < 0.05). For visualization of data, Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING v. 11.0) was utilized for generation of interaction scores (proteins were 

not distinguished by isoform). Cytoscape (v.3.7.2) was utilized to generate interaction maps 

with an organic layout and the utilization of the CLUSTER and BINGO features for group 

clustering and appropriate GO term identification for each cluster. Quantitative proteomics 

data deposited to the ProteomeXchange Consortium identifier PXD018040.

Quantitative PCR, RNA sequencing, and analysis—cDNA was synthesized using 

Superscript III First-Strand synthesis (Invitrogen 18080–400). Gene-specific PCR primers 

were designed or identified from the literature and transcripts were quantified using Fast 

SYBR Green (Applied Biosystems 4385612) on a ViiA7 Real-Time PCR system (Applied 

Biosystems).

RNA Samples were sent for sequencing at the University of Connecticut Institute for 

Systems Genomics. RNA sequencing libraries were generated using Illumina TruSeq 

Stranded Total RNA library preparation (Ribo-Zero depletion for rRNA was utilized for 

RIP-seq). Illumina NextSeq 500/550 sequencing was conducted with the v2.5 300 cycle 

reagent kit 9 (High Output). Estimated total single end reads per sample = 30–35M 150bp 

PE reads. Samples sequences were aligned with STAR to the hg38 human genome. In 

order to look at differential expression, DESeq2 (Bioconductor) was utilized. Gene Set 

Enrichment Analysis (GSEA) was utilized to determine GO terms for datasets. Top 10 GO 

terms are presented. Furthermore, for ETC complexes, glycolysis, and sarcomere gene sets – 

GSEA gene sets were utilized and those with an average ≥ 5 TPM value were included in the 

dataset. TPM (transcripts per million) is a normalization technique for transcriptomic data to 

adjust for transcript count read depth and transcript length, such that all transcript counts are 
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normalized by transcript length and then presented as a proportion out of 1 million counts. 

Genome sequencing datasets are deposited at GEO under accession numbers: GSE144806.

Protein Immunoblotting—Samples of interest were lysed in RIPA buffer (Cell Signaling 

9806) containing protease inhibitor cocktail (Roche 11836170001), 1 mM PMSF, and 

phosphatase inhibitor (Pierce A32957), unless noted otherwise. Protein lysate concentrations 

were normalized using Pierce BCA (Thermo 23225), and then reduced and denatured 

in sample buffer (Thermo 39000). Lysates were separated on Bio-Rad 4%–20% Mini­

PROTEAN TGX precast gels, transferred via Bio-Rad Trans-Blot Turbo onto PVDF 

membranes (Bio-Rad 1704272), blocked in TBS-T (TBS with 0.1% Tween-20) containing 

5% BSA, and probed overnight at 4°C with primary antibody. The next day, blots were 

washed in TBS-T and probed with HRP-linked secondary antibody (Cell Signaling 7076; 

7074; Streptavidin-HRP 3999S) for 1 hour. Signal detection was performed using ECL 

substrate (Thermo 34577; 34095) and a Bio-Rad ChemiDoc MP imaging system. Blot 

images were digitally processed and analyzed in ImageJ. The primary antibodies used 

were as follows: anti-actinin (isoforms 1–4) (Cell Signaling 6487), anti-HA (Cell Signaling 

14793), anti-IGF2BP2 (MBL RN008P), anti-PBCBP1 (Abcam 74793), anti-PCBP2 (MBL 

RN250P), anti-SERBP1 (Abcam 55993), anti-TCAP (BD 612328), anti-FLAG (Cell 

Signaling 2368), anti-GAPDH (Cell Signaling 2118) and anti-MYOM (mMaC myomesin 

B4 was deposited to the DSHB by Perriard, J.-C.).

Immunofluorescence and RNA FISH—For standard immunofluorescence images, cells 

were fixed on coverslips (Fisherbrand 12–545-100) in PBS containing 4% paraformaldehyde 

(EMS 50–980-487) and then permeabilized and blocked in PBS-T (PBS containing 0.1% 

Triton-X) with 1% BSA (Fisher BP1605100). Cells were probed with primary antibody 

in PBS-T with BSA overnight at 4°C. The following primary antibodies were used:, 

anti-Actinin (Sigma A7811), anti-IGF2BP2 (Bethyl A303–316A), and anti-FLAG (Cell 

Signaling 2368). The next day coverslips were washed in PBS-T, incubated for 1 hour 

at room temperature with 1 μg/mL DAPI (Invitrogen D1306) and appropriate secondary 

antibody (Invitrogen A-11005 or A-11008) or streptavidin-488 (Invitrogen S11223), washed, 

and mounted onto slides (Corning 2948) in ProLong Diamond mountant (Invitrogen 

P36965). An Andor Dragonfly 500 confocal microscope system using a Zyla sCMOS 

camera and a Leica DMi8 63x oil immersion lens was used for imaging slides. Andor 

Fusion software was used to acquire images, which were converted to OME-TIFF format 

using Bitplane Imaris and analyzed in ImageJ.

ViewRNA direct fluorescence RNA in situ hybridization was conducted using 

the manufacturer’s protocol (Invitrogen 19887). The following human probes were 

utilized: NDUFA1 (Invitrogen VA6–3172657), NDUFA8 (Invitrogen VA1–3003564), TTN 
(Invitrogen VA6–3173894), HIST1H1E (Invitrogen VA6–3172001), and HRC (Invitrogen 

VA6–3172126). Final step of coverslip mounting and image acquisition are described above. 

For distance quantification, Imaris software was utilized. Images first underwent background 

subtraction to minimize background signal and allow for clear puncta visualization. The 

distance transformation tool on Imaris was used to quantify distance (in microns) of RNA 

puncta and actinin structures.
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Mammalian-Two Hybrid—Actinin (full-length and domains), IGF2BP2 (full-length and 

domains), PCBP1, PBCBP2, and SERBP1 were amplified from human cDNA and cloned 

into the appropriate vectors (pACT or pBIND) provided by the CheckMate Mammalian 

Two-Hybrid kit (Promega E2440). To generate mutant variants of actinin, variant-specific 

mutagenic primers were designed (Agilent QuikChange) and paired with universal primers 

specific to pACT or pBIND vectors, such that PCR amplification would generate a mutant 

actinin split into two PCR fragments at the point of the mutation (sequences in Table S3). 

This strategy enables the use of a single, three-fragment Gibson Assembly reaction, avoiding 

potential polymerase errors that may go un-sequenced in classical PCR mutagenesis 

involving amplification of the entire backbone. The appropriate combination of edited pACT 

and pBIND vectors, in addition to the kit-provided pGluc5 vector, were transfected using 

PEI into HEK293T cells (ATCC CRL-3216), as outlined in the manufacturer’s protocol. 

In addition, the kit-provided positive and negative controls were transfected simultaneously 

for all experiments to verify proper signal production. Luciferase and Renilla activity were 

measured using manufacturer’s protocol (Promega E1910) utilizing BioTek’s Synergy 2 

multi-mode microplate reader.

PyMOL Molecular Viewer—PyMOL version 2.4.0 was utilized to generate figures 

illustrating actinin’s ribbon structure and the plugin “APBS Electrostatics” was used to 

visualize electrostatic surfaces. The coordinates of the crystal structure of actinin’s rod 

domain were found on the Protein Data Bank (PDB ID: 1HCI). Protein structures were 

exported from PyMOL and presented in figures.

Lentivirus Production—HEK293T cells (ATCC CRL-3216) were seeded onto 150 mm 

plates in 20 mL DMEM (GIBCO 11965092) supplemented with 10% FBS (Gemini 100–

106), GlutaMAX (GIBCO 35050061), and 1 mM sodium pyruvate (GIBCO 11360070). 

HEK293T cells were transfected with 18ug of lentiviral transfer vector, 12 μg psPAX2 

(Addgene 12260), and 6 μg pCMV-VSV-G (Addgene 8454) (Stewart et al., 2003). Media 

was replenished the following day and virus-containing media was harvested at 48, 72, 

and 96 hours post-transfection, followed by concentration using PEG-6000 as previously 

described (Kutner et al., 2009). For titer determination - iPSCs were transduced with a serial 

dilution of lentivirus, followed by treating with appropriate antibiotic (1μg/ml puromycin), 

and counting resistant colony-forming units.

Individual Gene Knockdown and Overexpression Constructs—Lentiviral-based 

hairpins or overexpression constructs were transduced into iPSC-CMs at a MOI of 2 in 

RPMI-B27 (Sarbassov et al., 2005). Media was replenished the following day and cells were 

analyzed 7–10 days post transduction.

His Protein Interaction Pull-Down—For generation of bait bacterial expression vector, 

actinin (WT or E445A) was cloned into pNIC28-Bsa4 (Addgene 26103) (Savitsky et al., 

2010). Vectors were transformed into BL21 (DE3) competent E. coli (NEB C2527I). A 

single colony was resuspended in 5 mL liquid culture with antibiotic and incubated at 37°C 

until OD600 reached 0.4–0.8. At this point IPTG (ThermoFisher R1171) induction at final 

concentration of 500 μM was begun for 4 hours at 37°C. For bait preparation, protocol 
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from Pierce Pull-Down PolyHis Protein:Protein Interaction Kit (ThermoFisher 21277) was 

followed. Prey protein was prepared from day 30 iPSC-CMs. Pull-down was conducted 

using instructions and reagents provided in Pierce Pull-Down PolyHis Protein:Protein 

Interaction Kit (ThermoFisher 21277). Protein concentration of bait protein lysates were 

determined using BCA (ThermoFisher 23225) and equal amount of protein was loaded into 

columns for each condition.

OCR measurements using Seahorse—30,000 wild-type CMs were plated 

on Seahorse XFe96 Cell Culture Microplates (Agilent 101085–004) and lentiviral 

overexpression constructs (Actinin-WT or Actinin-E445A; cTnT-WT or cTnT-R92Q) were 

added the next day. The cells were cultured for 7 days before performing the Seahorse 

XF Cell Mito Stress Test (Agilent 103015–100) according to manufacturer’s protocol. The 

following final concentrations of compounds were injected: oligomycin (1 μM), FCCP (1 

μM), and rotenone/antimycin A (0.5 μM).

Cardiac microtissue (CMT) assay—CMTs were generated as previously described 

(Cohn et al., 2019; Hinson et al., 2015). Briefly, polydimethylsiloxane (PDMS) (Corning 

Sylgard 184) cantilever devices were molded from SU-8 masters, which were embedded 

with fluorescent microbeads (Thermo F8820). Singularized iPSC-CMs were mixed with 

human cardiac fibroblasts and spun into PDMS devices containing a collagen-based 

ECM. For overexpression experiments, lentivirus was added to iPSC-CMs 7 days prior to 

generation of CMTs. CMT function was measured once tissues compacted and were visibly 

pulling the cantilevers. For acquisition of functional data, tissues were stimulated at 1 Hz 

with a C-Pace EP stimulator (IonOptix) with platinum wire electrodes and fluorescence 

images were taken at 25 Hz with a Andor Dragonfly microscope equipped with enclosed 

live-cell chamber (Okolabs). Displacement of fluorescent microbeads was tracked using 

the ImageJ ParticleTracker plug-in and twitch force was calculated. The cantilever spring 

constants were determined using the elastic modulus of PDMS and the dimensions of the 

tissue gauge devices previously described (Boudou et al., 2012).

LDH Release Cytotoxicity Assay—Wild-type CMs were plated and lentiviral 

overexpression constructs (Actinin-WT or Actinin-E445A + cTnT-WT or cTnT-R92Q) were 

added the next day. The cells were cultured for 7 days before being switched to glucose-free 

media (GIBCO 11966025) supplemented with 10 mM galactose (Sigma 59234). Media was 

collected and replenished on day 0, 1, 3, and 5. Cytotoxicity was determined utilizing LDH 

toxicity assay kit (ThermoFisher C20300).

QUANTIFICATION AND STATISTICAL ANALYSIS

Obtained data were analyzed and visualized using Microsoft Excel, GraphPad Prism or R. 

Data are presented as mean ± standard error of the mean (SEM) unless otherwise noted. 

Statistical comparisons were conducted as described in the text or figure legends. Statistical 

significance was defined by p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), and p ≤ 0.0001 

(****) unless otherwise stated.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• BioID identifies 324 actinin proximity partners through sarcomere assembly

• IGF2BP2 directly binds actinin’s rod domain through its KH domain

• IGF2BP2-actinin interactions determine ETC transcript localization

• Actinin-IGF2BP2 interactions regulate metabolic adaptation to sarcomere 

function
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Figure 1. BioID to identify actinin proximity partners through sarcomere assembly
(A) Overview of actinin localization in cardiomyocytes including sarcomere Z-disk, focal 

adhesion, and cortical actin cytoskeleton.

(B) Overview of the BioID method using Actinin-BirA* fusion to study actinin-proximal 

protein networks.

(C) Actinin-BirA* and control non-BirA* iPSC-CM lysates were probed with anti-actinin 

and anti-GAPDH antibodies to identify (left) and quantify (right) Actinin-BirA* fusion 

(~130 kD) and endogenous actinin (~100 kD).

Ladha et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Actinin-BirA* cardiac microtissues have similar twitch force compared to non-BirA* 

controls (n = 12–15) (scale bar, 150 μm).

(E) Confocal micrograph of Actinin-BirA* iPSC-CMs decorated with antibodies to actinin 

(red), streptavidin-AF488 (green), and DAPI DNA co-stain (blue) (scale bar, 10 μm).

(F) Overview of BioID experimental methods.

(G) iPSC-CM lysates were probed with streptavidin-horseradish peroxidase (HRP) to 

examine Actinin-BirA*-biotinylated proteins.

(H) Heatmap and hierarchical clustering of log2-transformed intensity values for the 324 

Actinin-BirA* hits (L2FC ≥ 1 and FDR < 0.05 relative to control non-BirA*) from 

combined TMT experiments.

(I) Venn diagram of ACTN2 BioID protein dataset (red circle) and published ACTN 

interactors obtained from STRING where ACTN was bait (gray circle).

(J) 324 proteins from ACTN2 BioID were analyzed by GO and key enrichment terms are 

listed.

(K) ACTN2 BioID proteins in RNA-binding GO term were uploaded to STRING for 

subnetwork analysis. The resulting network was imported into Cytoscape (v. 3.7.2) and 

CLUSTER and BINGO features were utilized for clustering and GO term identification. 

Hits that were additionally studied are circled in black.

Data are n ≥ 3 (C and D); mean ± SEM; significance assessed by Student’s t test (C and 

D) or two-way ANOVA followed by a two-stage linear step-up procedure of Benjamini, 

Krieger, and Yekutieli to correct for multiple comparisons (H) and defined by p > 0.05 (ns) 

(C and D). See also Figure S1 and Video S1.
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Figure 2. Identification of transcripts bound to RNA-binding proteins in actinin neighborhoods
(A) Overview of modified RIP-seq protocol to study RNA transcripts bound to RNA-binding 

proteins in actinin neighborhoods by streptavidin affinity purification of RNA-binding 

proteins followed by RNA isolation and sequencing.

(B) PCA plot shows clustering of Actinin-BirA* RIP-seq samples relative to non-BirA* 

controls (n = 4).

(C) Volcano plot of RIP-seq data shaded red for 945 enriched transcripts (FDR < 0.05, L2FC 

≥ 0.5) or blue for 1,113 depleted transcripts (FDR < 0.05, L2FC ≤ −0.5). Differentially 

enriched transcripts were analyzed by GO and enrichment terms are listed for enriched and 

depleted transcripts.

(D) ETC gene components spanning respiratory chain complex I-V proteins are enriched on 

average. Each circle represents a single ETC gene; black circle for statistically significant 

transcript.

(E) Glycolysis gene components are not enriched on average. Each circle represents a single 

glycolysis gene.

(F) Thin and thick filament sarcomere are depleted on average. Each circle represents a 

single sarcomere gene.

(G) qPCR validation of candidate RIP-seq hits (n = 4).
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(H) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin 

(red), DAPI DNA co-stain (blue), and RNA FISH probes against NDUFA1 (green) (scale 

bars: main image, 10 μm; inset, 5 μm).

(I) Representative confocal micrograph of iPSC-CMs decorated with antibodies to actinin 

(red), DAPI DNA co-stain (blue), and RNA FISH probes against NDUFA8 (cyan) (scale 

bars: main image, 10 μm; inset, 5 μm).

(J) Quantification of RNA proximity to actinin protein. Statistics are relative to TTN. Data 

are derived from n = 10 cells.

Data are mean ± SEM; significance assessed by Benjamini Hochberg method (C) or 

ANOVA using Holm-Sidak correction for multiple comparisons (G and J) and defined by p 

< 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****) unless otherwise stated. See 

also Figure S2.
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Figure 3. Fine mapping actinin interactions with the RNA-binding protein IGF2BP2
(A) Representative immunoblot probed with antibodies to IGF2BP2, PCPB1, PCPB2, and 

SERBP1 in streptavidin affinity-purified iPSC-CM lysates. Double band represents two 

IGF2BP2 splice products.

(B) Representative immunoblot probed with antibodies to IGF2BP2, PCPB1, PCPB2, and 

SERBP1 in anti-HA immunoprecipitated iPSC-CM lysates.

(C) M2H (conducted in HEK293T cells) results demonstrating that IGF2BP2 interacts with 

full-length actinin, but not PCBP1, PCPB2, or SERBP1.
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(D) Representative confocal micrograph demonstrating partial colocalization of actinin (anti­

actinin; red) with IGF2BP2 (anti-IGF2BP2; green) with DAPI DNA (blue) co-stain in 

iPSC-CMs (scale bars: main image, 10 μm; inset, 5 μm).

(E) M2H study conducted to fine map the direct interaction between actinin and IGF2BP2. 

IGF2BP2 was divided into RRM (residues 1–160) and KH (residues 161–600) domains to 

fine map the interaction.

(F) M2H results to map the direct interaction between the KH domain of IGF2BP2 and 

Actinin. Actinin was divided into AB (residues 1–275), rod (residues 276–750), and CaM 

domains (residues 751–895).

(G) M2H results to map IGF2BP2’s interaction within actinin rod domain through deletions 

of each spectrin repeat (SR).

(H) Ribbon structure PyMOL of actinin’s SR2 and SR3 domains (SR2 highlighted in red).

(I) Visualization of electrostatic potential of SR2 and SR3 domains. Actinin residue E445 

circled in diagram and shaded yellow.

(J) M2H alanine scanning mutagenesis results within actinin SR2 domain with IGF2BP2 

demonstrates partial disruption by E445A.

(K) M2H results demonstrating preservation of wild-type (WT) actinin interaction with 

E445A actinin.

All data are n = 3 and mean ± SEM; significance assessed by ANOVA using Holm-Sidak 

correction for multiple comparisons (C, E, F, G, J, and K) and defined by p > 0.05 (ns), p ≤ 

0.0001 (****). See also Figure S3.
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Figure 4. Actinin-IGF2BP2 interactions regulate ETC transcript localization to actinin 
neighborhoods and metabolic adaptation to hypercontractility in an HCM model
(A) Representative immunoblot of lysates from iPSC-CMs treated with shRNA targeting 

IGF2BP2 or scramble control probed with antibodies to IGF2BP2 and GAPDH.

(B) Streptavidin affinity purification of transcripts bound to RNA-binding proteins in actinin 

neighborhoods after IGF2BP2 knockdown, followed by qPCR of ETC transcripts NDUFA1, 

NDUFA8, NDUFA11, and COX6B1.

(C) qPCR analysis of global transcript levels of NDUFA1, NDUFA8, NDUFA11, and 

COX6B1 after IGF2BP2 knockdown.

(D) Streptavidin affinity purification of transcripts bound to actinin-proximal RNA-binding 

proteins with overexpressing lenti-Actinin-WT or lenti-Actinin-E445A, followed by qPCR 

of ETC transcripts NDUFA1, NDUFA8, NDUFA11, and COX6B1.

(E) Oxygen consumption rates after co-overexpression of either lenti-Actinin-WT or lenti­

Actinin-E445A with lenti-cTnT-WT or lenti-cTnT-R92Q in iPSC-CMs.

(F) OCR parameter quantifications comparing lenti-Actinin-WT and lenti-Actinin-E445A 

with either lenti-cTnT-WT or lenti-cTnT-R92Q.

(G) LDH activity in conditioned media collected from iPSC-CMs expressing either lenti­

Actinin-WT or lenti-Actinin-E445A with lenti-cTnT-WT or lenti-cTnT-R92Q in glucose­

free media supplemented with galactose for 5 days.

Data are n ≥ 3; mean ± SEM; significance assessed by Student’s t test (A–D) or by ANOVA 

using Holm-Sidak correction for multiple comparisons (F and G) and defined by p < 0.05 

(*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). See also Figure S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alpha-actinin Cell Signaling Cat. #6487; RRID:AB_11179206

GAPDH Cell Signaling Cat. #2118; RRID:AB_561053

HA-Tag Cell signaling Cat. #14793; RRID:AB_2572291

IGF2BP2 MBL Cat. #RN008P; RRID:AB_1570641

PCBP1 Abcam Cat. #74793; RRID:AB_1281060

PCBP2 MBL Cat. #RN250P; RRID:AB_1953052

SERBP1 Abcam Cat. #55993; RRID:AB_882495

TCAP BD Cat. #612328; RRID:AB_399643

FLAG-Tag Cell Signaling Cat. #2368; RRID:AB_2217020

MYOM DSHB Cat. #760349; RRID:AB_760349

Streptavidin-HRP Cell Signaling Cat. #3999S; RRID:AB_10830897

Goat anti-rabbit IgG HRP Cell Signaling Cat. #7074; RRID:AB_2099233

Goat anti-mouse IgG HRP Cell Signaling Cat. #7076; RRID:AB_330924

Alpha-actinin Sigma Cat. #A7811; RRID:AB_476766

IGF2BP2 Bethyl Cat. #A303–316A; RRID:AB_10951966

Streptavidin-488 Invitrogen Cat. #S11223; RRID:AB_2315383

Goat anti-mouse 594 Invitrogen Cat. #A11005; RRID:AB_141372

Goat anti-rabbit 488 Invitrogen Cat. #A11008; RRID:AB_143165

NDUFA1 (RNA probe) Invitrogen Cat. #VA6–3172657

NDUFA8 (RNA probe) Invitrogen Cat. #VA1–3003564

TTN (RNA probe) Invitrogen Cat. #VA6–3173894

HIST1H1E (RNA probe) Invitrogen Cat. #VA6–3172001

HRC (RNA probe) Invitrogen Cat. #VA6–3172126

IgG MBL Cat. #PM035; RRID:AB_10805234

Critical commercial assays

NextSeq 500/550 v2 Illumina Cat. #FC4042005

HiFi DNA Assembly New England BioLabs Cat. #E2621

T4 DNA ligase New England BioLabs Cat. #M0202S

Seahorse XF Cell Mito Stress Agilent Cat. #103015–100

Qubit dsDNA kit Invitrogen Cat. #Q32854

Fast SYBR Green Master Mix Applied Biosystems Cat. #4385612

HA-tag IP/Co-IP Application set Thermo Scientific Cat. #26180Y

Superscript III First-Strand synthesis Invitrogen Cat. #18080–400

ViewRNA in situ hybridization kit Invitrogen Cat. #19887

CheckMate Mammalian Two-Hybrid kit Promega Cat. #E2440

Dual-Luciferase Reporter assay system Promega Cat. #E1910

Pull-down PolyHis Protein-protein interaction kit ThermoFisher Cat. #21277

LDH toxicity assay kit ThermoFisher Cat. #C20300
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: cell lines and animals

PGP1 human iPSCs Coriell Cat. #GM23338

HEK293T ATCC Cat. #CRL3216

Oligonucleotides

HR220PA SBI Cat. #HR220PA-1

psPAX2 Gift from Didier Trono Addgene Cat. #12260

pCMV-VSV-G Stewart et al., 2003 Addgene Cat. #8454

pCas9-GFP Ding et al., 2013 Addgene Cat. #44719

pLenti CMV GFP Puro Campeau et al., 2009 Addgene Cat. #17448

pLKO.1 Sarbassov et al., 2005 Addgene Cat. #1864

pNIC28-Bsa4 Savitsky et al., 2010 Addgene Cat. #26103

Software and algorithms

STAR (v.2.5.4a) GitHub https://github.com/alexdobin/STAR

Molecular Signature Database Broad https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

DESeq2 GitHub https://git.bioconductor.org/packages/DESeq2

STRING (v. 11.0) STRING https://string-db.org/

GraphPad Prism GraphPad Software http://graphad.com/scientfiic-software/prism

FlowJo FLOWJO https://flowjo.com

Fiji NIH https://fiji.sc

Cytoscape (v. 3.7.2) Cytoscape https://cytoscape.org/

PyMOL (v. 2.4.0) PyMOL https://pymol.org/2/

Imaris visualization and analysis software BitPlane Institutional license https://imaris.oxinst.com/

Chemicals, peptides, and recombinant proteins

IWP4 Tocris Cat. #5214

CHIR99021 Tocris Cat. #4423

Y-276932 Tocris Cat. #1254

Fibronectin (human) Corning Cat. #33016015

Matrigel GFR Corning Cat. #354230

Biotin ThermoFisher Cat. #29129

ROCK inhibitor Y-27632 Tocris Cat. #1254

CHIR99021 Cayman Cat. #13122

IMP2 peptide Genescript Custom order

Other

Accutase BD Biosciences Cat. #561527

RPMI 1640 ThermoFisher Cat. #11875093

DMEM (glucose-free) GIBCO Cat. #11966025

Opti-MEM GIBCO Cat. #31985062
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REAGENT or RESOURCE SOURCE IDENTIFIER

Polyethylenimine (PEI) Polysciences Cat. #239662

PEG-6000 Millipore Sigma Cat. #528877

Trypsin-EDTA GIBCO Cat. #25200056

Hygromycin Invitrogen Cat. #10687010

TRIzol Invitrogen Cat. #15596018

Dynabeads MyOne Streptavidin C1 beads Invitrogen Cat. #65001

Dynabeads Proteins G Invitrogen Cat. #10003D

Puromycin GIBCO Cat. #A1113803

B27 supplement GIBCO Cat. #17504044

B27 supplement (-insulin) GIBCO Cat. #A1895601

Penicillin/Streptomycin GIBCO Cat. #15140122

GlutaMAX GIBCO Cat. #35050061

Sodium lactate Sigma Cat. #71718

mTeSR1 STEMCELL 
Technologies

Cat. #85850

DAPI Invitrogen Cat. #D1306

Fetal bovine serum (heat-inactivated) Gemini Cat. #100–106

PBS GIBCO Cat. #10010049

PDMS Corning Cat. #4019862

Florescent microbeads ThermoFisher Cat. #F8820

Paraformaldehyde EMS Cat. #50–980-487

10 mM galactose Sigma Cat. #59234

KOD Hot Start Master Mix MilliporeSigma Cat. #71842–4

SuperSignal West Pico Chemiluminescent 
substrate

ThermoFisher Cat. #35477

SuperSignal West Femto Chemiluminescent 
substrate

ThermoFisher Cat. #34095

ProLong Gold Mountant Invitrogen Cat. #P36965

4–20% Mini-PROTEAN TGX gels Bio-Rad Cat. #4561095

RTA PVDF Transfer kit Bio-Rad Cat. #1704272

BSA, Fraction V Fisher Cat. #BP1605

Pyruvate GIBCO Cat. #11360070

Tris-Glycine SDS 10X Fisher Cat. #BP13414

BL21 E.coli cells New England BioLabs Cat. #C2527I

IPTG ThermoFisher Cat. #R1171

DH5a E.coli cells New England BioLabs Cat. #C2987

Stbl3 E.coli cells Invitrogen Cat. #C737303

NEB stable E.coli cells New England BioLabs Cat. #C3040

4mm cuvettes Bio-Rad Cat. #1652088

RIPA buffer Cell Signaling Cat. #9806

Protease inhibitor cocktail Roche Cat. #11836170001

Phosphatase inhibitor Pierce Cat. #A32957

BCA kit ThermoFisher Cat. #23225
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REAGENT or RESOURCE SOURCE IDENTIFIER

Protein sample buffer ThermoFisher Cat. #39000

Deposited data

Proteomics data ProteomeXchange PXD018040

RIP-seq data GEO GSE144806
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