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Abstract

During sprouting angiogenesis in the vertebrate vascular system, and primary branching in

the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network

formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these

seamless tubes are made, shaped and maintained remains poorly understood. Here we

characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the

integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates

seamless tubulogenesis via its role in promoting the formation of a mature apical extracellu-

lar matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes

a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the

expression of multiple aECM factors, including a novel membrane-anchored trypsin prote-

ase (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM

that lines their lumens.

Author summary

Biological tubes adopt a variety of shapes to carry out their functions. In addition to

multicellular tubes, single epithelial or endothelial cells build unicellular lumens lined by

an apical membrane devoid of cell junctions, or seams. Such seamless tubes are highly

conserved from invertebrates to vertebrate organs, but the factors regulating their forma-

tion and maintenance remain poorly understood in any system. Using a forward genetic

approach in the Drosophila tracheal (respiratory) system, we have characterized a mutant

called ichor, which compromises the integrity and shape of seamless tubes in tracheal ter-

minal cells. We demonstrate that Ichor promotes seamless tube integrity and shape by

transcriptionally activating genes required to assemble an extracellular matrix (cuticle)

lining the lumens of terminal cells. The cuticle has long been thought function as a passive

exoskeleton, but this work demonstrates that the cuticle contains signals regulating seam-

less tube growth and/or maintenance. All tubes are lined by apical extracellular matrices,

but their composition, assembly, and functions are poorly understood. By characterizing
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effectors acting downstream of Ichor, we can systematically identify factors controlling all

three processes in a model lumenal matrix.

Introduction

Biological tubes transport nutrients, respiratory gases, metabolic wastes, and secretions that

are essential for viability. To function properly, these tubes must achieve and maintain their

proper shapes. Defects in tube shape can result in severe organ malfunction, such as in poly-

cystic kidney and liver diseases, and in hereditary hemorrhagic telangiectasia [1,2].

Most biological tubes are comprised of polarized epithelial or endothelial cells that shape

their apical domains to build and expand a tube lumen. To carry out their specialized func-

tions, tubes come in different architectures, shapes and sizes [3]. In multicellular tubes, an epi-

thelial sheet surrounds an extracellular lumenal space with intercellular junctions connecting

the cells to each other to form a selectively permeable barrier. Tubes can also be unicellular: an

individual cell may wrap around a lumenal space and seal into a tube through the formation of

self-junctions (autocellular tube), or may generate an internal subcellular lumenal space

unbounded by cell junctions (seamless tube).

Seamless tubes are found across the animal kingdom, from invertebrates to vertebrates. The

most extensively characterized seamless tubes are those of the nematode excretory system, the

vertebrate vascular system, and the fly respiratory (tracheal) system. Within the duct and canal

cells of the C. elegans excretory system, seamless tubes form by two distinct mechanisms–by

fusion of membranes bridged by autocellular junctions, or by fusion of intracellular vacuoles

into an internal subcellular tube [4–6]. In the vertebrate vasculature, seamless tubes form

within endothelial tip cells that lead the migration of new branches and mediate anastomoses

[7–10]. In a striking parallel, tracheal tip cells in Drosophila lead outgrowth of primary

branches and form seamless tubes that either are blind-ended (terminal cells) or mediate anas-

tomoses (fusion cells) [11]. During embryonic stages, terminal cells will form a single gas-filled

seamless tube; however, during larval life terminal cells will emanate dozens of subcellular

branches that ramify on internal tissues and organs, with each branch containing a blind-

ended seamless tube that serves as the final interface for gas exchange [12]. Despite their ubiq-

uity in the animal kingdom, the mechanisms regulating seamless tube morphogenesis remain

poorly understood.

Branching morphogenesis has been examined in a broad range of model systems, with mul-

tiple mechanisms implicated in the shaping of tubes [13–34]. Among these are mechanisms in

which the apical extracellular matrices (aECMs) that line the tube lumen play a key role. The

aECM is a heterogeneous three-dimensional extracellular matrix comprised of polysaccha-

rides, proteoglycans, and glycoproteins. Lumenal matrices are common to tubular organs [35–

37] and are thought to regulate multiple steps of lumen morphogenesis; however, their mecha-

nisms of action remain, in general, poorly defined. The lumenal matrix protein GP-135/Podo-

caylxin is an early marker of apical domains in MDCK cysts [38,39] and is required for

epithelial polarity, suggesting a role for lumenal matrix factors in lumen initiation. After apical

membranes have been established, they must separate and expand to create a lumenal space.

Matrix components are thought to promote lumen expansion by inhibiting adhesion between

apical membranes [40,41] and/or creating an extensively glycosylated lumenal surface that

promotes the osmotic influx of water to form an expandable gel-like matrix [42–46]. Finally,

lumenal matrix components can regulate lumen growth by influencing apical membrane mor-

phogenesis and cell shape [47–53] or by influencing cell rearrangements [52, 54].
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Perhaps the most thoroughly studied aECM is that of the multicellular tube (the dorsal

trunk) in the embryonic Drosophila tracheal system [55]. The most abundant component of

insect aECM is chitin [56]. During embryonic development, a transient chitin filament is first

deposited within the lumen of the dorsal trunk [57–59]. This filament regulates multiple

aspects of tube shape, including length and diameter. In mutants disrupting chitin synthesis,

tracheal lumens expand in an uncoordinated manner across the tracheal epithelium, resulting

in a cystic lumen that has alternating areas of tube constriction and dilation [57–59]. Later,

embryonic tracheal tubes elongate, to create a continuous network, as neighboring tracheal

hemisegments fuse together. Coinciding with expansion of the apical domain to accommodate

the increase in dorsal trunk tube length, the physicochemical properties of the chitin filament

are altered through the action of the chitin deacetylases Vermiform and Serpentine. This cova-

lent modification of chitin filaments is required to restrict axial tube growth [49, 50, 60]–dorsal

trunk tubes in mutants lacking both deacytlases become excessively elongated and convoluted.

The chitin filament expands in concert with the apical membrane, suggesting the two struc-

tures are physically coupled [61]. Through this physical coupling, the chitin filament may cre-

ate a resistance force counterbalancing axial apical membrane growth [61].

During seamless tube growth, single epithelial cells must dramatically increase their surface

area/volume ratio through a dramatic increase in the size of the apical compartment [10, 62],

yet the continuity and shape of these lumens must be maintained across this relatively large

surface area. How seamless tube diameter and shape are initially determined and then main-

tained is not known; likewise, the role of the aECM in seamless tube morphogenesis is

unknown. The aECM is ideally positioned to coordinate apical membrane morphogenesis

along the length of seamless tubes, either by providing mechanical support and by actively

influencing apical membrane dynamics. Indeed, during seamless tube elongation in the duct

cells of C. elegans, a transient lumenal matrix maintains lumen integrity by promoting apical

membrane expansion [41]. In Drosophila terminal cells, the majority of seamless tube growth

occurs during larval stages, after the chitin filament has been cleared and replaced by a more

mature aECM called the cuticle [63]. Initial cuticle deposition is followed by tracheal gas-filling

[64, 65]. The tracheal cuticle is a multi-layered aECM organized into a series of circumferential

folds, called taenidia [12, 66]. Our understanding of how aECMs, such as the Drosophila cuti-

cle, mediate outside-in signaling in tubular epithelia is greatly hindered by a grossly incom-

plete understanding of their molecular constituents and their functions. As a result, the

outside-in signaling pathways linking aECM components to intracellular regulators of seam-

less tube morphogenesis remain entirely unknown. Roles for aECMs in tube morphogenesis

span multiple organs and tissues from invertebrates to vertebrates, indicating an evolutionarily

ancient reliance on aECMs to ensure proper lumen shape. An integrated model for lumen

morphogenesis, therefore, requires a better understanding of the molecular components of

lumenal matrices and their functions during tubulogenesis.

We find that the tracheal mutant, ichor (ich), previously identified in a forward genetic

screen [67], compromises seamless tube shape and integrity by disrupting the aECM. We

determined that ich mutations are loss of function alleles of the uncharacterized gene

CG11966, which encodes a putative zinc finger transcription factor. Expression of ich coin-

cides spatially and temporally with cuticle production, and ich is essential for aECM assembly,

including of the lumenal matrix lining terminal cell lumens. Further, we show that Ich func-

tions as a transcriptional activator in terminal cells and identify aECM components whose

expression is Ich-dependent. Taken together, these data suggest a role for Ich in coordinating

the assembly or modification of the aECM, and demonstrate that the aECM plays a crucial

role in seamless tube shape and integrity.
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Results

ichor (ich) is required for terminal cell seamless tube shape and integrity

A single mutation in the gene ichorous, here renamed ichor (ich) to avoid confusion with the

vertebrate zinc finger transcription factor, ikaros, was identified on the basis of a terminal cell-

specific gas filling defect (Fig 1A and 1A’, S1E–S1G’ Fig) in a genetic mosaic screen [67]. In

contrast to neighboring heterozygous control terminal cells, GFP-labeled terminal cells homo-

zygous for ich (see Materials and Methods) lack gas-filled seamless tubes. This phenotype indi-

cates that ich terminal cells are defective in some aspect of tube formation and/or liquid

clearance. To determine whether ich terminal cells lacked lumens, or instead contained fluid-

filled lumens, a fluorescent reporter, lum-GFP, was utilized and found to be secreted into a liq-

uid-filled lumenal space [67]. To further characterize the seamless tube defects, we expressed a

genetically encoded chitin reporter [68] in heterozygous control cells (ich206/+) and GFP-

labeled ich206 clones (Fig 1B and 1C”). Third instar larvae were heat-killed and examined in

whole-mount preparations. In control terminal branches (Fig 1B–1B”), ChtVis-Tdtomato was

observed bounding gas-filled lumens as well as in the fluid-filled tips of terminal branches (Fig

1B’ and 1B”), indicating ChtVisTdTomato labels the cuticle-lined gas-filled lumens as well as

fluid-filled lumens. In contrast, ChtVis-Tdtomato in ich terminal cells outlines fragmented

and discontinuous lumens (Fig 1C–1C”).

Discontinuities were present throughout the terminal cell; for example, in proximal regions

connecting the terminal cell to the neighboring stalk cell (Fig 1C), and in distal regions near

the growing tips of the cell (Fig 1C”). Staining against a lumenal membrane antigen (anti-Wkd

peptide) [69] showed that in contrast to control (2FRT) terminal cells, which contained patent

tubes with locally uniform morphology (Fig 1D’), ich terminal cells exhibited discontinuous

membrane-bounded lumens (Fig 1E’ and 1F’) with an irregular cystic appearance. Other

defects were noted at a lower penetrance (see S1A, S1A’ and S1D–1D” Fig). Although seamless

tubes first form about 13 hours after egg lay (ael) [11], late stage ich embryos (16 hrs ael and

older, S1B and S1C Fig) did not exhibit defects in initial seamless tube lumen extension, indi-

cating that the tube discontinuities must arise after embryogenesis is complete. Collectively,

these data suggest that ich disrupts multiple aspects of tube morphogenesis in terminal cells,

including seamless tube growth, shape, and integrity.

ichor encodes an uncharacterized zinc finger protein

From the original screen [67], only a single allele of ich (ich206) was isolated. To facilitate map-

ping and gene characterization, an EMS mutagenesis and non-complementation screen was

performed to recover additional ich alleles (see Materials and Methods). We recovered a single

new allele (ich543) that exhibited identical terminal cell defects (Fig 1F–1F’, Fig 2F). Genetically,

ich206 and ich543 behaved as strongly hypomorphic or amorphic alleles (see Materials and

Methods); both were recessive embryonic lethal, and indistinguishable in homozygous and

hemizygous conditions (S1J Fig). Using standard procedures (see Materials and Methods)

we mapped ich to CG11966 (Fig 2A). The CG11966 open reading frame encodes a 592 amino

acid protein with two C2H2-type zinc fingers and a predicted nuclear localization signal

(NLS) (G473-Q483). The ich206 allele carries a non-sense mutation (coding for Q107!Stop)

upstream of the two C-terminal zinc fingers, while the ich543 allele carries a missense mutation

(coding for a H582!Y) resulting in the substitution of a tyrosine residue for a histidine that is

required for zinc ion coordination in the second zinc finger. Combined with our genetic analy-

sis, this suggests that at least the second zinc finger domain is essential for Ich function. Fur-

ther establishing the identity CG11966 as ich, we showed that terminal cells homozygous for a
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small chromosomal deletion [70] uncovering CG11966 (as well as oskar, skap, and CG11964)

(Fig 2B’B’) show the ich phenotype. Likewise, expression of a dsRNA (hereafter ich RNAi) tar-

geting the CG11966 transcript induced terminal cell-specific tube discontinuities (Fig 2C–

2D’). Finally, full-length and flag-tagged ich cDNAs were used to generate transgenic strains

(see Materials and Methods), and expression of wild type CG11966 under control of pan-tra-

cheal btl-GAL4 [71] was able to rescue seamless tube continuity in ~67% of ich mutant clones

(Fig 2E and 2F). Interestingly, expression level-dependent gain of function defects in morphol-

ogy, including terminal cell pruning (Fig 2E and S2C–S2D’ Fig), were also observed.

Ichor is essential for the generation of mature aECM

To better understand ich function during tracheal development, we sought to characterize its

expression pattern during embryogenesis. Though our genetic mosaic analysis indicated ich is

required cell-autonomously in the trachea, previously published RNA in situ data [72] do not

show ich expression in the trachea, suggesting ich may be weakly expressed. We used a LacZ

enhancer trap, P{PZ}l(3)05652, at the ich locus to better characterize ich expression in the tra-

chea and other tissues. From 9–15 h ael, the ich::nLacZ transcriptional reporter was expressed

specifically in ectodermally-derived epithelia, including the trachea, that secrete cuticle (S3

Fig). This expression pattern was consistent with a role for Ich in aECM assembly and/or mod-

ification, which was further supported by the observation that ich transcripts are expressed

during cuticle deposition in the pupal wing epithelium [73].

To investigate further, we asked whether ich embryos, like embryos with known defects in

the production of a mature aECM (cuticle), would appear grossly inflated in cuticle prepara-

tions–the “blimp” phenotype, which reflects an increased elasticity (compare Fig 3A and 3A’)

[74]. Both ich206 and ich543 embryos exhibited mild “blimp” defects in cuticle preps (Fig 3B’)

as well as reduced sclerotization of the head skeleton and ventral epidermal denticles (Fig 3B’

and 3C’), which are also characteristic of aECM defects. These defects were milder than

those observed in embryos mutant for chitin synthase, suggesting that ich embryos are not

completely chitin deficient.

In the tracheal system, a chitin filament is generated prior to the mature cuticle, and plays

an essential role in tube expansion [57–59]. We find that the production of the chitin filament

is unaffected in ich embryos (S4 Fig), consistent with ich not being required for chitin

synthesis.

Though Ich is dispensable for tracheal specification, branching, and lumen growth during

embryogenesis, pan-tracheal depletion causes a liquid-clearance defect and breaks in the mul-

ticellular dorsal trunk tubes in first instar larvae (S1H and S1I’ Fig). Since tracheal cuticle

assembly is required for gas-filling [64] and tracheal tube integrity [12,75], we next visualized

the ultrastructure of the tracheal cuticle in larval terminal cells using transmission electron

microscopy (TEM). Wild-type terminal branches have locally uniform lumens lined by a cuti-

cle organized into taenidia (Fig 3D). By contrast, terminal branches in ich-depleted cells have

irregularly-shaped lumens devoid of taenidia and instead occluded with electron-dense

Fig 1. Mutations in ichor (ich) disrupt seamless tube integrity and shape in larval terminal cells. (A,A’) In a genetic mosaic third instar larva,

GFP-labeled ich206/206 terminal cells (green) are visualized next to GFP-negative control terminal cells (ich206/+, asterisk). All tracheal nuclei are

labeled (blue). Fluorescent images are superimposed on brightfield. Gas-filled tubes appear as dark lines; the ich206/206 terminal cells lack gas-filled

tubes (arrow marks intercellular junction between ich terminal cell and wild type stalk cell). (B-B”) In control terminal cells, ChtVis-TdTomato (red)

labels cuticle-lined gas-filled tracheal tubes (B’, B”) as well as fluid-filled lumens found at the tips of terminal branches (arrowheads in B’, B”). In

ich206/206 terminal cells (C), ChtVis-TdTomato accumulates in discontinuous, fluid-filled tubes (C’C”). (D-F) The apical membranes in wild-type (D,

D’) and ich (E-F’) seamless tubes is visualized by an antiserum raised against a Whacked peptide [69]. In contrast to the continuous apical

membranes in control (D,D’), ich terminal cell tubes display numerous apical membrane discontinuities and regions of cystic apical membrane

(arrowheads in E’, F’). (Scale Bars: A, A’, B, and C 50 μm; B’-B”, C’-C” 10 μm; D-F’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g001

An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007146 January 8, 2018 6 / 34

https://doi.org/10.1371/journal.pgen.1007146.g001
https://doi.org/10.1371/journal.pgen.1007146


An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007146 January 8, 2018 7 / 34

https://doi.org/10.1371/journal.pgen.1007146


material (Fig 3E). The electron-dense material may represent mis-assembled matrix material.

These phenotypes indicate that Ich is required for lumenal matrix assembly in seamless tubes

and suggest that seamless tube shape requires a properly assembled lumenal matrix. Insofar as

Ich is dispensable for chitin filament formation, we suggest that Ich functions in the trachea as

a specific regulator of the mature aECM (cuticle).

Ichor functions as a transcriptional activator

Since the ich locus had not been previously characterized, we next sought to address Ich molec-

ular function. To test the hypothesis that Ich acts as a transcription factor, we first examined

the subcellular localization of a functional (Fig 2E) Flag-tagged isoform of Ich. UAS-Flag-Ich

was expressed in terminal cells using the GAL4/UAS two-component system [76]. To limit

over-expression phenotypes, we utilized a tubGAL80ts transgene [77] and shifted temperature

to permit Flag-Ich expression only in third instar larvae (Fig 4A–4A”). As predicted for a tran-

scription factor, Ich localizes at steady-state to terminal cell nuclei (Fig 4A’ and 4A”). To test

whether Ich functions as a transcriptional activator, we assayed the rescuing activity of an Ich-

VP16 chimera. The chimeric protein consisted of the putative DNA binding domain of Ich

(the Ich zinc fingers) fused to the transcriptional activation domain of the viral protein VP16

[78] (Flag-VP16-IchDBD, Fig 4B). An exogenous NLS was introduced to ensure nuclear locali-

zation of the Flag-VP16- IchDBD chimera (Fig 4C’). Expression of Flag-VP16-IchDBD in

ich206 terminal cells restored seamless tube continuity in 84% of cells (n = 46 cells) (Fig 4C”,

Fig 2F). This result indicates that the essential terminal cell function of Ich is as a transcrip-

tional activator. Consistent with this hypothesis, a fusion of the GAL4 DNA binding domain

to full-length Ich (GAL4DBD-Ich) induced transcriptional activation of an artificial UAS-Lu-

ciferase reporter construct in S2 cells [79]. If Ich functions primarily as a transcriptional activa-

tor, then we predicted that ectopic recruitment of repressive machinery to Ich target genes in

terminal cells would phenocopy ich loss-of-function. We expressed a chimeric Ich consisting

of the Engrailed transcriptional repressor domain [80] fused to the Ich zinc fingers (EnR-

IchDBD-Flag, Fig 4B), and found that EnR- IchDBD-Flag localized to the nucleus of terminal

cells (S2B and S2B’ Fig) and induced ich-like tube discontinuities in 98% of cells (n = 42 termi-

nal cells) (compare Fig 4D and 4D’ with Fig 4E and 4E’; Fig 2F). Importantly, the phenotypes

caused by overexpression of EnR- IchDBD-Flag are distinct from those caused by overexpres-

sion of full-length Ich (see S2 Fig).

A requirement for chitin in seamless tubes

The best-characterized component of the insect aECM is chitin [66, 74, 81–83]; however, its

requirement in seamless tubes has not been directly examined. While ich is not required for

the chitin filament in embryonic development, we wished to determine if the ich seamless tube

defects in terminal cells derive from the loss of chitin in the mature aECM. We turned to muta-

tions in kkv, which encodes the sole tracheal chitin synthase. The short-of-breath (sob) alleles of

kkv, were identified by their gas-filling defects (S5A and S5A’ Fig) [67], but had not been more

Fig 2. ichor encodes a zinc finger protein. (A) Domain map of Ichor polypeptide and position of EMS-induced lesions. (B-B’) In contrast to internal

control (Df(3R)osk/+) seamless tubes (arrowheads in B’), GFP-labeled Df(3R)osk terminal cell clones exhibit ich-like apical membrane discontinuities.

Apical membrane in B-D is detected using anti-Wkdpep sera. Outline of Df(3R)osk/Df(3R)osk terminal cell shown as green dotted line. (C-D’)

SRF>eGFP wild-type control terminal cells exhibit a patent seamless tube (C-C’), whereas SRF>eGFP, CG11966 RNAi terminal cells (D-D’) contain

discontinuous blind-ended tube fragments. Terminal cell outline shown as green dotted line. (E-F) Restoring expression of full-length CG11966 cDNA

in ich terminal cells rescues the ich206 discontinuous tube defect, as observed by visualizing apical membranes with aPKC staining (E, E’). (F)

Quantification of rescue experiments using Ich transgenes (P = 8.82 x 10−17 for UAS-ich, P = 1.83 x 10−12 for UAS-flag-ich, P = 2.01 x 10−18, using one-

sided Fisher’s exact probability test). (Scale Bars: B,C,D,E 20μm; B’, C’,D’, E’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g002
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thoroughly examined. We now report that the transient chitin filament normally present in

the embryonic tracheal lumens cannot be detected in kkvsob404 and kkvsob483 embryos (S5D–

S5G’ Fig), which displayed the cystic dorsal trunk defect (S5H–S5L Fig) characteristic of kkv1

embryos [57, 58]. All 6 sob alleles carry point mutations predicted to disrupt the kkv coding

sequence (Fig 5A) and two of these seemed likely to be null for kkv function. The kkvsob404

allele carries a non-sense mutation predicted to truncate the open reading frame after 147

Fig 3. Ichor is required for assembly of the mature aECM. Cuticle preparations of heterozygous control (A-C) and homozygous mutant kkvsob483 (A’),

ich206 (B’), and ich543 (C’) St.17 embryos or first instar larvae. Chitin-deficient embryos (A’) exhibited a bloated cuticle and degenerated head skeleton

(arrowhead in A’). The ich embryos exhibited a mild bloated phenotype as well as cuticle defects distinct from chitin-deficient embryos. The head skeleton

(arrowheads in B’, C’) appeared intact but poorly pigmented. Other cuticular structures, such as the epidermal denticles (arrows in B’, C’) and spiracular

chambers (white arrows in B’, C’), were also poorly pigmented in ich mutants. By contrast, chitin synthesis is not absolutely required for pigmentation of the

head skeleton remnants (arrowhead in A’), denticle belts (black arrow in A’), or spiracular chambers (white arrow in A’). (D, E) Longitudinal sections of

control (btl>GFP, D) and ich RNAi (SRF>eGFP, ich RNAi; E) first instar (L1) terminal cell tubes visualized by transmission electron microscopy (TEM).

Control terminal cell branches contain tubes (�) of locally uniform dimensions lined by an electron-dense aECM (cuticle). The arrowhead in D points to a

clearly defined taenidium with an electron-luscent chitinous core. By contrast, the lumens (�) of ich RNAi terminal branches adopt a highly irregular

morphology (red dashed line). These lumens are devoid of taenidiae and instead are occluded with disorganized electron-dense material. (Scale Bars: D,

E = 500 nm).

https://doi.org/10.1371/journal.pgen.1007146.g003
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Fig 4. Ichor functions as a transcriptional activator in terminal cells. (A-A”) tubGAL80ts; SRF>eGFP, FLAG-Ich
larvae were upshifted to the restrictive temperature around the start of the third larval instar to induce GAL4-

dependent FLAG-Ich expression. FLAG-Ich accumulates at steady-state in the nucleus of terminal cells (A’, A”). (B)

Domain organization of FLAG-VP16AD-IchDBD and EnR-IchDBD-FLAG chimeras is schematized. VP16AD (orange)

is a potent transcriptional transactivating domain from a viral protein, while EnR (purple) is the transcriptional

repressor domain of the Engrailed transcription factor. IchDBD (blue) is the C-terminal portion of the Ich protein that

includes the zinc finger domains (red) presumed to confer DNA binding. (C-C”) ich206 MARCM terminal cell clones

expressing UAS-FLAG-VP16AD-IchDBD transgene. By virtue of an exogenous nuclear targeting sequence (see B,

green), FLAG-VP16AD-IchDBD chimera accumulates in the nucleus (C, C’), restoring seamless tube integrity (C”), as

observed by staining for the apical marker aPKC. (D-E’) Wild-type control SRF>eGFP (D-D’) and SRF>eGFP,

EnR-IchDBD-FLAG (E, E’) terminal cells. The EnR-IchDBD-FLAG chimera behaves like an Ich dominant negative,

inducing the ich loss of function phenotype. In contrast to the fully patent lumens of control terminal cells (D’),

SRF>eGFP, EnR-IchDBD-FLAG terminal cells exhibited blind-ended, discontinuous lumens similar to ich mutant

terminal cells. (Scale Bars: A, C, D, E 20 μm; A’ and A”, C’ and C”, D’, E’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g004

Fig 5. The aECM component chitin is essential for seamless tube shape and integrity. (A) Schematic of the kkv gene and the encoded Chitin Synthase protein structure

with the position of the sob mutations indicated. (B-B”) kkvsob404 null terminal cell clone (green) exhibited apical membranes with cystic, irregular morphology. For the

areas marqueed in white, the apical membrane is shown enlarged in (B’, B”) as indicated. Terminal cell outlines in B’, B”, C‘, D’ are shown by green dots. In (C) and (D),

kkvsob483 and kkvsob761 clones, respectively, are shown. In distal terminal branches (B”, D ‘), discrete apical membrane cysts (arrowheads) are interspersed with tube of

apparently normal morphology. (C-D’) limited regions of discontinuous apical membrane (C’,D’) were also observed with all kkv alleles. (E) Penetrance of tube

phenotypes for the kkvsob404 null allele and kkvsob483, a putative recessive antimorphic allele (P<0.0001, Chi-Square test). (Scale Bars: B, C, D 20 μm; B’,B”, C’, D’ 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g005
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amino acids (Fig 5A) and the kkvsob483 allele disrupts a conserved nucleotide in the splice

donor site just upstream of the second intron, predicted to result in a S48!R missense muta-

tion followed immediately by an in-frame stop codon. By genetic assays (S5H–S5L Fig, see

Materials and Methods), kkvsob404 behaved as a strong hypomorphic or null allele, whereas

kkvsob483 exhibited recessive antimorphic properties (or else carries a second-site modifier).

If a loss of chitin synthesis underlies the ich tube defects in terminal cells, then chitin-defi-

cient terminal cells should phenocopy ich mutants. The apical membrane in kkvsob terminal

cells was cystic (cysts marked by arrowheads), showing irregular contours (Fig 5B, 5B” and

5C’), in contrast to the smooth, locally uniform apical membrane of control terminal branches

(Fig 1D and 1D’). In addition, kkv terminal branches contained apical membrane discontinui-

ties, albeit with limited penetrance and expressivity (Fig 5C’ and 5D’). The penetrance of these

discontinuities varied with the kkvsob allele used (Fig 5E): whereas kkvsob404 terminal cell clones

exhibit discontinuities in ~12% of terminal cells examined (n = 38), kkvsob483 clones exhibit

discontinuities in ~52% of terminal cells examined (n = 28). This difference in penetrance is

consistent with the analysis of allele strengths described above (S5H–S5L Fig). Additionally,

while multiple terminal branches per cell showed discontinuities in ich terminal cells, disconti-

nuities in kkvsob terminal branches were typically limited to a single branch per cell. We con-

clude from these studies that a chitin-based aECM is required for seamless tube shape, and

that it also contributes to tube integrity while not being absolutely essential. Interestingly, this

suggests that other Ich-dependent aECM components may play chitin-independent roles in

the maintenance of tube integrity.

Ich regulates expression of factors important for mature aECM assembly

Since the transcriptional targets of Ich regulation are not known, we sought to identify candi-

date genes. To focus our search, we utilized two previously published RNAseq data sets, one

from the modENCODE consortium [84] and one from the Adler lab, which generated a sys-

tematic RNAseq data set across the stages of cuticle deposition in the pupal wing [73]. We rea-

soned that ich target genes would be co-expressed with ich, and might be enriched in the

overlap of the ich co-expression clusters from each data set. We manually selected 4 genes,

each expressed in the embryonic trachea, to examine for ich-dependent expression: ectodermal
(ect), osi18, osi19, and CG8213.

Ect is an apically secreted protein expressed exclusively in chitin-secreting epithelia (S6A–

S6D Fig) [85]. Depletion of ect in the pupal wing epithelium causes defects in cuticle assembly

[73], suggesting Ect is a structural component of chitin-based cuticles. Although ich is dispens-

able for tracheal expression of ect (S6B and S6C–S6F Fig), ich is required for full ect expression

in the foregut primordium and the epidermis.

Like all Osiris family members (24 in total), Osi18 and Osi19 are small proteins with pre-

dicted signal peptides and transmembrane domains [86]. Gene expression studies suggest Osi-

ris family members may play a role in aECM assembly [73, 87], perhaps by affecting one or

more steps of membrane trafficking [88]. Expression of osi18/19 mRNA initiates ~10h ael spe-

cifically in the trachea. Consistent with a role for Osi18/19 in tracheal aECM maturation,

osi18/19 expression is coincident with aECM secretion and modification (S7 Fig). Wild-type

ich function is essential for the expression of both osi18 and osi19. Embryos mutant for ich
(ich206/Df(3R)osk) exhibit a delay in the onset of osi18/osi19 expression in the trachea (compare

Fig 6A with 6D, 6B with 6E, Fig 6G with 6J and 6H with 6K). By ~15h ael osi18 and osi19
mRNA are readily detected in the dorsal trunks of ich206/Df(3R)osk embryos (Fig 6F and 6L)

although expression in other tracheal branches remains severely reduced as compared to con-

trol siblings (compare Fig 6C with 6F and 6I with 6L). That osi18 and osi19 expression in the
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Fig 6. Ichor is required for the pan-tracheal expression of osi18 and osi19. Expression of osi18 mRNA (A-F) was examined in sibling (WT; A-C) and ich206/Df(3R)osk
embryos (D-F) by in situ hybridization. Expression of osi19 mRNA (G-N) was examined in siblings (G-I) and ich206/Df(3R)osk embryos (J-L) by in situ hybridization. In

contrast to the wild type control heterozygous siblings (A-C and G-I), ich206 hemizygotes (D-F, J-L) lacked osi18 and osi19 expression throughout the trachea. However, by

late Stage 16 (F, L) osi18 and osi19 mRNA became detectable in the multicellular dorsal trunks branches of the tracheal system. Stage 16 control (2Xbtl>GFP) embryos (M)

detected the expected pattern of osi19 mRNA expression in contrast to embryos (N) expressing a transcriptional repressor domain (EnR) fused to the Ich DNA binding

domain (IchDBD). The embryos expressing the Ich chimera (2Xbtl>GFP, EnR-IchDBD) exhibited pan-tracheal reduction of osi19 mRNA.

https://doi.org/10.1371/journal.pgen.1007146.g006
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dorsal trunks eventually becomes strong in the absence of ich, suggests that other transcrip-

tional regulators expressed in the dorsal trunk can compensate. Consistent with this hypothe-

sis, recruitment of repressive transcriptional machinery to ich-regulated loci through the

tracheal expression of EnR-IchDBD-Flag confers a complete loss of dorsal trunk osi19 expres-

sion (compare Fig 6N with 6M), suggesting that Ich is part of a network of transcription factors

controlling gene expression during maturation of the tracheal aECM.

The ich candidate target gene, CG8213, encodes a transmembrane protease. RNAi studies

in the pupal wing epithelium implicate CG8213 in cuticle assembly [73]. The expression pat-

tern of CG8213 during embryogenesis is highly reminiscent of ich (Fig 7A–7D). To determine

whether Ich is required for CG8213 expression in embryonic trachea, ich206/ich543 embryos

and sibling controls (ich206 or ich543/+) were examined by in situ hybridization. While sibling

controls (Fig 7F and 7F’) showed the expected wild type pattern, ich206/ich543 embryos showed

a loss of both pan-tracheal (arrowhead Fig 7G) and hindgut (arrowhead Fig 7G’) expression of

CG8213. Foregut expression (Fig 7G’) of CG8213 persisted in ich mutant embryos, and thus is

independent of Ich function and also serves as a convenient internal control. Tracheal expres-

sion of CG8213 in ich206/ich543 embryos was restricted to a small number of cells at the poste-

rior spiracle, indicating that Ich is required (either directly or indirectly) for the induction of

CG8213 expression in the trachea.

As an independent confirmation of this result, we found that pantracheal expression of the

dominant negative Ich transgene (EnR-IchDBD-Flag) produced a tissue-autonomous reduc-

tion in CG8213 expression. Indeed, while control embryos showed prominent tracheal expres-

sion of CG8213 by ~11h ael (arrowhead, Fig 7H), embryos with pan-tracheal expression of

EnR-IchDBD-Flag showed a loss of CG8213 transcript exclusively in the trachea. As in ich206/

ich543 mutants, tracheal expression of CG8213 persisted only in the posterior spiracles (arrow-

head, Fig 7I).

We next sought to determine whether loss of CG8213 could account for the ich terminal

cell defects. Terminal cell-specific knockdown, using either of two independent RNAi lines,

induced numerous apical membrane discontinuities along each branch (Fig 8B–8B”), as well

as seamless tube cysts (arrowheads. Fig 8B”). In light of these findings, we rename CG8213
lumens interrupted (lint). In addition, ~21% of terminal cells (n = 33) exhibited a dramatic

decrease in branch number, with the remaining terminal branches containing only isolated

inclusions of apical membrane (Fig 8C and 8C’), suggesting a defect in the addition of apical

membrane in these terminal branches—similar to the most severe lumen defect observed in

ich terminal cells (S1B and S1B’ Fig). We confirmed the specificity of these RNAi phenotypes

by targeting the lint locus region using the CRISPR/Cas9 system (Fig 8D) [89]. Though we did

not isolate alleles that deleted the entire coding region by targeting both gRNA sites, we iso-

lated a lint mutant allele (lintΔ4.64) that behaves genetically as a loss-of-function (see Materials

and Methods). We found that lintΔ4.64 terminal cells clones exhibited discontinuous lumens

(Fig 8D, 8E and 8G) similar to those observed in RNAi experiments, in clones homozygous for

a non-complementing, recessive lethal transgene insertion at lint (Fig 8F and 8G), and in ich
clones. We propose that Lint acts downstream of Ich to regulate seamless tube growth and/or

maintenance.

To further test if lint is the essential target of Ich regulation in tracheal morphogenesis, we

asked whether expression of a lint cDNA could bypass a tracheal requirement for ich. Overex-

pressing lint in otherwise wild-type terminal cells caused liquid-clearance defects (S8A and

S8A’ Fig), but did not impact terminal branching or lumen morphogenesis (S8B and S8B’ Fig)

with the exception of a few small tube dilations observed in some, but not all, cells (arrowheads

in S8B’ Fig). Expression of lint in ich206 terminal cells restored seamless tube integrity and

shape at a low very low frequency (2% of clones, n = 103, P = 0.5, one-sided Fisher’s exact
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probability test; S8E Fig). The limited rescue observed was expression level-dependent, as no

rescue was observed when larvae were raised at 25˚C (n = 53 clones; S8E Fig), but the elevated

transgene expression observed at 29 oC led to 2% rescue (n = 103 clones, S8D and S8E Fig).

Based on these results, we conclude that Ich regulates terminal cell aECM assembly, at least in

part, by promoting (directly or indirectly) the expression Lint, a secreted protease that may act

in the processing of lumenal matrix proteins.

Discussion

While extracellular matrices coating the basal aspects of epithelia have long been known to

play key roles in organ development and morphogenesis, any potential role of extracellular

matrices lining the apical or lumenal aspects of epithelia (aECM) have, by comparison, been

largely neglected. Critical gaps in knowledge include: what the components of the aECM are,

how they interact with each other and with the apical membrane during assembly, how they

are modified over time, and how the aECM regulates morphogenesis and is altered under

varying physiological conditions or in disease. In this study we identify an essential role for the

aECM in maintaining the shape and integrity of seamless tubes (S9 Fig). Tracheal terminal

cells lacking the transcriptional activator Ichor, or its downstream target, Lumens Interrupted,

exhibited discontinuous seamless tube fragments, in which the segments of tube that remained

intact showed pronounced cystic dilations. TEM analysis demonstrates that aECM organiza-

tion is compromised in ichor deficient larva. Further supporting the hypothesis that it is the

aECM factors downstream of Ichor that are relevant to seamless tube morphogenesis, we show

that the elimination of chitin, the most abundant aECM component in insects, is sufficient to

compromise seamless tube shape and, to a lesser degree, integrity.

Our findings further strengthen the conclusion, prompted by previous studies in nema-

todes and flies, that the aECM is important for maintaining epithelial integrity. In C. elegans
embryos, the so-called sheath at the apical surface of the epidermis maintains epidermal integ-

rity during cell shape changes that elongate embryos along their anteroposterior axis [90–93].

In the Drosophila trachea [54] and C. elegans excretory system [91], lumenal matrices form

scaffolds that maintain the integrity of intercellular contacts joining unicellular tubes.

Do lumenal matrices regulate seamless tube integrity in vertebrates? Endothelial cells

secrete a lumenal matrix known as the glycocalyx, which has been implicated in lumen expan-

sion in multicellular blood vessels [40]. In endothelial tip cells, blood flow is required to

expand seamless tubes [9,10]. Interestingly, during this initial lumen growth, seamless tube sta-

bility is quite labile, undergoing temporary collapse during changes in blood pressure [9, 10].

The endothelial glycocalyx, which promotes lumen expansion through electrostatic repulsion

of lumenal surfaces [40], is still maturing at the onset of blood flow [94]. It is possible that an

Fig 7. Ichor is required for CG8213 expression in the trachea (A-D) Wild-type w1118 embryos hybridized with DIG-labeled

antisense (A-C’) and sense (D) CG8213 RNA probes. CG8213 expression is first detected at St. 13 in the posterior spiracles

(arrowhead in A, A’) and foregut primordium (arrow in B). By St. 15, CG8213 is expressed specifically in cuticle-secreting epithelia,

including the trachea (black arrowheads in C), foregut (arrow in C’), hindgut (white arrowhead in C’), and epidermis (see asterisks in

F’, I). This signal is specific since a sense probe (D) shows no such pattern. (E) Transcripts and polypeptide encoded by CG8213 locus.

Black bar denotes position of RNA probes, designed to detect all spliceoforms. (F-G’) ich206/ich543 mutant (G, G’) and control siblings

(F,F’) hybridized with antisense CG8213 RNA probe. Whereas control siblings show a WT CG8213 expression pattern, ich mutant

embryos exhibited a significant reduction or loss of CG8213 expression in the trachea. Only a subset of cells in the posterior spiracles

(black arrowhead in G) retain CG8213 expression. Hindgut expression (white arrowhead in G’) is also reduced. (H-I) 2Xbtl>GFP (H)

and 2Xbtl>GFP, EnR-IchDBD embryos hybridized with antisense CG8213 probe. Whereas control embryos (H) expressed CG8213
prominently in the major dorsal trunk (black arrowhead in H) of the trachea, tracheal-autonomous expression of the dominant-

negative Ich transgene caused a loss of tracheal expression; only cells in the posterior spiracles retain CG8213 message, similar to ich
loss-of-function phenotype. CG8213 expression in the epidermis (asterisk in I), foregut (arrow in I), and hindgut (white arrowhead in

I) is unaffected, indicating a tracheal-autonomous loss of expression.

https://doi.org/10.1371/journal.pgen.1007146.g007
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immature glycocalyx contributes to seamless tube collapse during vessel anastomosis. Alterna-

tively, the glycocalyx, a known mediator of shear stress response in endothelial cells [95], could

help transduce hemodynamic mechanical signals needed to promote the inward blebbing of

lumenal membrane in endothelial tip cells [10]. It would be interesting to determine whether

an intact glycocalyx is a prerequisite for stable lumen expansion in endothelial tip cells.

The mechanisms by which the aECM promotes tube integrity in seamless tubes are not

known. We favor two non-exclusive possibilities: first, we propose that the aECM may serve as

a scaffold capable of dissipating tension along the apical membrane, and second, we propose

that the lumenal matrix may play a more direct role in regulating the growth of seamless tubes.

In Drosophila terminal cells that ramify over areas of 100s of square microns, seamless tubes

are likely under considerable tensile stress. These tensile forces are far from static, changing in

both magnitude and direction during tube growth as well as during larval locomotion. Against

such dynamic tensile strain, tube integrity must be maintained for proper gas-exchange. In

larger tube types (autocellular and multicellular), cell junctions are thought to serve as a critical

counter force resisting tensile stress; however, along the length of seamless tubes there are no

cell junctions. The aECM, with its physical connections to the apical membrane, is ideally posi-

tioned to distribute the forces along the length of the tube and in that manner perhaps avoid

local forces strong enough to fragment the tube.

We also think it likely that the aECM plays a more informative role in regulating tube

growth. In gain-of-function experiments, Ich overexpression arrested the growth of seamless

tubes in terminal cells without perturbing lumen continuity. These data suggest that seamless

tube growth in terminal cells is sensitive to the levels of Ich effectors, possibly including

lumenal matrix factors. A model in which a lumenal matrix merely maintains expanded termi-

nal cell lumens cannot readily account for defects in apical membrane biogenesis, suggesting

that components of the aECM may help to organize a membrane platform promoting the

growth of the apical domain in terminal cells. Indeed, in loss of function studies, the most

severely affected ich or lint terminal cells showed scattered inclusions of apical membrane,

consistent with a failure in the addition of new apical membrane to the growing blind end of

terminal cell seamless tubes. This would be consistent with previous work demonstrating that

the aECM and the cortical actin meshwork underlying the apical membrane are in communi-

cation [58, 96, 97].

The question of how aECM change and mature over time is also one that applies broadly

across tubular organs and phyla. For example, in order for the mammalian lungs or the Dro-
sophila tracheal system to become functional, their lumens must transition from fluid-filled to

gas-filled. Conserved mechanisms mediate this transition, such as liquid and salt reabsorption

via epithelial Na+ channels [98–102]. The transition from fluid-filled to gas-filled lumens also

entails secretion and modification of a lumenal matrix. The ichor mutant has a specific defect

Fig 8. lumens interrupted (lint) is required for seamless tube integrity in terminal cells. Wild type (WT, SRF>eGFP) control

(A-A”) and short hairpin RNA against CG8213 expressing terminal cells (B-B”) were examined for apical membrane integrity. In

contrast to control terminal branch seamless tubes (A’, A”), seamless tubes in lint-depleted terminal cells exhibit cystic dilations

(arrowheads in B”), and discontinuities of the apical membrane with 100% penetrance (n = 33 terminal cells) (B’.B”). The most

severely affected SRF>eGFP,CG8213 RNAi terminal cells are severely pruned with terminal branches largely devoid of luminal

membrane, except for isolated inclusions. Terminal cell outlines are shown by green dots (C,C’). (D-D”) Details of lintΔ4.64 seamless

tube defect from a mCD8-GFP-expressing terminal cell clone. The outline of the terminal cell is indicated by green dots. The

seamless tubes of a neighboring heterozygous terminal cell (mCD8-GFP negative) are shown in (E’). The gRNA sequences used to

target lumens interrupted (lint) using CRISPR/Cas9 are indicated in (G) on a schematic depicting lint gene organization with CDS in

white and UTR sequences in black. The gRNA site indicated in red appears to be the site targeted by Cas9. (F) Detail of a lintMI04680

terminal cell clone expressing membrane-anchored GFP, which accumulates preferentially at the apical membrane. The arrows

indicate discontinuities in the apical membrane. The position of the lethal transgene insertion is indicated in (G). (Scale Bars: A, B

20 μm; A”, B”, C and C’, D-F 5 μm).

https://doi.org/10.1371/journal.pgen.1007146.g008
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in tracheal tube maturation without affecting earlier tracheal morphogenesis. Others [64, 75,

103] have reported that mature aECM assembly is required for tracheal liquid clearance and/

or gas-filling. In our mosaic analysis, we found ich to be required only in larval terminal cells

but to be dispensable for tracheal specification, branching, and lumen morphogenesis during

embryogenesis. On the other hand, pan-tracheal knockdown of ich blocked tracheal gas-filling

and resulted in one or more breaks in the dorsal trunks of first instar lavae, suggesting a tissue

autonomous but non-cell autonomous role of Ich in larger tubes (presumably reflecting

lumenal secretion of Ich target genes). Thus ich is broadly required during the maturation of

the trachea at the end of embryogenesis or shortly after hatching. This phenocritical phase for

ich coincides with tracheal aECM maturation (cuticle deposition) and fits with our EM data

demonstrating that aECM is disorganized in the trachea of larvae deficient for ich. The mature

tracheal aECM is thought promote the liquid-to-gas transition by promoting de novo gas bub-

ble generation via cavitation [103]. By this process, a column of lumenal liquid must be rup-

tured at some point to generate a gas-bubble, requiring a decrease in the pressure gradient

required to rupture the liquid column at the liquid-cell interface (also called tensile strength).

Both the hydrophobic envelope layer of the cuticle, as well as its convoluted taenidial folds, at

the surface-liquid interface are predicted to decrease the tensile strength of the lumenal fluid

[103]. Tracheal gas-filling takes place with temporal and spatial stereotypy [17], implying the

execution of an equally stereotyped developmental program. We propose that Ichor helps

ensure this timely transition by initiating the transcriptional activation of a suite of genes pro-

moting mature aECM assembly.

Maintaining gas-filled respiratory lumens in insects and mammals is most critical in the

finest lumenal spaces, such as lung alveoli and tracheal terminal cells. In the mammalian

lungs, the fine lumens of alveoli impose high surface tension at the air-liquid interface, threat-

ening collapse of these air-filled lumens. To prevent the collapse of these fine lumens, special-

ized pneumocytes secrete a matrix of phospholipids and proteins that form a lumenal

surfactant matrix [104]. Failure to clear lumenal lung liquid or secrete the surfactant matrix

underlies lethal respiratory distress syndromes in neonates. The fine lumens of terminal cells

exhibit variable regions of fluid-filling, especially at the tips of terminal branches where the

lumens are finest [67,105]. Analogous to the alveolar spaces of mammalian lungs, the fine

lumenal spaces of Drosophila terminal branches may impose high surface tension in a surface-

associated aqueous phase, causing the collapse of gas-filling in limited portions of terminal

branches. An Ich-dependent lumenal matrix may be required to limit the expansion of these

fluid-filled regions throughout the terminal cell, by reducing the surface tension in a lumenal-

surface-associated aqueous phase.

Modifications to a lumenal matrix are a conserved process underlying the functional matu-

ration of tubular organs. In the Drosophila trachea [57–59, 81] and C. elegans excretory system

[41, 91, 106, 107] transient aECMs give way to stable ones at the completion of embryogenesis.

However, the developmental signals controlling such matrix reorganizations remain poorly

understood. In the trachea, this process presumably entails the upregulation of enzymatic pro-

cesses, such as proteolysis and chitin hydrolysis, at the end of embryogenesis to clear the chitin

filament. Endocytosis is then required to clear material from tracheal lumens [17]. We propose

that Ichor and its as-yet-unknown cooperating transcription factors (see above) help initiate

stable aECM assembly in the trachea by transcriptionally activating a suite of genes, such as

Lint, involved in cuticle biogenesis.

While zinc finger transcription factors are abundant throughout the animal kingdom, Ich

does not have clear orthologs beyond insects; however, the aECM targets whose expression Ich

regulates may be more closely conserved. The domain organization of Lint, for example, is

similar to that observed in a family of vertebrate type II transmembrane serine proteases
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(TTSPs). Vertebrate TTSPs are defined structurally by an N-terminal single-pass transmem-

brane domain separating a short cytosolic domain from a larger extracellular domain contain-

ing a trypsin protease domain at its C-terminus [108]. Genome sequencing in mouse and

humans has identified ~20 TTSPs in mouse and humans. Lint shows 32–37% identity in its C-

terminal trypsin protease domain to multiple mouse and human TTSPs, including TMPRSS11f,

ST14 (Matriptase), TMPRSS9, and mouse TMPRSS11C. Lint differs from canonical TTSPs in

that it lacks the variable array of protein-protein interaction domains found in their extracellu-

lar domains. But, like Lint, vertebrate TTSPs such as Matriptase are expressed broadly in epithe-

lia, suggesting a conserved role for secreted transmembrane proteases in the development or

physiology of epithelial tissues [108]. Indeed, membrane-anchored proteases have a conserved

role in the assembly and maintenance of epithelial barriers. Lint is required for cuticle assembly

in the pupal wing, where it is proposed to play an in instructive role, either directly or indirectly,

in organizing the multi-layered aECM [73]. Similarly, in mice, TTSPs such as Matriptase [109,

110] and TMPRSS11f [111] are essential for the formation and/or function of an extracellular

barrier in the mammalian cornified envelope. The cornified envelope is a complex meshwork

of terminally differentiated non-living keratinocytes, called corneocytes, that are chemically

cross-linked with a heterogeneous array of structural proteins and lipids. Together, these struc-

tures form a water-impermeable barrier preventing unregulated inside-out and outside-in

passage. The cornified envelope serves the same physiological function as the extensively chemi-

cally cross-linked and hydrophobic insect cuticle. The murine Matriptase homolog is thought

to play a role in the secretion of extracellular matrix material needed to maintain epidermal bar-

rier integrity [110]. Our work implicates Lint-mediated lumenal matrix assembly in the integ-

rity of seamless tubes. Interestingly, Matriptase has been implicated in neural tube closure and

angiogenesis [112], suggesting a possible conserved role for membrane-anchored serine prote-

ases in tubulogenesis.

Materials and methods

Fly stocks

To generate GFP-labeled mitotic clones in the tracheal system, the following stocks were

used: ywFLP122; btl>GFP; FRT82B tubGAL80 and ywFLP122; btl>GFP, Wkd-mKate2; FRT82B

P{tubGAL80} and ywFLP122; btl>moeABD-GFP; FRT82B P{tubGAL80} and ywFLP122; FRTG13

P{tubGAL80}; btl>CD8-GFP to generate MARCM clones (Lee and Luo, 2001) or ywFLP122;
btl>GFP,DsRednls;FRT82B UAS-GFPi (Ghabrial et al, 2011); btl>GFP; FRT2A FRT82B and

btl>GFP; FRT82B kkvsob stocks are described in [67]. An FRT82B ich206 sr e ca/TM3 stock was

generated by recombining an FRT82B ich206 chromosome [67] with an isogenic FRT82B cu sr e
ca chromosome. FRT82B ich543/TM2 was recovered from a non-complementation screen (see

below). UAS-ChtVisT-TdTomato was a generous gift from Paul Adler’s lab [68]. w; Df(3R)osk
was a generous gift from Paul MacDonald’s lab (U. Texas at Austin) [70] and was recombined

onto the FRT2A FRT82B chromosome. The P{PZ}l(3)05652 insertion was provided by the Bloo-

mington Stock Center (Bloomington, IN, USA) and was recombined onto the FRT2A FRT82B

chromosome. For RNA interference experiments, the following strains [113] were obtained

through the Bloomington Stock center: y1 sc� v1; P{y[+t7.7] v[+t1.8] = TRiP.HMS02762}attP2
carrying a dsRNA against ich under UAS control; y1 sc� v1; P{y[+t7.7] v[+t1.8] = TRiP.

HMJ22360}attP40 and y1 sc� v1; P{y[+t7.7] v[+t1.8] = TRiP.HMC04037}attP40, expressing inde-

pendent dsRNAs against lint. ru1 th1 st1 Df(3R)3-4/TM3 was provided by the Bloomington

Stock center. A recessive lethal transgene insertion at lint, MI04680, was obtained from Bloom-

ington Stock Center and recombined onto a FRT40AFRTG13 chromosome provided by Bloom-

ington Stock Center. The following GAL4 drivers were used: btl-GAL4 [71], SRF-GAL4 (a gift
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from Mark Metzstein, U. Utah, Salt Lake City, UT, USA), and drumstick-GAL4 [114] (Bloom-

ington Stock Center). For making germline clones of ich, the w�; FRT82B P{ovoD1-18}/st1

βtub85DD ss1 es/TM3 [115] was obtained from Bloomington Stock Center. An isogenic w1118

wild-type strain was obtained from Bloomington Stock Center.

Mosaic analysis

Positively marked clones were generated in the tracheal system as previously described (Ghab-

rial et al, 2011). Briefly, embryos were collected for 4h at 25C, then heat-shocked 1h at 38˚C to

induce FLPase expression. Embryos were aged at 25C until the wandering third instar unless

otherwise indicated. Mosaics larvae were identified using a Leica MZ16F fluorescence stereo-

microscope. Germline clones were generated using the dominant female-sterile technique

[115]: briefly, hsp-FLP122; FRT82B P{ovoD1-18}/FRT82B ich206 sr e ca second and third instar lar-

vae were heat-shocked twice for 2h at 38˚C, over the course of two days. Females with mosaic

germlines were crossed to FRT82B ich206/TM3 twi>GFP males, embryos were collected and

maternal/zygotic null animals identified by lack of GFP expression.

Allele screen

To facilitate mapping of the ich locus, ethylmethanesulfonate (EMS)-induced mutations were

screened for non-complementation of the original ich206 recessive lethal allele [67]. ~50 Males

from an isogenic btl>GFP; FRT2A FRT82B strain were fed 25 mM EMS in a sucrose solution

overnight. These males were then mated to ~100 btl>GFP; Pr hs-Hid/TM3 P{tubGAL80}
females [67]. Eggs were collected over the course of several days, then heat-shocked to kill any

hs-Hid animals. Approximately ~1000 mutagenized FRT2A FRT82B chromosomes were then

screened for the presence of a recessive lethal mutation(s) that failed to complement the tester

chromosome carrying the ich206 allele. One additional allele, ich543, was recovered. This allele

was also for complementation with Df(3R)osk, which uncovers ich, and with P{PZ}l(3)05652, a

hypomorphic P-element induced allele of ich. The ich543 allele failed to complement all of

these independently derived ich-deficient chromosomes.

Mapping and genetic characterization

Mapping studies. Meiotic recombination was used to narrow down the candidate gene

interval on chromosome 3R. FRT82B ich206/TM3 flies were crossed to an isogenic FRT82B cu1

sr1 es ca1 strain (Bloomington Stock Center) to generate FRT82B ich206/FRT82B cu1 sr1 es ca1

females, which were then crossed to ru1 h1 th1 st1 cu1 sr1 es Pri1 ca1/TM6B (Bloomington Stock

Center) males to recover recombinant chromosomes. Recombinant chromosomes were scored

for recessive visible markers and then tested by complementation against the original ich206

mutant chromosome. The map was further refined using chromosomal deletions, and a reces-

sive lethal lesion at 85B7-85B8 was identified. Genomic DNA was isolated from ich206 mutant

embryos (Qiagen DNeasy Blood and Tissue Kit) and subjected to whole-genome sequencing

(Otogenetics, Atlanta, GA). A non-synonymous mutation in the coding region of CG11966 at

cytological position 85B8-85B9 was found. To confirm gene identity, a lethal insertion at

CG11966, P{PZ} l(3)05652, was tested and found not to complement ich lethality. Finally,

genomic DNA from ich543 homozygous embryos was isolated (Qiagen DNeasy Blood and Tis-

sue Kit) and the genomic region encompassing CG11966 was PCR amplified and sequenced.

See S1 Table for a list of primers used. All PCR reactions were carried out using either Taq

DNA Polyerase (Sigma-Millipore) or Platinum Taq DNA polymerase (Invitrogen). Prior to

sequencing, excess primers and nucleotides were removed from the reaction products using

Exo-SAP-IT (Thermofisher Scientific), or desired amplicons were gel-extracted using
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glassmilk (MP Biomedical, Santa Ana, CA, USA). PCR amplicons were sequenced using ABI

sequencers (Applied Biosystems). Sequencing data were analyzed using Sequencher software.

Allele characterization. To characterize ich allele strengths, hatching rates were deter-

mined in various ich mutant allele combinations. Eggs were collected for 16h at 25C and the

embryos were allowed to develop for another 24h at 25˚C. Hatched first instar larvae were

then genotyped by GFP expressed from a TM3 twi>GFP balancer chromosome. Tracheal phe-

notypes were visualized by brightfield in whole-mount larval preparations using a Leica

DM5500 B upright widefield epifluorescence microscope (Leica Mirosystems). Both ich206 and

ich543 are embryonic lethal in homozygotes and hemizygotes in trans to Df(3R)osk. The ich206/
ich543 transheterozygotes showed a slight increase in hatch rate but died during the first instar.

Thus, both ich206 and ich543 alleles behave as strongly hypomorphic or amorphic alleles. By

contrast, viable P{PZ}l(3)05652homozygous larvae with gas-filled trachea hatch at the expected

Mendelian frequency, while P{PZ}l(3)05652hemizygotes showed increased embryonic and

first instar lethality, consistent with P{PZ}l(3)05652behaving as a weak hypomorphic allele.

To characterize kkvsob alleles, genomic DNA from embryos homozygous for each of the

kkvsob alleles was isolated using a Qiagen DNeasy Blood and Tissue kit. The kkv coding region

was amplified by PCR and sequenced using the primers described in S1 Table. To functionally

characterize the putative null alleles kkvsob404 and kkvsob483, the embryonic tracheal phenotypes

of each homoallelic combination was compared to the corresponding hemizygous combina-

tion in trans to the Df(3R)3-4 chromosomal deletion. Staining of embryos for Gasp [116]

expression (mAb2A12; DSHB, Iowa City, IA) was used to score lumen phenotypes. By this

assay, kkvsob404 homozygotes and kkvsob404/Df(3R)3-4 hemizygotes exhibited identical lumenal

defects, consistent with kkvsob404 behaving as a strong hypomorphic or null allele. kkvsob483

homozygotes exhibited a distinct phenotype from kkvsob483/Df(3R)3-4 hemizygotes: namely,

the showed reduced lumenal accumulation of Gasp.

Cuticle preparations

FRT82B kkvsob483/TM3 twi>GFP, FRT82B ich206/TM3 twi>GFP, or FRT82B ich543/TM3 twi>GFP
adults were inter-crossed and eggs collected on apple juice agar plates for 6h at 25˚C. Eggs

were aged further for 16h at 29˚C. Hatched first instar heterozygous control larvae were picked

and placed in 1:1 methanol: heptane. Mutant embryos were sorted under a fluorescence ste-

reomicroscope by the absence of GFP expression and dechorionated in 50% bleach for 1.5

min. Embryos were devitellinated in 1:1 methanol: heptane and washed 3–4 times in 100%

methanol. Methanol was replaced with 0.1% PBS-Tween-20 (PBS-Tw) and embryos/larvae

were allowed to settle for 10min at room temperature. Cuticles were expanded in PBS-Tw at

65˚C for 20 min. PBS-Tw was replaced by 50 μl Hoyer’s medium. Embryos/larvae were incu-

bated in a 2:1:1 mixture of Hoyer’s mountant: lactic acid: dH2O for 16-24h at room tempera-

ture and were then mounted on slides. Preparations were visualized by phase contrast using an

Evos FL Auto Imaging microscope.

Transgenic constructs

The entire coding sequences of CG11966 (RE65372) and CG8213 (LD43328) were obtained as

cDNAs from the Drosophila Genomics Resource Center (DGRC, Bloomington, IN, USA, NIH

grant 2P40OD010949). To generate pUAST-ich, EcoRI and KpnI restriction sites were added

during PCR amplification (see S1 Table). The amplicon was directionally subcloned into the

pUAST vector (Brand and Perrimon, 1993). To generate pUAST-CG8213, the full-length

cDNA insert was subcloned into pUAST at the EcoRI and XhoI restriction sites. To generate

Flag-tagged Ich, the EcoRI site, start codon, and Flag epitope were added to the forward
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primer, and a KpnI site was included in the reverse primer (see S1 Table). The Ich-Flag PCR

product was TA cloned (TOPO-TA cloning kit, Invitrogen) and then subloned into pUAST

(EcoRI, KpnI). Sanger sequencing was used to verify the final constructs (S1 Table).

Overlap extension PCR [117] was used to generate the Flag-VP16-IchDBD and

EnR-IchDBD-Flag fusions (for primers, see S1 Table). The following plasmid templates were

used in the PCR strategy: pActPL-VP16AD (Addgene #15305) [78], en cDNA clone LD16125

(DGRC), and ich cDNA clone RE65372 (DGRC). EcoRI and KpnI restriction sites were added

during PCR. PCR amplicons of the expected size were TA cloned (TOPO TA kit, Invitrogen)

and subsequently subcloned into pUAST (EcoRI, KpnI). A start codon, flag sequence, and

SV40 nuclear targeting signal were added to the VP16 transcriptional activation domain dur-

ing PCR. An SV40 nuclear targeting sequence, followed by a flag sequence and stop codon

were added to IchDBD during PCR for the EnR-IchDBD-Flag fusion.

Transgenic strains for UAS-ich, UAS-Flag-ich, UAS-Flag-VP16-IchDBD, UAS-En-

R-IchDBD-Flag, and UAS-CG8213 were generated by P-element transformation (Rainbow

Transgenic Services, Camarillo, CA, USA).

Generation of lint mutant allele by CRISPR/Cas9

Optimal gRNA target sites in the Drosophila melanogaster genome (release 6) were selected

using the default settings of the flyCRISPR Optimal Target Finder web program (http://tools.

flycrispr.molbio.wisc.edu/targetFinder/). Genomic DNA from a w1118; FRT40A FRTG13 stock

(Bloomington Stock Center) was isolated using a Qiagen DNeasy Blood and Tissue kit. Geno-

mic DNA flanking candidate gRNA sites was amplified and sequenced to rule out gRNA sites

containing single-nucleotide polymorphisms. A site upstream of the transcription start site

(GCCATGGACACCAACTGATTCGG) and a site within the 3’ UTR (GCATTTCAAACGA

CATTCGCCGG) common to all spliceoforms were chosen. 5’ phosphorylated oligonucleo-

tides were synthesized by Integrated DNA technologies (Coralville, IA, USA) according to

[89]. 5’ gRNA plasmids were designed according to [89]. Single colonies of pU6-BbsI-gRNA

[89] transformants were selected for plasmid isolation (GenElute Minipreparations, Sigma

Millipore) and validated by sequencing. A y1 M{nos-Cas9}; FRT40AFRTG13 stock was con-

structed using the y1 M{nos-Cas9} stock [118] (Bloomington Stock Center) expressing the

Cas9 nuclease from a germline promoter. y1 M{nos-Cas9}; FRT40AFRTG13 embryos were

injected with a mixture of two gRNA plasmids by Best Gene, Inc. (Chino Hills, CA, USA). Sin-

gle GO’s were outcrossed to al1 dpov1 b1 p1 Bl1 c1 px1 sp1/SM1 (Bloomington Stock Center) flies

and single G1’s were back-crossed to establish individual lines, which were tested by genetic

complementation against multiple deficiencies uncovering CG8213, including Df(2R)Np5 In
(2LR) w45-32n and Df(2R)H3E1 (Bloomington Stock Center), as well as a recessive lethal Minos

insertion at CG8213 (y1w1; CG8213MI04680). PCR (see S1 Table for primers) analysis suggested

that the 5’ gRNA site was targeted, while the 3’ gRNA site was left intact. However, the exact

nature of the lesion remains unclear due to difficulties in PCR amplifying gDNA flanking the

5’ gRNA site from mutants.

Antibodies and immunofluorescence

Rat α-Trh. To generate the α-Trh polyclonal sera, the peptide C- SFHLYHKGSPASG-

WYSTPS was selected and used to immunize 3 rats, which were boosted and exsanguinated

(Bio-Synthesis). The sera from primary bleeds were diluted at 1:10 in PBS and pre-adsorbed

against wild type embryos.

Larval fillets for antibody staining. Third instar larvae were filleted in cold 1X PBS on

Sylgard-coated dishes using dissection pins (Minuten, Ento Sphinx). Briefly, larvae were
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pinned down ventral side up. A longitudinal incision using fine scissors (Fine Science Tools,

Foster, CA, USA) was made along ventral epidermis and the resulting epidermal pelt was

pinned down on four sides. Forceps were used to clear away extraneous tissue, leaving the tra-

cheal tree. Larvae were fixed in the dish in 4% paraformaldehyde (Electron Microscopy Sci-

ences, Hatfield, PA, USA) in 1X PBS for 15 min on ice. Fillets were unpinned and

permeabilized in 0.3% Tween-20/0.3% Triton-X-100 in 1XPBS (PBST) for 15 min at room

temperature. Fillets were then incubated overnight at 4C in primary antibody diluted in PBST.

Following washes in fresh PBST (4X 15 min or 3X 30 min), secondary antibody incubations

were done for 1.5-2h at room temperature or overnight at 4C, followed by washes in PBST at

room temperature. Fillets were mounted in Aqua Polymount medium (Polysciences, Inc,

Warrington, PA).

Embryos for antibody staining. Egg lays were collected at 25˚C on apple juice plates

and aged to enrich for embryos of the appropriate stages. Eggs were then dechorionated in

50% bleach for 1.5–3 min, followed by formaldehyde fixation for 25 min. Embryos were

then devitellinated in 1:1 heptane:methanol mixture. Embryos were successively rehydrated

using 5 min washes in 80% methanol: 20% 1XPBS, 60% methanol: 40% 1X PBS; 40% metha-

nol: 60% 1X PBS, 20% methanol: 80% PBS-Tween 20 (0.05%), 0.05% PBS-Tween-20. Embryos

were blocked in 4% horse serum in 0.05% PBS-Tw for 1h at room temperature or overnight at

4C, then incubated overnight at 4C in primary antibody. Following washes in fresh 0.05%

PBS-Tw (3X 30 min), secondary antibody incubations were performed for 2-3h at room

temperature.

Antibodies and working dilutions. The following primary antibodies were used in this

study: Chicken anti-GFP IgY (1:1000, Life Technologies A10262, Carlsbad, CA, USA); Rabbit

anti-Whacked peptide (1:750) [69]; rabbit anti- aPKC z H-300 (1:200, Santa Cruz); mouse

anti-aPKC z A-3 (1:200, Santa Cruz); mouse anti flag M2 (1:1000, Sigma Aldrich); mouse anti-

Acetylated tubulin clone 6–11 B-1(1:2000, Sigma Aldrich); Rabbit anti-Verm (1:500) [49];

mAb2A12 (1:5, DSHB, Iowa City, IA); rat anti-Trh (1:500 final dilution, this study); mouse

anti-β-galactosidase (1:5000–1:1000; Millipore-Sigma). The following secondary antibodies

(Life technologies) were used: goat anti-chicken Alexa 488, donkey anti-mouse IgG Alexa 555,

goat anti-rat Alexa 555, donkey anti-rabbit Alexa 647, and donkey anti-mouse IgG Alexa 647

(1:1000 each). To visualize chitin in fixed embryos, a TMR Star-conjugated chitin-binding

probe (NEB) was incubated along with secondary antibodies (1:1000).

Microscopy

Mosaic larvae were identified by direct fluorescence using a Leica MZ16F fluorescence stereo-

microscope (Leica Microsystems). To visualize terminal cells in wholemount specimens, third

instar larvae were placed in a drop of 60% glycerol in 1X PBS, then heat-killed at 70C for ~12s,

and flattened under a coverslip. Larvae were then imaged using direct fluorescence and Bright-

field optics using a Leica DM5500 B upright or A Leica DM6000 inverted widefield epifluores-

cence microscope (Leica Mirosystems). Images were acquired using either a Leica DFC360FX

camera or a Hammamatsu Orca-R2 Digital CCD camera (C10600, Hamamatsu Photonics). Z-

stacks were captured and processed by deconvolution using Leica Advanced Fluorescence

Application Suite (Leica Microsystems). For most images, a single deconvolved z-slice is

shown, except where projected z-stacks were used to capture whole-cell detail.

To analyze terminal cell lumen ultrastructure by TEM, SRF>eGFP,ich RNAi first instar lar-

vae were subjected to a high pressure freezing/freeze substitution protocol as described in [63].

SRF>eGFP and btl>GFP larvae were processed as a representative wild-type controls. 45–70

nm-thick sections were imaged at 125 keV using a Hitachi 7200 electron microscope.
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RNA in situ hybridizations

RNA in situ hybridizations were performed on St.13-16 embryos according to the protocol

described by [119]. Briefly, DIG-labeled RNA probes were synthesized from PCR templates

amplified from cDNA clones for full-length ect (RE01075), CG8213 (LD43328), osi18
(RE07882), and osi19 (RE01054) obtained from the DGRC. Primers including T3 and T7 pro-

moters were designed according to [120]. See S1 Table for description of PCR primers. PCR

products were resolved by agarose gel electrophoresis and purified using glassmilk (MP Bio-

medicals). in vitro transcription reactions were performed using T3 (anti-sense) and T7

(sense) DNA-dependent RNA polymerases (Promega corp., Madison, WI). RNA was labeled

with Digoxigenin (Roche Applied Science, Indianapolis, IN). Quality of in vitro transcription

products was assessed by agarose electrophoresis and the RNA precipitated using ethanol.

Eggs were collected on apple juice plates for 6-7h at 25C, then aged for ~16h at 18˚C.

Embryos were manually sorted under a fluorescence stereomicroscope to assess genotype

(TM3 twi>GFP balancer). Embryos were dechorionated in 50% bleach for 1.5 min and fixed

for 25 min in a formaldehyde and heptane mixture. Embryos were devitellinated using a 1:1

heptane:methanol mixture. Embryos were then processed for probe hybridization according

to [119]. ~50 ng of DIG-labeled RNA probe was diluted in 100 μl hybridization buffer. RNA

probe signal was detected by an Alkaline Phophatase (AP) reaction using nitroblue tetrazolium

(Roche Applied Science) and bromochloro indoyl phosphate (Roche Applied Science) in 0.1M

Tris-Cl, 0.1 M NaCl, 0.05M MgCl2 in 0.1% PBS-Tween-20, pH 9.5. For CG8213, ect, and osi19
probes, the AP reaction was developed for 4.5h at room temperature, while for osi18 probes,

the AP reaction was developed for ~16h at room temperature. Embryos were mounted in 60%

glycerol in 1X PBS and imaged using Brightfield microscopy.

Statistical analysis

For cDNA rescue experiments, the significance of categorical frequency data was determined

using Fisher’s exact probability tests (http://vassarstats.net). one-sided P values were reported

under the assumption that rescue conditions will deviate from mutant conditions in one direc-

tion. For frequency data with more than 2 possible outcomes, Chi-Square tests were used.

Supporting information

S1 Fig. ichor terminal cells exhibit multiple tube defects. (A-A’) ich206 terminal cell clone

exhibiting severe pruning (A) and tube growth defect (A’). (B,C) Wild-type control (C) and

ich206/Df(3R)osk (D) embryonic terminal branches visualized by fluorophore-conjugated chi-

tin-binding probe. ich terminal cells are able to extend seamless tubes (arrowheads) beyond

the cell body, as marked by the terminal cell nucleus (Trh). Larval (D-D”) ich543 terminal cell

clone exhibiting an accumulation of multiple lumens, often with convoluted trajectories

(arrowheads in D’, D”). (E-G’) GFP-labeled ich206 MARCM tracheal clones visualized in

wholemount heat-killed larvae. Fluorescent images are superimposed on brightfield. Loss of

ich in isolated dorsal trunk (E, E’), autocellular (F, F’), and fusion branch (G, G’) cells caused

no gas-filling or overt lumen defects. (H-I’) Wholemount heat-killed btl>DsRed (H,H’) and

btl>DsRed, ich RNAi (I,I’) first instar larvae (L1). In contrast to wild-type controls (H,H’),
btl>DsRed, ich RNAi L1s exhibit pan-tracheal liquid clearance defect (I) as well as a breaks in

the dorsal trunks (outlined in I’). (J) Comparison of lethal phase for ich loss-of-function alleles.

(Scale Bars: A,D 20 μm; B,C 10 μm; A’,D’, D” 5μm; E-G’, 50 μm).

(TIF)
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S2 Fig. EnR-IchDBD-FLAG, but not full-length Ich, induced apical membrane discontinu-

ities. (A-B’) btl>GFP,EnR-IchDBD; 2FRT terminal cell clones stained for GFP, the apical

membrane using Wkd antiserum (A’), and the Flag epitope (B,B’). btl>GFP, EnR-IchDBD;

2FRT terminal cell clones exhibit cystic, discontinuous lumens (A,A’). EnR-IchDBD-FLAG

localizes to the nucleus of terminal cells (B, B’). (C-D’) Control btl>GFP, Wkd-mKate2; 2FRT
(C,C’) and btl>GFP, Wkd-mKate2, ich; 2FRT (D,D’) terminal cell clones overexpressing Ich.

In contrast to wild-type controls (C,C’), terminal cells overexpressing full-length Ich (D,D’)

exhibit severe pruning with rudimentary lumens (D’). (E-E”‘) btl>moe-GFP, ich; 2FRT termi-

nal cell clones stained to label cortical f-actin (E’), cortical acetylated tubulin (E”), and aPKC

(E”‘). Unlike EnR-IchDBD, full-length Ich overexpression in terminal cells does not perturb

lumen patency but does disrupt localization of certain apical membrane markers, such as

aPKC. (Scale Bar: A-B’, E-E”‘ 5μm; C-D’, 50 μm).

(TIF)

S3 Fig. An ich::nLacZ transcriptional reporter is expressed in cuticle-secreting epithelia.

Embryos heterozygous for the ich::nLacZ P element enhancer trap insertion were immunos-

tained for nuclear LacZ (nLacZ, green) and the tracheal specific transcripton factor Trachea-

less (Trh, red). (A,A’) LacZ signal is first detected in Stage 10 embryos in broad epidermal

stripes (A’). During germband retraction (B, B’), epidermal expression is strongest in the T2,

T3, and A8 epidermal parasegments (arrowheads in A-B’). LacZ reporter expression is not

detected during primary branching (B-C’). Pan-tracheal LacZ expression is first detected at

St. 14 (D, D’) and continues during later stages (St. 15: E, E’), coinciding with lumen growth

and cuticle deposition. In addition to tracheal expression, LacZ is also expressed in the epider-

mis (arrowhead in E’), foregut (F, G), and hindgut (arrowhead in H). All are ectodermally-

derived epithelia that secrete chitin-based cuticles. (Scale Bars: 20 μm).

(TIF)

S4 Fig. ichor is dispensable for the formation and modification of the tracheal chitin cable.

(A-B’) Wild type (WT) (A,A’) and ich206/Df(3R)osk (B,B’) embryos immunostained for Tra-

chealess (white) and chitin-binding probe (CBP, red). ich206/Df(3R)osk embryos deposit a

wild-type chitin filament and exhibit neither cystic nor convoluted lumens. (C, C’) kkvsob483/

Df(3R)3-4 embryos stained for chitin-binding probe (red) and lumenal matrix protein Gasp

(mAb2A12), showing cystic lumen morphology characteristic of chitin-deficient embryos. (D,

E) Control (D) and ich206 embryos stained for Gasp, showing ich is dispensable for lumenal

accumulation of Gasp. (F-F’) ich206/Df(3R)osk hemizygotes stained for Trh and DE-cadherin

(red) and the Chitin Deacetylase Verm (magenta). ich is dispensable for luminal accumulation

of Verm. (G,J) Maternal-zygotic ich206 mutant embryos (H) exhibit wild-type lumen morpho-

genesis in the embryonic trachea. Restoring zygotic ich expression in maternally-deficient

embryos (G) has no effect on tracheal lumen morphogenesis. (Scale Bars: 10 μm).

(TIF)

S5 Fig. Characterization of kkvsob alleles. (A-C’) GFP-labeled kkvsob404 MARCM clones in

wholemount heat-killed third instar larvae. Unlike wild-type control terminal cells (asterisk in

A’), kkvsob404 terminal cell clones exhibit a cell-autonomous gas-filling defect (arrow in A’). Iso-

lated kkvsob404 clones in the dorsal trunk (B, B’) causes cell-autonomous ‘divots’ (arrows in B’)

in the gas-filled lumen. Cell-autonomous loss of kkv in autocellular branches (C,C’) causes a

cell-autonomous gas-filling defect (arrow in C’). (D-G’) btl>GFP; kkvsob mutant embryos and

heterozygous control siblings stained for GFP (green) and chitin-binding probe (red). kkvsob

mutants fail to form the transient chitin filament and exhibit cystic lumens in the dorsal trunk.

(H-L) Analysis of lumen morphology in wild-type (H), kkvsob hemizygous mutants (I and K),
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and homoallelic mutants (J and L) using mAb2A12. The cystic dorsal trunks of kkvsob404/Df

(3R)3-4 hemizygotes (I) resembles that of kkvsob404 homoallelic mutants (J). However, kkvsob483

homozygotes (L) can exhibit a severe reduction of luminal 2A12 staining not observed in

kkvsob483 hemizygotes (K). (Scale Bars: A-C’ 50 μm; D-L, 10 μm).

(TIF)

S6 Fig. ich regulates ectodermal expression in the foregut and epidermis. (A, B, G) Wild-

type (WT, w1118) embryos hybridized with DIG-labeled anti-sense (A, B) or sense (G) probe.

At Stage 13, ect is expressed in the foregut primordium (brackets in A) and posterior spiracles

(black arrowhead in A). By Stage 16, ect is expressed in all cuticle-secreting epithelia, including

the foregut (bracket in B), epidermis (arrow in B), trachea (black arrowhead in B), and hindgut

(white arrowhead in B). This signal is specific to ect transcript because the corresponding

sense probe gives no such pattern (G). (C, D) Control ich543/+ heterozygotes hybridized with

same anti-sense ect probe exhibit a wild-type expression pattern. By contrast, (E, F), ich543

homozygotes exhibit reduced ect expression in the foregut and epidermis, though ich is not

absolutely required for tracheal expression (black arrowheads in E, F).

(TIF)

S7 Fig. osi18 and osi19 expression patterns in wild-type embryos. (A-D) Isogenic wild-type

(WT,w1118) embryos hybridized with DIG-labeled osi18 (A-C) or osi19 (E-G) antisense probes

and corresponding sense probes (D,H). osi18/19 expression is first detected at approximately

Stage14 (A,E) in the dorsal trunk and transverse connectives. At Stages 15 (B, F) and 16 (C,G),

osi18/19 are strongly expressed throughout the tracheal system. This pattern of expression is

specific to osi18/19 transcript because w1118 embryos hybridized with the corresponding sense

probes (D, H) give no tracheal signal.

(TIF)

S8 Fig. lint is one of multiple downstream targets of Ichor in the terminal cell. (A,A’)

Wholemount images of heat-killed third instar drm>GFP, lint terminal cells overexpressing

lint from a UAS promoter. lint overexpression in the terminal cell causes a liquid clearance

defect in terminal branches (arrows in A, A’). Unlike terminal cells overexpressing Ich (S2

Fig), lint overexpression (B, B’) does not significantly impair terminal branching or lumen

growth (B), but does cause dilations of the apical membrane (arrowheads in B’). (C-E) In most

instances, restoring expression of lint in ich206 terminal cells is not sufficient to suppress tube

integrity defects (C, C’). However, elevated transgene expression (D,D’) could restore tube

integrity at a non-significant frequency(E, 2% of cells, P = 0.5, one-sided Fisher’s exact proba-

bility test). (Scale Bars: A, A’ 50 μm; B, C, D 20 μm; B’,C’,D’ 5 μm).

(TIF)

S9 Fig. Summary of results. Ichor encodes a zinc finger transcriptional activator (Figs 2 and

4) controlling the assembly of chitin-based cuticles (Figs 3 and S3). In terminal cells, Ichor is

dispensable for the secretion of bulk aECM material, but rather, is essential for the organiza-

tion of this material into an ordered extracellular matrix. In cooperation with other, as yet

unidentified transcriptional regulators (compare Fig 6L and 6N), Ichor directly or indirectly

activates the expression of known (Fig 7) or putative (Fig 6) regulators of aECM assembly in

the trachea. We speculate that Ichor promotes extracellular assembly processes at the lumenal

surface of seamless tubes, in part by allowing proteolytic processing events needed for matrix

proteins to be incorporated into the terminal cell aECM. The terminal cell aECM is built from

a heterogeneous chitinous cuticle organized into a series of taenidial ridges ([63] and Fig 3).

When ich function is compromised, taenidiae fail to form and seamless tube lumens are

occluded with disorganized matrix material (Fig 3). A lumenal matrix is required in terminal

An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007146 January 8, 2018 27 / 34

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007146.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007146.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007146.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007146.s009
https://doi.org/10.1371/journal.pgen.1007146


cells for the integrity and shape (Figs 1, 5 and 8) of seamless tubes—perhaps by forming a scaf-

fold to dissipate tension acting on seamless tube lumens, as well as possibly forming an orga-

nizing scaffold to coordinate cell hollowing.

(TIF)

S1 Table. Primers used for sequencing, cloning, and RNA probe production.

(XLSX)
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