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Abstract: Pyrrolizidine alkaloids (PAs) are a widespread group of secondary metabolites in plants.
PAs are notorious for their acute hepatotoxicity, genotoxicity and neurological damage to humans and
animals. In recent decades, the application of PAs for beneficial biological activities to cure disease
has drawn greater attention. Here, we review the current knowledge regarding the pharmacological
properties of PAs and discuss PAs as promising prototypes for the development of new drugs.
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1. Introduction

Pyrrolizidine alkaloids (PAs) are an important group of secondary metabolites in
plants [1,2]. More than 500 different PAs were identified in more than 6000 plant species
to date [1,3]. PAs have been identified in Apocynaceae (Alafia, Aristeguietia, Brachyglottis,
Cacalia, Eupatorium, Ligularia, Pittocaulon, Senecio and Tephroseris), Boraginaceae (Anchusa,
Borago, Cynoglossum, Echium, Heliotropium, Lithospermum, Onosma, Rindera and Solenanthus),
Convolvulaceae (Argyreia), Fabaceae (Castanospermum and Crotalaria), Hyacinthaceae (Mus-
cari and Scilla), Orchidaceae (Cremastra and Liparis), and Santalaceae (Amphorogyne and
Osyris) [4–6].

PAs are ester alkaloids composed of a necine base (two fused five-membered rings
joined by a single nitrogen atom) and a necic acid (one or two carboxylic ester arms)
(Figure 1) [7]. The combination of a set of necine bases and necic acids results in a consid-
erable amount of structural diversity in PAs. This is further amplified by modifications,
including N-oxidation of the tertiary nitrogen of the necine base, hydroxylation of the
necine base and/or the necic acid, dehydrogenation, halogenation and acetylation of hy-
droxy groups of the acid moiety. It is not surprising that several hundreds of different PAs
have already been identified, and each year new PAs are detected. Based on the structure
of the necine base, the majority of the PAs can be sorted into four groups: retronecine-
type, heliotridine-type, otonecine-type and platynecine-type (Figure 2) [8,9]. Except for
otonecine, the other three bases can form N-oxides [9]. The platynecine type of PAs con-
tain a saturated necine base unit and are less toxic, while the other three bases contain a
1,2-unsaturated necine base unit and are highly toxic.

PAs are notorious for their serious hepatotoxicity, genotoxicity and neurological
damage, affecting livestock, wildlife and humans [7,10,11]. PAs were detected in honey,
milk and other food supplements [12–16]. However, for plants PAs play an important
role in defense against herbivores and pathogens [17–19]. Several PA-containing plants
are used in herb medicines in many countries [20–25]. For example, in India Heliotropium
subulatum plants were used for boils, insect stings, cores, throat infections, ulcers and snake
bite [26]. Anti-microbial, anti-inflammatory, anti-cancer and anti-viral effects are known
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from several PAs isolated from plants. In this review, we will focus on the pharmacological
properties of PAs by summarizing the related papers published in the past 50 years.
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the aerial parts of Heliotropium ellipticum, and their anti-microbial activities were investi-
gated (Figure 3) [28]. Europine, lasiocarpine and lasiocarpine N-oxide showed anti-bacte-
rial activity to Escherichia coli and Enterobacter cloacae. Europine had anti-fungal activities 
to Aspergillus flavus, Drechslera tetramera and Fusarium moniliforme. Heliotridine had anti-
fungal activities to D. tetramera, and lasiocarpine N-oxide had anti-fungal activities to Cur-
vularia lunata and F. moniliforme. 

9-Angeloylretronecine, supinine and lasiocarpine isolated from the aerial parts of He-
liotropium bursiferum had antimicrobial activity to Bacillus subtilis and phytopathogenic 
fungi Candida tropicalis and Aspergillus niger at a dose of 50 mg/mL (Figure 3) [29]. 
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2. Pharmacological Effects
2.1. Anti-Microbial Activity

Killing or inhibiting the growth of microorganisms and especially pathogenic microor-
ganisms is defined as anti-microbial activity, and it includes anti-bacterial and anti-fungal
activities [27]. PAs with anti-microbial properties were mainly isolated from the genus of
Heliotropium, Crotalaria and Senecio plants.

Europine, heliotridine, lasiocarpine and lasiocarpine N-oxide were identified from the
aerial parts of Heliotropium ellipticum, and their anti-microbial activities were investigated
(Figure 3) [28]. Europine, lasiocarpine and lasiocarpine N-oxide showed anti-bacterial
activity to Escherichia coli and Enterobacter cloacae. Europine had anti-fungal activities to
Aspergillus flavus, Drechslera tetramera and Fusarium moniliforme. Heliotridine had anti-
fungal activities to D. tetramera, and lasiocarpine N-oxide had anti-fungal activities to
Curvularia lunata and F. moniliforme.

9-Angeloylretronecine, supinine and lasiocarpine isolated from the aerial parts of
Heliotropium bursiferum had antimicrobial activity to Bacillus subtilis and phytopathogenic
fungi Candida tropicalis and Aspergillus niger at a dose of 50 mg/mL (Figure 3) [29].
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Singh et al. [30] isolated subulacine N-oxide, 7-Angeloylheliotrine, retronecine and
heliotrine from H. subulatum (Figure 3). All four isolated PAs demonstrated pronounced
activities to the selected microorganisms, including bacteria (E. coli, Streptococcus pneu-
moniae, B. subtilis, Bacillus anthracis and Staphylococcus aureus) and fungi (Aspergillus fu-
migatus, A. niger, Rhizoctonia phaseoli and Penicillium chrysogenum). 7-Angeloylheliotrine
possessed maximum activity to E. coli and P. chrysogenum with a total inhibition area of
16.13 ± 0.116 mm and 11.61 ± 0.268 mm, respectively.
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Da Silva Negreiros Neto, et al. [31] investigated the anti-biofilm and antibacterial
activities of PAs isolated from Crotalaria genus (Figure 3). Usaramine isolated from the seeds
of Crotalaria pallida demonstrated an anti-biofilm activity against Staphylococcus epidermidis
by reducing more than 50% of biofilm formation without killing the bacteria. Therefore,
usaramine could be assumed as a prototype for the development of new anti-biofilm
molecules for pharmaceutical and industrial purposes. Monocrotaline obtained from
Crotalaria retusa seeds showed a significant inhibition of the parasite Trichoderma vaginalis,
killing 74% of parasite cells at a concentration of 1 mg/mL. However, retronecine showed
no anti-activity to T. vaginalis at all concentrations, whereas its semi-synthetic derivative
azido-retronecine was more active than monocrotaline by killing 85% of T. vaginalis at
1 mg/mL.

Li et al. [32] investigated the anti-microbial activity (Figure 3) of a novel PA (PA-1),
which was synthesized by organocatalytic domino reaction [33]. PA-1 exhibited pre-
dominantly strong antibacterial activity towards all six bacteria (S. epidermidis, S. aureus,
B. subtilis, E. coli, Proteus vulgaris, Pseudomonas aeruginosa) and two fungi (A. niger, Candida al-
bicans) tested with minimum bactericidal concentration (MIC) values ranging from 0.0039 to
0.025 mg/mL. PA-1 killed all E. coli and S. aureus completely at 2 MIC (0.0078–0.05 mg/mL)
within eight hours. PA-1 exerted its antibacterial activity by acting on membrane phos-
pholipids and phosphate groups and then damaging the structures of cellular membrane,
finally leading to cell death.

Megalanthonine and lycopsamine were isolated from Heliotropium megalanthum and
their anti-fungal effects were evaluated (Figure 3) [34]. Both PAs inhibited the mycelial
growth of plant pathogen F. moniliforme at a dose of 0.5 mg/mL. Europine isolated from
Heliotropium bovei also showed significant anti-fungal activity to F. moniliforme in a dose
series ranging from 0.01 to 0.25 mg/mL [35]. 3′-Acetyltrachelanthamine and floridinine
isolated from Heliotropium floridum had anti-fungal activities to F. oxysporum, F. moniliforme,
F. avenaceum and F. solani at a dose of 0.5 mg/mL [36].

Hol and Van Veen [37] investigated the growth-reducing effects of PAs from Jacobaea
vulgaris on nine plant-associated fungi. The growth of five soil fungal strains of F. oxysporum,
F. sambucinum and Trichoderma sp. was temporarily inhibited by different purified PAs,
including monocrotaline, retrorsine, retrorsine N-oxide and a PA plant extract (Figure 3).
The strongest inhibitory effects were found at the concentrations 0.33 and 3.33 mM, which
were comparable to PA concentrations (0.3–3 mM fresh weight) found in plant tissue
under natural conditions for J. vulgaris [38,39]. In another study by Hol [40], integerrimine,
monocrotaline, retrorsine and retrorsine N-oxide (Figure 3) isolated from Senecio brasiliensis
inhibited the growth of fungi (F. sambucinum, Mortierella sp., Minimedusa sp., Plectosphearella
cucumerina, Rhizoctonia sp., Broomella acuta, Pestalotiopsis sp. and Trichoderma sp.) at a
concentration between 0.01 and 1.08 mg/mL.

2.2. Anti-Inflammatory Activity

The inflammatory process is a physiological response of the body in order to eliminate,
neutralize and destroy stimuli resulting from infection or tissue damage [41]. Diseases
usually involve an ongoing inflammatory response, such as that observed in atherosclerosis
and cancer [42,43]. Inflammation is a critical component of tumor progression, and many
cancers arise from sites of infection, chronic irritation and inflammation [42].

The popular murine macrophage cell line, RAW 264.7, is often used to screen natural
products for bioactivity and to predict their potential effect in vivo or on primary cells [44].
The murine macrophage cell line’s response is considered to reflect the potential de novo re-
sponse of humans and is used to evaluate the effective bioactivity of tested compounds [45].
Madhumidine A, lindelofidine benzoic acid ester and minalobine B isolated from the leaves
of Madhuca pasquieri had anti-inflammatory activity against lipopolysaccharide-induced ni-
tric oxide (NO) production in macrophage RAW 264.7 (Figure 4) [46]. Heliotrine, heliotrine
N-oxide, 7-Angeloylsincamidine N-oxide and europine isolated from the aerial parts of
Heliotropium digynum were evaluated against the NO production in lipopolysaccharide-
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induced murine macrophages RAW 264.7 cells [47]. The IC50 values (the concentration
of compound required for 50% inhibition) of the four compounds were 52.4, 85.1, 105.1
and 7.9 µM, respectively [47]. Nervosine I, nervosine II, paludosine, auriculine, nervo-
sine III, nervosine IV, nervosine V and nervosine VI isolated from Liparis nervosa showed
strong inhibitory activities against lipopolysaccharide-induced NO production in RAW
264.7 macrophages with IC50 values in the range of 2.16–38.25 µM, thus showing potential
anti-inflammatory activity [48].
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Oedema is an excess of fluid in the tissues and is a symptom of disease [49]. Ghosh and
Singh [50] investigated the anti-inflammatory activity of anacrotine isolated from Crotalaria
laburnifolia Linn in rats (Figure 4). Anacrotine (40 mg/kg s.c. * 5 alternate days) had no
significant inhibitory effect against formalin-induced arthritis, while it showed inhibition
against carrageenin-induced oedema. In normal or adrenalectomized rats, anacrotine
(10 mg/kg s.c.) inhibited hyaluronidase-induced oedema. Anacrotine (40 mg/kg s.c. and
30 mg/kg i.p., respectively) was ineffective against 5-hydroxytryptamine- and dextran-
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induced oedema; however, it was effective against bradykinin- and prostaglandin-induced
oedema (in a dose of 20 mg/kg i.p.). Anacrotine also showed inhibitory effects against
cotton-pellet granuloma.

2.3. Antiviral Activity

Viruses are major pathogenic agents causing a variety of serious disease in humans,
other animals and plants [51]. Antiviral drugs are most commonly designed with the
purpose of combating various viral infections, such as human immunodeficiency virus
(HIV) and influenza [52,53].

The ethanol and hexane crude extract of H. subulatum showed significant antiviral
activity to Coxsackie, Poliomyelitis and Measles at 500 and 100 µg/mL concentrations. He-
liotrine and 7-Angeloylheliotrine isolated from this plant species possessed activity against
Poliomyelitis and Vesicular stomatitis virus at a concentration of 10 µg/mL [54].

Alexine isolated from Alexa leiopetala and four stereoisomers isolated from Castanosper-
mum austral were investigated for inhibitory activity against the growth of HIV-1 (Figure 5).
Five alexines were separated, among which only 7,7a-Diepialexine restricted virus growth
with IC50 0.38 mM. The antivirus effects of 7,7a-Diepialenxine correlated with the inhibitory
activity against purified pig kidney α-glucosidase 1 of the glycoprotein processing enzymes
and the reduced cleavage of the precursor HIV-1 glycoprotein gp160 [55].
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2.4. Antineoplastic Activity

Cancer is the second leading cause of death worldwide, with 9.6 million cancer-related
deaths in 2018 [56]. The global health burden attributable to cancer has increased substan-
tially over the past three decades, leading to a rise in the prescription of chemotherapeutic
drugs [57,58]. The development of antineoplastic compounds is, therefore, urgent.

Leukemia is a broad term for cancers of the blood cells [59]. Indicine N-oxide was used
in the treatment of leukemia (Figure 5). Twenty-two patients with refractory acute leukemia
received indicine N-oxide daily for five consecutive days in a dose-seeking study [60]. Of
eight patients with refractory acute lymphocytic leukemia, one had a complete remission,
and one had a partial remission. Of 11 patients with refractory acute nonlymphocytic
leukemia, two patients had complete remissions. Of three patients with blast crisis of
chronic granulocytic leukemia, one patient had a partial remission. Five patients had
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severe hepatic toxicity, probably due to veno-occlusive disease induced by indicine N-
oxide. Miser et al. [61] treated 31 children with acute lymphoblastic leukemia (ALL),
14 children with acute non-lymphoblastic leukemia (ANLL) in relapse, and one child
with chronic myelogenous leukemia (CML) in blast crisis (CALLA negative) with indicine
N-oxide in a Phase II study. The efficacy and toxicity of the drug were assessed at two dose
levels: 2000 mg/m2/day for 5 consecutive days (14 patients) and 2500 mg/m2/day for
five consecutive days (17 patients). One patient with ALL at each dose level achieved a
complete response (CR) lasting six months and one month, respectively. The patient with
CML achieved a partial response lasting four months. None of the patients with ANLL
achieved a CR. Hepatotoxicity was mild (grade 1 or 2) in 63% and moderate (grade 3) in
9% of patients; three patients (9%) experienced severe hepatotoxicity.

Ligularia achyrotricha (Diels) Ling has been used as a traditional Tibetan herbal medicine
for a long time for treating dermatosis, diphtheria and pestilence [62]. Hua, et al. [63] iso-
lated ligulachyroine A from the roots of L. achyrotricha (Figure 5), a new twelve-membered
macrocyclic PA with a ketonic group located at C-3 and a hydroxy group linked at C-8. It
exhibited moderate activity against a human leukemia cell (HL-60) and a human hepatoma
cell (SMMC-7721) [63].

Nervosine VII isolated from the plant of L. nervosa induced autophagy and apoptosis
in HCT116 human colorectal cancer cells by the activated MAPKs signaling pathway,
including JNK, ERK1/2 and p38, and suppressing the p53 signaling pathway (Figure 5) [64].
Nervosine VII-induced apoptosis associated with the intrinsic pathway by the activation
of caspase-9, -3 and -7. The characteristic of autophagy induced by nervosine VII was the
regulation of autophagic markers, including the increase in LC3-II and beclin 1 proteins,
and the decrease in p62 protein. Those finding indicated that the nervosine VII may be a
novel therapeutic method for the treatment of cancer.

Lycopsamine showed significant antiproliferative effects in A549 lung cancer cells in
a dose-reliant manner (Figure 5) [65]. The antiproliferative effects of lycopsamine were
associated with its autophagy inducing, apoptosis inducing, and inhibiting IL-2 expression.
Overall lycopsamine is a potential anti-lung cancer agent and can be a lead molecule in
lung cancer treatment.

Appadurai and Rathinasamy [66] isolated indicine N-oxide from Heliotropium indicum
and found that it inhibited the proliferation of various cancer cell lines in a concentration-
dependent manner with IC50 ranging from 46 to 100 µM. It blocked the cell cycle progres-
sion at mitosis without significantly altering the organization of the spindle and interphase
microtubules. The toxicities of indicine N-oxide at higher concentration was due to DNA-
damaging effects and depolymerization of microtubules. Indicine N-oxide bound to tubulin
at a distinct site, so it could serve as a template for the synthesis of some potent analogs for
the treatment of cancer.

Heliotrine, 7-Angeloylheliotrine, retronecine, subulacine and subulacine N-oxide
were isolated from H. subulatum (Figure 5) [54]. The 7-Angeloylheliotrine and retronecine
showed activity at 5 µg/kg/day of 41.7% and 38.6% inhibition against Sarcoma 180. The
hexane extract (3 µg/mL) and 7-Angeloylheliotrine (10 and 5 µg/mL) showed selective
cytotoxicity against Chinese hamster V79 cells.

2.5. Acetylcholinesterase Inhibitory Activity

Acetylcholinesterase (AChE) is a serine hydrolase that terminates the action of the
neurotransmitter acetylcholine by hydrolyzing it into acetic acid and choline [67]. The
AChE inhibitors bind to the enzyme and interfere with the breakdown of acetylcholine,
leading to the deposition of acetylcholine in the nerve synapses and causing disrupted
neurotransmission [68]. Cholinesterase inhibitors increase parasympathetic nervous system
(cholinergic) activity indirectly by inhibiting AChE, thereby preventing the breakdown of
acetylcholine. The AChE inhibitors are used in the treatment of Alzheimer’s disease [69],
the treatment and diagnosis of myasthenia gravis [70] and the treatment of diabetic urinary
bladder [71].
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7-O-Angeloyllycopsamine N-oxide, echimidine N-oxide, echimidine and 7-O-
Angeloylretronecine extracted from the whole plant of Echium confusum Coincy showed
moderate activities in inhibiting AChE with IC50 (sample concentration required to inhibit the
hydrolysis of the substrate by 50%) 0.276–0.769 mM (Figure 6) [72]. 7-O-Angeloylechinatine
N-oxide, 3′-O-Acetylheliosupine N-oxide, heliosupine N-oxide and heliosupine extracted
from the whole plant of Solenanthus lanatus showed inhibition activity against the AChE
with IC50 0.53–0.60 mM (Figure 6) [73].

Molecules 2021, 26, x FOR PEER REVIEW 8 of 13 
 

 

neurotransmission [68]. Cholinesterase inhibitors increase parasympathetic nervous sys-
tem (cholinergic) activity indirectly by inhibiting AChE, thereby preventing the break-
down of acetylcholine. The AChE inhibitors are used in the treatment of Alzheimer’s dis-
ease [69], the treatment and diagnosis of myasthenia gravis [70] and the treatment of dia-
betic urinary bladder [71]. 

7-O-Angeloyllycopsamine N-oxide, echimidine N-oxide, echimidine and 7-O-An-
geloylretronecine extracted from the whole plant of Echium confusum Coincy showed 
moderate activities in inhibiting AChE with IC50 (sample concentration required to inhibit 
the hydrolysis of the substrate by 50%) 0.276–0.769 mM (Figure 6) [72]. 7-O-Angeloylechi-
natine N-oxide, 3′-O-Acetylheliosupine N-oxide, heliosupine N-oxide and heliosupine ex-
tracted from the whole plant of Solenanthus lanatus showed inhibition activity against the 
AChE with IC50 0.53–0.60 mM (Figure 6) [73].  

 
Figure 6. Structures of pyrrolizidine alkaloids (PAs) with acetylcholinesterase inhibitory activity and miscellaneous activ-
ity discussed in this review. Except seneciphylline and pochonicine, the other PAs represent the acetylcholinesterase in-
hibitors in this figure. Heliotrine, integerrimine, retrorsine, senecionine and usaramine also had anti-ulcer effects and were 
listed in Figure 1. 

2.6. Miscellaneous Activity 
Besides the biological activities of PAs summarized above, other pharmacological 

properties of PAs were also detected, such as anti-ulcer and ganglion blocking. 
Heliotrine isolated from the seeds of H. indicum was found to possess ganglion block-

ing activity [74]. Integerrimine, retrorsine, senecionine, usaramine and seneciphylline ob-
tained from S. brasiliensis showed significant antiulcerogenic activity in both acute and 

Figure 6. Structures of pyrrolizidine alkaloids (PAs) with acetylcholinesterase inhibitory activity and miscellaneous activity
discussed in this review. Except seneciphylline and pochonicine, the other PAs represent the acetylcholinesterase inhibitors
in this figure. Heliotrine, integerrimine, retrorsine, senecionine and usaramine also had anti-ulcer effects and were listed in
Figure 1.

2.6. Miscellaneous Activity

Besides the biological activities of PAs summarized above, other pharmacological
properties of PAs were also detected, such as anti-ulcer and ganglion blocking.

Heliotrine isolated from the seeds of H. indicum was found to possess ganglion block-
ing activity [74]. Integerrimine, retrorsine, senecionine, usaramine and seneciphylline
obtained from S. brasiliensis showed significant antiulcerogenic activity in both acute and
chronic gastric ulcers on rats (Figures 1 and 6) [75]. The PA extract increased both the levels
of gastrin and the expression of Epidermal Growth Factor (EGF) after chronic treatment.
Furthermore, the exfoliation of superficial cells, hemorrhages and blood cell infiltration re-
duced in histological examinations. A mixture of PAs consisting of senecionine, integerrim-
ine, retrorsine, usaramine and seneciphylline were extracted from S. brasiliensis inflores-
cences and presented a significant anti-ulcer effect (Figures 1 and 6) [76]. The lesion induced
by indomethacin-bethanechol and hypothermic-restraint-induced gastric ulcer was signifi-
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cantly inhibited by PA. PA extracts also showed significant inhibition in the cysteamine-
induced duodenal ulcers. Pochonicine, a polyhydroxylated PA, was isolated from a solid
fermentation culture of the fungal strain Pochonia suchlasporia var. suchlasporia TAMA 87.
It demonstrated potent inhabitation against β-N-Acetylglucosaminidases (GlcNAcases) of
various organisms including insects, fungi, mammals and a plant (Figure 6) [77].

3. Recommendations for Medication
3.1. Restrictions on the Daily and Cumulative Dosage

The Germany Federal Health Bureau defined, in 1992, the maximum daily intake
of PAs for internal use as limited to 1 µg for a maximum of 6 weeks/year and 0.1 µg
for medicines with no limited duration of treatment [78]. In Belgium, it was proposed
that the limit for PAs in herbs was set at 1 ppm in 2001 [79]. The provisional tolerance
daily intake for PAs in humans was set up by the Australia New Zealand Food Author-
ity (ANZFA) at 1 µg/kg body weight/day in 2001 [80]. With regard to the mutagenic
effects of PAs, the Dutch National Institute for Public Health and the Environment (RIVM)
stated that a virtually safe dose for PAs would be 0.00043 µg/kg body weight/day in
2005 [81]. The British “Committee on Toxicity of Chemicals in Food, Consumer Products
and Environment” (COT) evaluated the non-cancer effects of PAs and concluded that doses
of PAs below 0.007 µg/kg body weight/day would unlikely be concerning in 2014 [82].
Accordingly, the German Federal Institute for Risk Assessment (BfR) also defined a safe
dose of 1, 2-unsaturated PAs of 0.007 µg/kg (0.42 µg/60 kg adult) for daily intake [81]. The
Committee on Herbal Medicinal Products (HMPC) of the European Medicines Agency
(EMA) stated that the daily oral administration from herbal medicinal products and food
was limited to 0.35 µg for a maximum of 14 days [83].

Many countries and authorities have set various limitations for PAs as mentioned
above; however, there is no international standard. All medicines have toxicity to some
degree. It is crucial to clearly indicate the dosage of medicines containing PAs.

3.2. Risks of Medication

The Consumer Healthcare Products Association (CHPA) recommend that all products
with botanical ingredients containing PA should bear the following cautionary statement
on the label: “For external use only. Do not apply to broken or abraded skin. Do not
use when nursing” [84]. In Germany, the Federal Ministry of Health required that all the
herbal medicines containing PAs must meet the regulations, and the package needs to
contain the warning notice, “Do not use during pregnancy and lactation” [83,85]. There
are similar regulations in the use of herbal medicines in Austria and Switzerland [83,86].
In January 2004, selling the oral drug containing Senecio plants was banned in the United
Kingdom [87]. In 2001, the US Food and Drug Administration (FDA) banned the use of
comfrey in dietary supplements [88].

Additionally, manufacturers should warn the patients not to drink alcohol during the
period using PA-containing medicines [89]. When patients take PA-containing medicines,
drugs that have hepatoxic synergistic effects are not allowed to be taken at the same
time [90].

4. Conclusions and Perspectives

PAs are a widespread group of secondary metabolites. Although PAs have potential
health risks to humans, they also demonstrate many beneficial pharmacy properties, such
as anti-bacterial, anti-fungi, anti-inflammatory, anti-cancer and anti-virus properties. To
date, the main pharmaceutical application of PAs is in traditional medicine with the
PA-containing plant extracts as ingredient. There are no international safety standards
for screening and quality control of PA-containing plants in herbal medicine and food
supplements. Most results of the pharmaceutical activities of PAs were derived from
laboratory studies and in vitro tests; thus there remains a lack of clinical evidence.
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Though several countries and organizations established regulations to restrict the
exposure to PA-containing food and herb medicines to avoid the toxicity, these regulations
are based on case studies and cannot be universally applied to all PAs. It is difficult to
determine a toxic dosage threshold for different PAs that may have varying toxicological ef-
fects. Therefore, a systematic assessment system with an international standard is urgently
needed for predicting the toxicity of PA-containing foods and medicinal herbs.

With the development of analytic methods and chemistry strategies [91], it is of great
importance to maintain the bioactivity and reduce the toxicity of PAs. The pharmacological
results of PAs need to be confirmed in a consistent methodology and with more plant
species under a universal assessment system. Regardless of this, it cannot be denied
that PAs have beneficial biological properties, and the prospect of pharmacy application
is promising.
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