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Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their
conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm
for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom
computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal
that decreasing the end distance of torsionally constrained ribbons below their contour length leads to
formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of
these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals;
they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and
filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical
predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline
nanoscale ribbons, and more general self-interacting filaments.

he field of atomically thin crystalline films continues to grow, both in terms of the amenable material systems

and routes for processing and manipulating them. Nanoribbons of these layered 2D materials exhibit

superior functional properties that are sensitive to the ribbon growth direction', the core and edge structure,
and the interlayer interactions. The properties can be further tuned by the structure of the edges and the inherent
coupling between the layers®. For example, Archimedean scrolls of graphene exhibit tunable transport™, super-
capacitance®, and enhanced hydrogen storage’. Similarly, folds in graphene, or grafolds®, can effect semiconduct-
ing-metallic transitions’, and increase the material strength® by localizing strain accommodation within the
ribbons.

The functional properties of these ribbons both influence, and are influenced by their conformations. In
particular, the interplay between structure, geometry and conformation is sensitive to the extent of confinement,
indicating the possibility of reversibly engineering their shapes by manipulating their end constraints. Some of the
well-known shapes include twisted and helical ribbons, driven by changes in edge structure, chemistry and ribbon
geometry'®'*. These conformations are topologically invariant and since the nature of atomic-scale interactions
remains fundamentally unchanged, their effect on the properties is often limited. The ability to engineer con-
formations with topologies that enhance non-local, interlayer interactions - scrolls, folds, and knots - can
dramatically modify and in some cases lead to novel properties, yet this remains a challenge due to the difficulties
in manipulating them at the nanoscale.

In this article, we present a facile route to engineering topologically distinct soft conformations of nanoscale
ribbons. Figure 1 depicts the scenario schematically; a finite-length nanoribbon of width w is torsionally con-
strained by rotating one end relative to the other and clamping the two ends. The end conditions take the form of a
fixed degree of supercoiling Lk and controlled end displacement 4 = z/L. The choice is motivated by the fact that,
unlike the end couple (moment M and tension T), the rigid loading variables 4 and Lk are more accessible and can
be easily manipulated™. For a ribbon so constrained, the partitioning of the initial twist (the Twist, Tw) into
energetically favorable bent shapes (the Writhe, Wr) follows from the well-known Célugireanu-White-Fuller
theorem'¢™*®, Lk = Tw + Wr. The geometric partitioning is amplified by the vanishingly small thickness of the
nanoribbon that favors bends and twists relative to in-plane deformations, and forms the basis for the paradigm
that we employ to shape these nanoribbons. The approach is bioinspired in that it is also exploited to control the
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Figure 1| (top) Schematic of a suspended supercoiled nanoribbon subject
to a torsional constraint. The relative rotation between the two ends sets
the degree of supercoiling Lk. (bottom) The strategy used to explore the
bent and twisted conformations for z < L. Magnified view of the ribbon
(boxed) illustrating the ribbon and tangent vectors, it and f respectively,
associated with the material frame used to describe the ribbon
conformation.

properties of natural filaments such as supercoiled DNA, «-helices,
elastomers, and textile fibers and their yarns'®-**, yet little is known
about analogous conformations in these van der Waals (vdW)
nanoribbons.

The rest of this article is organized as follows: we first present all-
atom computations of twisted graphene nanoribbons subject to
decreasing end displacements. The minimum energy conformations
- consisting of scrolls, grafolds and supercoiled plectonemes - are
systematically explored with varying degrees of initial twist and rib-
bon widths. Our results suggest a strong influence of the non-local
van der Waals interactions; we validate their effect by performing
similar macro-scale experiments on thin magnetic and elastomeric
ribbons. A detailed theoretical analyses highlights the role of geo-
metrical and physical parameters on the formation and stability of
the conformations. We conclude with a brief discussion of the effect
of these novel conformations on the nanoribbon properties, and
potential applications.

Results

Atomic-scale computations. The computations are performed on
edge-hydrogenated zigzag GNRs as a function of ribbon supercoiling
and end constraints. The stable conformations are extracted quasi-
statically using molecular dynamics (MD) simulations (Methods).

Figure 2a and Supplementary Video 1 show the results of simulation
ofa GNR oflength L = 110.4 nm and width w = 1.14 nm subjecttoa
prescribed end rotation, Lk = 10. The centerline of the initial A = 1
configuration is straight with a uniform twist density ¢ = 27 (Lk/L).
The end tension T decreases with A and at a critical point the ribbon
centerline destabilizes into a helix. Each helical pitch p contributes to
a full rotation of the ribbon about its centerline (boxed region in
Fig. 2a) as the large in-plane to bending stiffness ratio favors
developable conformations with vanishingly small Gaussian
curvature®”,

Scroll to fold transition. As /. decreases, the helix radius increases and
at A = 0.93, alocalizing helical instability forms, grows in length, and
beyond a critical size it packs itself into a dense scroll. The transition
is apparent in Fig. 2 for 4 = 0.89 and leads to the spontaneous
formation of a multilayered scrolled at A = 0.86. The remainder of
the ribbon visibly straightens following the scroll formation due to
the concomitant increase in the axial tension. The scroll axis is
inclined to the original ribbon axis and it is mobile along the ribbon
length. Thereafter, the scroll grows in size as the rest of the ribbon is
reeled in, evident in the 4 = 0.35 conformation consisting of a 6-layer
scroll bounded by twisted ribbon segments. In some cases the
instabilities nucleate at multiple sites, in particular at larger widths,
then rapidly diffuse along the ribbon length and try to coalesce. An
example is shown in Supplementary Video 2 for w = 1.6 nm and Lk
= 8.25.

The inset in Fig. 2b shows the ribbon interaction energy U and the
Twist Tw as a function of the imposed displacement d = L — z. The
latter is extracted as the differential rotation of a material frame about
the tangent £ to the ribbon centerline (Supplementary Methods) and
is simply one-half the number of local crossings of the two edges®”**.
For Lk = 10, the energy initially decreases rapidly as the ribbon
destabilizes into a helix following the removal of the pre-stretch.
Further decreasing 4 leads to a small jump when the scroll forms
(encircled) and the energy then decreases steadily, albeit at a slower
rate. Tw evolves along expected lines; we see a spontaneous decrease
following scroll nucleation, also evident in the configurations. Each
subsequent transition decreases the twist by ATw = 1 and the twist
density decreases by A¢ ~ 27(1)/L;,, where L, is the length of the
helical phase. It is absorbed by the scroll and registers as a corres-
ponding increase in Wr (Supplementary Figure 2). This is immedi-
ately obvious as each layer or loop within the scroll contributes to
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Figure 2| (a) Atomic configurations showing the formation and evolution of a scroll with decreasing /. = z/L in a hydrogenated GNR of length L =
110.4 nm and width w = 1.136 nm, subject to a degree of supercoiling Lk = 10. Carbon and edge hydrogen atoms are shaded gray and white, respectively.
Expanded views of the boxed regions where the Writhe localizes are also shown. Some of the views are rotated to depict the details more clearly. The
dotted red line in the 2 = 0.93 configuration traces the helical centerline of the ribbon. (b) The change in the interaction energy of the ribbon Uand the
ribbon twist Tw with end displacement L — z. The degree of supercoiling Lk = 5 and Lk = 10 in the main curve and inset, respectively.
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Figure 3 | The conformational phase diagram / vs {. The co-existence
lines are the set of critical points (4, {) at which a new phase arises. The
solid lines are the theoretically predicted critical curves. The gray, red and
blue colors correspond to twist-helix, helix-scroll and scroll-fold
transitions, respectively. The dotted blue line is prediction for the helix-
scroll transition with a larger value of the interaction area fraction, o = 2.
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non-local self-crossing of the centerline, the very definition of
Writhe'®?.

Figure 2b also shows the results for the same ribbon subject to a
smaller Linking number, Lk = 5. The reduced pre-stretch lowers the
critical value of 1 for helix formation. The radius and the pitch length
of the helix are larger and the initial energy decrease is therefore
smaller. The nucleated scroll consists of a single loop that is partially
double-layered with a larger inner radius. The transition leads to a
significant decrease in both U and Tw. Subsequently, they decrease
sharply within narrow ranges of the end displacement (encircled).
Each transition is preceded by fluctuations in the scroll size, aided by
decreasing 4, as the scroll overcomes the barrier for incorporation of
a new layer. Initial scroll growth occurs at the expense of the helical
phase, and at a critical size it forms a new layer by repacking itself into
a smaller size with a concomitant decrease in the twist, ATw = 1. The
transition is spontaneous since the ribbon ends terminating at the
scroll must realign along the horizontal to maintain the force balance
with the clamped ends. Evidently, the energy barrier for scroll forma-
tion AU increases with decreasing Lk, and the degree of supercoiling
serves as a driving force for the nucleation of the helical instability
and its transformation into a scroll. Then, Lk = 10 represents a
relatively high driving force with almost continuous decrease in
energy with L — z. Conversely, smaller supercoiling (e. g. Lk = 5)

(@)

enhances the role of fluctuations as the energy barrier is larger, and
the formation and growth of the scroll is discontinuous.

Scroll to fold transition. At even smaller Lk, we uncover yet another
phase wherein the helical ribbon folds onto itself in a hairpin fashion.
Occasionally, the multilayered segment is associated with a small
twist. In some instances, we see tennis racquet like shapes consisting
of coexisting folds capped by scrolls at one or both ends. We post-
pone the discussion of these shapes for now, but details of the evolu-
tion of these shapes are shown in Supplementary Videos 3 and 4 (w =
2.0 nm, Lk = 2.5, and w = 1.1 nm, Lk = 3.75, respectively).

Conformational phase diagram. We develop a more complete under-
standing of the stable phases by performing simulations with varying
Lk and ribbon aspect ratios w/L (Methods). The results are shown in
Fig. 3 as a conformational phase diagram, 4 vs. { = 2nLk/L, the link
density. Representative conformations are shown alongside. The ini-
tial twist is more stable at larger { due to the increasing pre-stretch,
but in all cases small end displacements near 2 = 1 result in a
spontaneous transition to a helix. The scrolled phase dominates for
smaller values of 4, as expected. Close to the scroll-fold transition
curve ({ = 0.25 at small 1), we see co-existing scrolls and multi-
layered folds; an example conformation is shown alongside. High
values of { do not lead to any new phases. The response is a bit
different as the larger ribbon width and pre-stretch leads to scroll
formation before the ribbon relaxes out the intrinsic twist and the
ribbon is stretched. The localized instability is a tightly wound helix
that resembles an axially slit nanotube; an example is shown in
Supplementary Figure 1.

Plectoneme formation. The dense scrolls and folds that we observe
are rarely observed in soft ribbon-like assemblies due to the inherent
self-avoidance in these solvated polymeric systems. There are excep-
tions, such as the formation of hairpin loops in folded f-sheet
domains in proteins and in DNA/RNA which are stabilized by
long-range interactions such as hydrogen bonding and specific
base-pair interactions®. Clearly, the long-range vdW interactions
have a decisive effect on the nature of the writhed conformations
as they are comparable to the elastic energies associated with con-
formations i.e. bending and twist. As validation, we have repeated the
computations by turning off the long-range vdW interactions. The
direct comparison is shown in Figs. 4a and 4b for a GNR of length L
= 110 nm and width w = 2 nm, subject to supercoiling Lk = 7.5 and
an end displacement 4 = 0.65. The scroll formation is suppressed
(Fig. 4a) and it now forms a classical plectoneme phase that grows
with decreasing A (Fig. 4b, Supplementary Video 5).

Macroscale experiments. We test if the behavior is universal by
studying the effect of rigid loading conditions on macroscale
elastic tapes with comparable aspect ratios and degree of

Figure 4| (a-b) Atomic configurations of a GNR (a) with and (b) without long range vdW interactions. In both cases, the ribbon is subject to an
end displacement of 4 = 0.65 (arrows). (c—d) Results of a macroscale experiments on (c) double-sided magnetic tape, and (d) simple elastic tape. The
aspect ratio and the degree of supercoiling of the tapes are chosen to be the same as that of the GNRs, i.e. w/L = 0.01 and Lk = 7.5.
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supercoiling (Methods). In the case of flexible two-sided magnetic
tapes (0.076 cm thick, w = 0.5 cm, L = 50 cm), we see the nucleation
of singly looped scrolls (Fig. 4c). Control experiments on non-
magnetic tapes lead to the formation of classical plectonemes
(Fig. 4d). The macroscale experiments serve as a useful validation,
yet the dense phases are not routinely observed as the magnetic
interactions are weak compared to the elastic energies. Gravity
effects cannot be ignored as well. In contrast, the elastic energies
stored in atomically thin ribbons are much smaller as they scale
down with thickness and the effect of non-local interactions is
therefore amplified. A simplified analysis on energetics of singly
and doubly looped scrolls highlights the role of ratio of the
bending stiffness of the GNR and the vdW interaction energy per

unit area, /D/u., on stabilization of these dense phases
(Supplementary Discussion). Since the extrinsic effects are
unavoidable in the macroscale tapes, we eschew their systematic
study and rely on a simplified theoretical framework to further
validate and analyze stability of the observed conformations.

Theoretical analysis. We make contact with the displacement-
controlled response by determining the energy of formation of a
stable scroll within a nanoribbon subject to an end displacement
parameterized by 4, and then minimizing it with respect to
geometric variables. We ignore the kinetics of the transient local
bifurcation that precedes the nucleation of the scroll'***** and also
the effect of the clamped ends. The remainder of the ribbon is
assumed to be a helical space curve as observed in the
computations. We limit our analysis to moderate supercoiling and
narrow inextensible ribbons, consistent with the large in-plane
rigidities of these thin ribbons. Then, the energetics readily follows
from the classical Love-Kirchoff framework for helical deformations
of rods with appropriate modifications for the anisotropic cross-
section of developable ribbons®'.

The scroll removes length L, and Linking number Lk, from the
helical phase. Since the conformation must conserve the total length
and Linking number, ;, + I, = 1and p;, + p, = 1 where [, = L,/L and
Iy = LJ/L are the normalized lengths, and p;, = Lky/Lk and p, = Lk,/
Lk are the normalized Linking numbers associated with the two
phases. Ignoring the more complex configurations at the interface
between the two phases (see Fig. 2a), the scroll phase stores its con-
tribution mostly as Writhe while the Twist is distributed over the
helical phase. The change in the end distance z = AL is absorbed by
the helical phase. Inextensibility guarantees that the ribbon can only
bend and therefore its deformed state can be completely determined
from the conformation of its centerline. The helical space curve can
be described in terms of its pitch p = 2nh = z/Lk;, and radius

r=4/L; —2* / 2nLky, which together define the pitch angle y = h/r

and the generalized curvature and torsion (Supplementary Equation
4). We simplify the geometry of the scroll by considering the limit
when the scroll radius is much larger than the equilibrium interlayer
distance such that the curvature variations within the multilayers can
be ignored. Then, the relevant variable is its average curvature x(l;,
ps) = 2m(Lk/L;) = 2m(Lk/L)(ps/I;). The elastic energy stored in the
helical phase follows from Sadowsky-Wiinderlich functional for nar-
row inextensible ribbons****,

U—Lh921 2 d 1
h= th( +1°) wds. (1)
0

The scroll is stabilized by a competition between bending and inter-

action energies,
L
* (D
U,= J (E K2 — ocuc> wds, (2)
0

where u, = 1.5 eV/nm?® is the interaction energy per unit area
between parallel graphene sheets. The interaction area fraction o

varies as the scroll grows: o = 1/4 within the single loop that nucle-
ates at small Linking numbers (Lk; = 1) while the scrolls that nucle-
ate at larger Linking numbers are usually doubly looped (Lk, = 2)

1
such that o=1 3 (Fig. 2a). As the scroll grows and becomes increas-

ingly multilayered, « — 2. Although an approximate expression for
o(pp> Lk) can be constructed (Supplementary Equation 10), for now
we ignore the variation as part of the minimization presented below.

Ignoring the interface regions, the ribbon energy density (U, +
U,)/(wL) can be expressed as a functional of the form f(l;, p, A)

which depends on f={+/D/2uu,, a dimensionless parameter that
captures the effect of link density and the competing effects of the
bending stiffness and the interaction energy (Supplementary
Equation 12). Minimizing f with respect to the dimensionless twist
pp and length [, yields their equilibrium values as a function of the
end distance /,

2

Ih(2) =200+ B), ot

pu(4) = 3)
The solution to these equations partition the conformational space
into three distinct stable regimes: helix, co-existing helix and scroll,
and coexisting straight nanoribbon and scroll. The corresponding
critical curves are plotted in Supplementary Figure 3. Below, we use
these relations to quantify the formation and growth of scrolls and
their transition to folds.

Scroll nucleation. For partially multilayered singly looped scrolls that
nucleate at small Lk, the critical point can be expressed as
Py = (Lk—1)/Lk with o = 1/4. Substituting in Eq. 3 yields the critical
end displacement A} and the complete solution is plotted in Fig. 3 as
the critical curve 4] vs. {{. The decrease in 4} ((}) is in agreement
with trends in the simulations. However, the quantitative agreement
breaks down to some extent at large Lk; the critical point in the
simulations is consistently higher due to several reasons: One, we
ignore the effect of the clamped ends. Two, the long-range interac-
tions within the transient conformations that precede the scroll nuc-
leation are ignored in the theoretical framework. Three, the radius of
the scroll is approximated as a constant and can lead to errors with
increasing number of layers within the scroll. Four, the theory
ignores the non-isometric deformations at the interface where the
scroll transitions to a helix. The interfacial region becomes increas-
ingly localized at large Linking numbers and can retain significant
elastic energy. Finally, as mentioned earlier, the criteria for the
nucleation of the doubly looped scroll must be changed to

1
pp=(Lk—2)/Lk, with o=1 3 The modified theoretical curve is also

plotted in Fig. 3 (dashed line). The arrow in the plot indicates the
approximate point at which the doubly looped scrolls become viable
in the simulations. The comparison captures the effect of « on the
critical point; 4] and {} increase with o (Supplementary Figure 5) and
the predictions are in quantitative agreement with the simulation
results.

These effects notwithstanding, the simulations and the theoretical
analysis shows that 4] decreases non-linearly with ;. The origin of
the decay can be understood by considering the solution in the limit

Lk>1 (Supplementary Methods), 2'~1/f*+4—f/2. For f — 0

and sufficiently large Lk the decay is almost linear, A;~1—f/2.
The analysis also yields the critical scroll size,

* l;k —_— D *
k= onlk: ZOcuCAS’ )

ie. it is proportional to the critical end distance and therefore
decreases non-linearly with the corresponding link density (.
The theoretical predictions are in agreement with the simulations,
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especially at small Lk. As an example, for Lk = 5 the size of the singly
looped scroll in the simulations is R = 0.3 nm (Fig. 2b) and that
predicted by theory is R = 0.45 nm. The predicted size of the doubly
looped scroll decreases to R = 0.4 nm for Lk = 10 compared to R =
0.25 nm in the simulations. The computed sizes are consistently
smaller, due to inaccuracies in the assumed interaction area fraction
o at nucleation and related simplifying assumptions.

Scroll growth. The scroll size in the simulations increases with
decreasing 4, evident in Fig. 2. The behavior is consistent with Eq. 3,

R(LP= \/2—5 (iiﬂ) | ®

and the dependence is plotted in Fig. 5 for the GNRs geometries
studied here. Quantitative agreement with the simulations is han-
dicapped as o is assumed to be a constant. In order to fully capture
this effect, we have repeated the energy minimization with varying
o(pp Lk) (Supplementary Figure 4) and the predicted size evolution
R(7) is plotted in the inset in Fig. 5 for Lk = 5 and Lk = 10.
Comparison with plots for constant « (vertical dashed lines) indicate
that the rapid increase in o clearly tempers the initial scroll growth.

Figure 5 also shows the size evolution in the simulations. The
nucleated sizes are smaller yet the initial growth rate is in excellent
agreement with the theory. Past a critical size, the scroll size begins to
increase discontinuously with the addition of a new layer, slowing the
growth rate. The behavior is more pronounced atlower Lk and can be
clearly seen in the Lk = 5 curve. This is a result of mechanical
equilibrium along the horizontal that aligns the ribbon tangents at
the interface regions abutting the scroll along the clamped ends. The
preferred orientation also minimizes the distortion at the interface
regions. As /. decreases, the constraint forces the scrolls to grow by
increasing the scroll length Lg; the decreasing end distance directly
feeds the scroll by increasing its size. Past the critical point, it
becomes energetically favorable for the scroll to repack by increasing
the numbers of layers and therefore o (Fig. 2b). This entails sliding
between the layers in the scroll. Since the interlayer interactions are

1.59 --- varying o
_conrysle?ntrx Lk=10

—eo—simulations

— --- varying o

€ 1.0] —constant . | Lk=5

£ —e—simulations

c

0.8 1.0

¢ = B//D/2ous (nm™)

Figure 5 | Dimensionless contour plot of predicted scroll size R(4, {) ina
GNR oflength L = 110 nm and width w = 1.14 nm. (inset) The evolution
of the scroll size with end-distance L — zfor Lk = 5 (red solid line) and Lk
= 10 (blue solid line) with constant interaction area fraction o = 2.
Theoretical predictions for varying o (dashed lines) and the size evolution
extracted from the simulations (symbols) are also plotted. See text and
Supplementary Methods for details.

weak in these vdW materials, the energy dissipation is negligible. The
addition of each new layer is spontaneous once the existing scroll
overcomes the energy barrier.

Scroll to fold transition. Low link densities lead to large scroll sizes
that are unstable due to the small bending stiffness of the scrolled
segment. Then, past another critical size, it becomes energetically
favorable for the scroll to collapse into bi-/multi-layered folds. The
transition is again spontaneous as unfolding requires larger end
forces. Usually, the folding transition occurs well after the remainder
of the ribbon has eliminated all of its twist, i.e. L;, = 0. In this regime,
A <1 — f, the end distance L;,  z, and the scroll radius evolves as
(Supplementary Methods)

Rsu,m:\/;f; (%) (6)

The phenomenon is similar to the self-collapse of nanotubes where
the enhanced interaction energy between the collapsed layers stabi-
lizes the large curvatures at the folded ends®. The critical radius of a
scroll that undergoes energetically favored self-collapse is

D/
Rf=~2.124/—, 7
¥ ” (7)

where D' is the effective bending rigidity of the multilayered scroll
and varies with the number of layers. The size is much bigger than the
interlayer distance d,, such that D’ /u,>>dy. The fold transition in the
simulations occurs usually for multilayered scrolls (see
Supplementary Video 4, Lk = 3.25) and « = 2 is a reasonable
approximation for the scroll radius (Eq. 6). Additionally, since the
resistance to interlayer sliding is small, the bending rigidity is simply
the independent contribution of each layer and can be approximated
as D' = DLk(=DLk). Then, equating Eqs. 6 and 7, Z}zl —

4.248 B+/Lk. The curve, plotted in Fig. 3, is in good agreement with
the simulation results, especially so for large end displacements

where the critical point is almost independent of 1. Then, the critical
—1/3

link density varies inversely with ribbon length, C]f oc(DL/u,)

The extent of the folded region is proportional to the critical size and
it grows with decreasing Z following nucleation; the behavior is sim-
ilar to the scroll growth analyzed earlier.

Discussion and Conclusions

Our results demonstrate a simple strategy for controlling the size and
number of layers in these packed phases via geometric end con-
straints, thereby enabling continuous on-demand modification of
their properties. The ability to prescribe their shapes offers a novel
route for tuning the ribbon properties, and is therefore of importance
for their deployment as active elements in emerging nanoelectronic
devices, electromechanical systems and nanocomposites. In particu-
lar, the higher level of control can aid the development of a novel class
of non-linear nanoelectronic and NEMS devices - actuators, resona-
tors switches - based on these vdW materials. The paradigm also
applies to nanoribbons in other material systems, notably carbon
nanotubes and their bundles’**, and nanowires and nanoribbons
of polar crystals such as ZnO and GaN where the non-local interac-
tions are considerably stronger due to the presence of surface
charges***". The interplay with end-constraints highlighted here
can be employed to engineer a far richer set of conformations with
their own unique set of properties - there is plenty of room at the
bottom in controlling the conformations of these nanoribbons.

Methods

Atomic-scale simulations. The GNRs chosen for this study have zigzag edges.
Carbon atoms at the unreconstructed zigzag edges with one missing sp” bond are
passivated with hydrogen atoms*. The simulations are performed for fixed ribbon
length L = 110.4 nm and varying widths, w = 1.136 nm, 1.562 nm, and 1.988 nm.
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The AIREBO framework is used to describe the carbon-carbon bonded interactions
in the GNRs*. The vdW interactions are based on the classical 6-12 potential between
graphene elements*. The potential reproduces the near-equilibrium properties of
graphene; since this study is limited to soft conformations, the empirical framework is
adequate for this study. The degree of supercoiling is prescribed by twisting the ribbon
uniformly along its length with a twist density ¢ = 27 Lk/L. The ends are then
clamped such that the end distance is equal to the contour length of the untwisted
ribbon. The ribbon is relaxed using canonical MD at a T = 300°K (velocity Verlet
integrator, time step 1 fs, Nosé-Hoover thermostat*>*°).

Ribbon conformation. The effect of A on the conformations is explored by
decreasing the end distance quasi-statically in decrements of 2% and the energy is
locally minimized using the MD algorithm. The ribbon vectors ii(s) are the generators
of the developable ribbon surface (see Fig. 1). A subset of these vectors terminate at the
passivating hydrogen atoms at the edges, and they are monitored to dynamically
generate the ribbon shape and extract Tw and Wr (Supplementary Methods).

Phase diagram. The co-existence lines represent the combination of parameters
associated with the first observation of a stable new phase. The critical point for twist
to helix transition is based on destabilization of the ribbon centerline; it develops a
finite curvature with a well-defined pitch length smaller than the ribbon contour
length. The helix to scroll transition follows from observations of stable loops. Singly
looped scrolls are commonly observed at small Lk (Wr = 1, Fig. 2b) while larger
supercoilings result in doubly looped scrolls (Wr = 2, Fig. 2a). Formation of both
scrolls and folds results in discontinuous changes in the interaction energy U and aids
in identifying the corresponding critical points.

Macroscale experiments. The magnetic tapes were cut out from double sided
magnetic sheets (McMaster-Carr, ~4 kPa pull strength). The ends are gripped and
rotated using clamps. The end distance is decreased at a rate ~ 107> s™. The control
experiments are performed on non-adhesive marking tape (3M).
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