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ABSTRACT

Synthetic DNA is a highly programmable nanoscale
material that can be designed to self-assemble into
3D structures that are fully determined by underlying
Watson–Crick base pairing. The double crossover
(DX) design motif has demonstrated versatility in
synthesizing arbitrary DNA nanoparticles on the 5–
100 nm scale for diverse applications in biotechnol-
ogy. Prior computational investigations of these as-
semblies include all-atom and coarse-grained mod-
eling, but modeling their conformational dynamics
remains challenging due to their long relaxation
times and associated computational cost. We ap-
ply all-atom molecular dynamics and coarse-grained
finite element modeling to DX-based nanoparticles
to elucidate their fine-scale and global conforma-
tional structure and dynamics. We use our coarse-
grained model with a set of secondary structural
motifs to predict the equilibrium solution structures
of 45 DX-based DNA origami nanoparticles includ-
ing a tetrahedron, octahedron, icosahedron, cuboc-
tahedron and reinforced cube. Coarse-grained mod-
els are compared with 3D cryo-electron microscopy
density maps for these five DNA nanoparticles and
with all-atom molecular dynamics simulations for the
tetrahedron and octahedron. Our results elucidate
non-intuitive atomic-level structural details of DX-
based DNA nanoparticles, and offer a general frame-
work for efficient computational prediction of global
and local structural and mechanical properties of DX-
based assemblies that are inaccessible to all-atom
based models alone.

INTRODUCTION

Synthetic DNA nanotechnology leverages the secondary
structure of DNA to reliably program 3D geometries for
diverse applications in biotechnology and nanoscale mate-

rials science (1–3). Scaffolded DNA origami (4,5) employs
a single-stranded DNA (ssDNA) scaffold strand that forms
a template for shorter DNA substrands called staples, of-
fering near-quantitative yield over the final, self-assembled
product for DX-based wireframe scaffolded DNA origami
structures. Watson–Crick base pairing between the scaffold
strand and staple strands enables folding ssDNA into struc-
tured DNA assemblies with diverse geometries, including
wireframe structures (6–11), 2D surfaces (4,12–15), and 3D
solids (16–20). Alternatively, structured DNA assemblies of
these three types of geometries can be programmed without
scaffold strands (21–26).

Integral to the effective design and synthesis of struc-
tured DNA assemblies is computer-aided design (CAD).
Manual software tools including caDNAno (27) and Tia-
mat (28) have been developed to aid in this process. More
recently, the top-down, geometry-based algorithms vHe-
lix (10) and DAEDALUS (11) have been developed to au-
tomate the design of nucleic acid sequences in near-fully
and fully automated manners, respectively, for wireframe
geometries. The finite element (FE) modeling approach
CanDo is also routinely used to predict the 3D equilibrium
conformation of programmed DNA assemblies based on
a coarse-grained representation of B-form DNA (5,29,30).
Because numerous applications of structured DNA assem-
blies exploit control over the angstrom-level positioning of
individual bases (20,31–33), computational investigation of
atomic-level structure together with automated tools that
predict non-intuitive equilibrium shapes are of great utility
to the field of structural DNA nanotechnology.

While numerous computational tools are capable of pre-
dicting equilibrium solution structures of nucleic acid as-
semblies, all-atom molecular dynamics (MD) simulations
(34) in principle represent the gold standard for 3D struc-
ture prediction (35,36). All-atom models are capable of
capturing the detailed structural, mechanical, and physic-
ochemical properties of DNA assemblies, albeit at signifi-
cant computational cost that limits their application using
conventional computing resources to short time-scale sim-
ulations and low molecular weight assemblies. Larger-scale
assemblies can be simulated on limited time-scales of tens to
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hundreds of nanoseconds using high performance comput-
ing resources that are not broadly available (34). In contrast,
coarse-grained models use united atom representations to
model clusters of atoms and their interactions, thereby re-
ducing the total number of degrees of freedom (DOF) and
associated computational cost (37–49) at the expense of all-
atom resolution.

In order to maximize structural prediction accuracy while
reducing computational cost, numerous coarse-grained
models for DNA have been developed (50–53). Nucleotide-
level models represented in oxDNA2 (54), an enhanced ver-
sion of oxDNA (55), treat each nucleotide as a rigid body
that interacts with other nucleotides via an empirical poten-
tial. This coarse-grained model has been applied to simulate
hybridization kinetics (56), overstretching (57), equilibrium
structures (58), and self-assembly (59) of DNA. An alter-
native category of models, the 3-site-per-nucleotide (3SPN)
model (60,61), uses three interaction sites to simulate the
base, sugar, and phosphate group of a nucleotide, and has
been used to predict DNA melting curves and persistence
lengths (62). In addition, chemical group-level models such
as the MARTINI coarse-grained force field (63–65) have
been extended to model DNA by treating each nucleotide
as six or seven beads (66). These coarse-grained models
of DNA have been discussed in more detail in recent re-
view articles (67–69). While useful for predicting conforma-
tional dynamics of DNA assemblies, particularly involving
duplex dissociation, large-scale equilibrium structural and
mechanical properties of highly structured DNA assemblies
programmed using the principle of scaffolded DNA origami
remain challenging to predict using these models.

As an alternative, here we apply our FE modeling frame-
work CanDo to solve for the ground-state equilibrium
structure and mechanical properties of structured DNA
nanoparticles. Compared with the aforementioned compu-
tational tools, our FE model treats DNA duplexes as worm-
like chains from polymer physics (70) or elastic beams from
mechanical engineering (71) accounting for the full axial,
torsional, and bending properties of duplex B-form DNA.
Double and single-crossovers are treated explicitly by con-
straining the relative motions of joined duplexes, and bulges
and open nicks are similarly modeled empirically using
spring-like elements. A nonlinear FE solver is then used to
compute the ground-state equilibrium structure (5,29,30)
and mechanical properties of stable DNA assemblies, the
latter comprising thermal fluctuations (29,30,72) and force-
deformation responses (20), with significantly reduced com-
putational cost compared with all-atom and nucleotide-
level models. Previously, we introduced the FE framework
CanDo (5,29) to compute equilibrium structures of a class
of DNA assemblies in which DNA duplexes are placed on a
honeycomb (16) or square (18) lattice. This lattice require-
ment is relaxed in the lattice-free version of CanDo (30),
which places DNA duplexes in arbitrary positions and ori-
entations in 3D space. Because each of these models ne-
glected the presence of bulges and open nicks that are com-
monplace in DX-based assemblies (9,11,23), here we in-
corporate these motifs by parameterization using all-atom
models. Specifically, we derive the ground-state configura-
tions of the FE models of bulges and open nicks from their
respective all-atom models and perform all-atom MD simu-

lations of the bulge to determine its rotational stiffness coef-
ficients. Further, we apply all-atom MD to model the equi-
librium geometry and mechanical properties of a limited set
of DX-based nanoparticles to compare predictions of our
coarse-grained model with both experimental cryo-electron
microscopy (cryo-EM) data and all-atom modeling.

MATERIALS AND METHODS

Lattice-free finite element model of structured DNA assem-
blies

The FE method was originally used to model four dis-
tinct topological motifs defined by the secondary structure
of programmed DNA assemblies, which included duplexes,
nicks, ssDNA, and double crossovers (5,29), where duplexes
were assumed to reside on a square or honeycomb lattice.
Subsequently, the requirement that duplexes reside on such
lattices was removed and single crossovers were also incor-
porated into the model to account for their higher confor-
mational flexibility with respect to double-crossovers (30).
Here, we additionally introduce a bulge model to facilitate
simulation of DX-based objects, and also differentiate be-
tween open and closed nicks due to their distinct mechan-
ical properties associated with stacked versus non-stacked
base pairs (Figure 1). Closed nicks are identified using the
four nucleotides denoted n1, n2, n3 and n4, in the CAD de-
sign, where base pair n1–n2 stacks with base pair n3–n4 (Fig-
ure 1B). Otherwise, the two base pairs are modeled as an
open nick (Figure 1B).

Each base pair in a DNA assembly is modeled as a FE
node with three translational DOF and three rotational
DOF in a global 3D Cartesian coordinate system (Figure
1A). Such a node is rigidly connected to a right-handed
orthonormal reference frame (e0, e1, e2, e3) with the center
e0 located at the position of the node. The all-atom model
of a DNA assembly determines the reference frames of all
nodes, and vice versa. From the all-atom base pair model,
the convention used by the software 3DNA (73) defines the
origin of the reference frame and its three orthogonal di-
rections: the minor-major groove direction, the base-base
direction, and the direction normal to the base pair plane.
The center e0 is defined as the reference point, and axes e1,
e2 and e3 coincide with the three reference directions. In this
study, e1 points to the major groove, e2 points to the base in
an arbitrarily chosen strand, and e3 is perpendicular to the
base pair plane and points in the 5′ to 3′ direction of the
chosen strand. From the reference frame of a node, the all-
atom model of the same base pair is constructed by placing
the standard reference atomic structure such that its refer-
ence point and reference axes coincide with the center and
axes of the frame, respectively (30,33).

In its ground-state configuration with zero mechanical
free energy, an isolated duplex consisting of N base pairs
(bp) has the geometry of a straight line-segment with length
L0N, where L0 = 0.34 nm per nucleotide. The duplex has
empirical stretch modulus of 1100 pN, bend modulus of 230
pN nm2, and twist modulus of 460 pN nm2, and is therefore
modeled as N FE nodes connected by N − 1 two-node Her-
mitian beam elements with the same stretch, bend, and twist
moduli (Figure 1B) (5,29). The connection of two stack-
ing base pairs in a duplex is modeled as a beam element
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Figure 1. Mechanical models of secondary structural motifs of programmed DNA assemblies considered in this work. (A) Each base pair in the secondary
structure of a programmed DNA assembly (left) is modeled as a FE node represented as a blue sphere located at e0 with three reference axes e1, e2 and e3
(center). There is a one-to-one correspondence between the reference frame (e0, e1, e2, e3) and the all-atom model of the same base pair (center). Thus, the
FE model can be represented by an all-atom model (right). The arbitrarily chosen strand, to which axis e2 points to, is colored in blue, and the other strand
is in gray. (B) A set of secondary structural motifs (top) and the corresponding FE models (bottom) in programmed DNA assemblies. Nucleotides and
the FE model in a given motif are colored in red, while those in the flanking base pairs are colored in gray. A global reference coordinate system (x, y, z)
is defined for the FE models of double crossovers, single crossovers, open nicks, and bulges. The mechanical model for a double crossover and that for a
single crossover each contain two torsional springs: one connects nodes N1 and N2, and the other one connects nodes N3 and N4. Base pair n1–n2 stacks
with base pair n3–n4 in a nick but not in an open nick. (C) (Left) FE and the corresponding all-atom model, rendered in ribbons, of a bulge between nodes
N1 and N2. The 5′-end and the 3′-end of the blue strand are marked. In addition, the reference axes x, y and z are defined as the reference axes e1, e2,
and e3 of node N1. (Center) Two probability distributions of the two rotation angles θx and θz about axes x and z, respectively, computed from all-atom
MD simulations. A Gaussian is fitted to each distribution. Means of the fitted Gaussians are plotted as vertical dashed lines. (Right) The autocorrelation
functions (ACFs) of θx and θz from all-atom MD simulations. A single exponential is fitted to each ACF. The inset shows four snapshots sampled at 200,
400, 600, and 800 ns in the MD trajectory of the bulge. These snapshots are aligned with each other.

with geometric and mechanical properties from experimen-
tal values of B-form DNA duplexes. Specifically, the beam
element has a ground-state axial length of 0.34 nm and a
right-handed twist-angle of 360◦/10.5 ≈ 34.29◦. Duplexes
with a nick between two stacked base pairs are assumed
to have the same ground-state geometric and mechanical
properties as a standard B-form duplex, and are therefore
modeled using the same beam element (Figure 1B) (30). Un-

stacked, or open nicks are instead modeled using a reduced
empirical stiffness factor that corresponds to the 100-fold
reduced bending and twisting stiffness of B-form DNA as-
sumed previously based on TEM images of honeycomb or
square lattice-based geometries (29). Consistent with our
previously published modeling approach, ssDNA is mod-
eled to have nonlinear spring-like mechanical properties of
an extensible worm-like chain (29).
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Double crossovers have a ground-state geometry defined
by two antiparallel duplexes with an interhelical distance
s = 1.85 nm and a right-handed interhelical angle Jtwist =
0◦ (30). The mechanical properties of a double crossover are
represented by a torsional spring with linear stiffness con-
necting two duplexes and are modeled as two alignment el-
ements implemented in the commercial FE software AD-
INA (ADINA R&D, Watertown, MA, USA) (Figure 1B)
(30). In the first alignment element, line segments L1 and
L2 each have one end rigidly attached to nodes N1 and N2,
respectively, and the other end located at a pivot P, which is
located at the centroid of the four nodes N1, N2, N3, and N4.
The second alignment uses line segments L3 and L4 to con-
nect nodes N3 and N4 with the same pivot. Note that the
conformation of a double crossover may reside in one of
multiple ground-states, each of which has a different value
of Jtwist. For example, the ground-state value of Jtwist can be
60◦ for concentric rings and lattices (30) or 180◦ for parane-
mic crossovers consisting of two parallel duplexes (74). The
two alignment elements allow the duplex with nodes N2 and
N4 to rotate about the pivot. Determined in previous work
(30), the rotational stiffness coefficients of the rotation of
the helix with nodes about the reference axes x, y and z
(Figure 1B) are 1353 pN nm rad−1, 1353 pN nm rad−1 and
135.3 pN nm rad−1, respectively (Table 1).

Single crossovers are assumed to have a ground-state
geometry that is identical to double crossovers. The FE
model of a single-stranded crossover is identical to that of a
double-stranded crossover except that the rotational stiff-
ness defined by pivoting about the reference axis z is re-
duced (Figure 1B) (72). In contrast, rotation about the x-
axis or the y-axis results in steric overlap between the du-
plexes in the single crossover (Figure 1B). Thus, the rota-
tional stiffness about the x-axis and that about the y-axis
are partially contributed by the interaction between the two
duplexes in the single crossover and are not reduced. In the
present work, we set the rotational stiffness about the z-axis
to be 13.53 pN nm rad−1, the same value as in open nicks
and bulges shown below, while keeping the other two ro-
tational stiffness coefficients the same as those in a double
crossover (Table 1).

Open nicks and bulges have the same ground-state geom-
etry as double crossovers with base pairs on one side of the
pivot point P removed. In contrast to a double crossover
or a single crossover, an open nick or a bulge is modeled
as only one alignment element (Figure 1B). The position
of the pivot P relative to the nodes N1 and N2 is determined
from the average Cartesian coordinates of atoms P and O3′,
the chemical bond between which connects two neighbor-
ing nucleotides on the same strand, in the reference coordi-
nate system of a base pair (Supplementary Figure S1). The
alignment element allows the duplex with node N2 to ro-
tate about the pivot (Supplementary Figure S1). Compared
with those of double crossovers, the rotational stiffness co-
efficients of bulges about the reference axes x and z are re-
duced by factors of 100 and 10, respectively, which is esti-
mated in the Results and Discussion section from the am-
plitude of thermal fluctuations in MD trajectories using the
equipartition theorem. Therefore, these two rotational stiff-
ness coefficients are both set to 13.53 pN nm rad−1 (Table 1).
In a collection of recently published assemblies, bulges can

rotate about the reference axis y without causing significant
structural deformation (9), and thus the rotational stiffness
coefficients of bulges about the reference axis y are reduced
to zero. An open nick has the same secondary structure as
a bulge except for the absence of an unpaired strand that
is mechanically flexible (Figure 1B). Therefore, we assume
the three rotational stiffness coefficients of open nicks to be
identical to those of bulges.

Generation and solution of finite element models

The solution procedure for finding the ground-state mini-
mum energy structure is identical to that presented in our
previous work (30). Briefly, the nucleotide sequences and
secondary structure of a DNA nanostructure are modeled
as a graph in which each vertex represents a nucleotide,
and each edge models either a phosphodiester bond or a
Watson–Crick base pair. An algorithm then traverses the
graph and finds all double crossovers and single crossovers,
as well as the connectivity between them via duplexes, nicks,
ssDNA, open nicks, and bulges, in order to generate the ini-
tial configuration of the FE model as interconnected sec-
ondary structural motifs at their individual ground states.
The mechanical properties of the FE model are assumed
to be linear, even though geometric nonlinearities are ac-
counted for in the FE model and solution procedure. FE
model solution is performed by ADINA Version 8.9 (AD-
INA R&D, Watertown, MA, USA) using the full New-
ton iteration method that relaxes the FE model and finds
the equilibrium structure with minimum mechanical free
energy. The FE solution procedure performs a dynamic
analysis with the Bathe Composite method and Rayleigh
damping (71). The solution procedure consists of 1230 so-
lution time steps. At time step zero, the FE model is in
its initial configuration, which is chosen to be the ground-
state FE model of secondary structural motifs placed in the
same positions and orientations as those in the CAD de-
sign. Restorative forces and moments are then exerted on
each pair of ends of connected motifs such that they co-
incide in the positions and orientations by time step 1000.
The simulation is then run for an additional 230 time steps
to ensure relaxation of the entire FE model. Energy and
force/moment convergence criteria are used with relative
energy tolerance of 10−6 and relative force and moment tol-
erances of 0.01.

All-atom molecular dynamics simulations

All-atom MD simulations were performed for two DNA
origami nanoparticles, a tetrahedron and an octahedron
(Figure 3A–E), as well as an unconstrained DNA duplex
bulge consisting of five ssDNA bases (Figures 1C and 2C),
an unconstrained 3-arm vertex region corresponding to the
vertices of the tetrahedron, and an unconstrained 4-arm
vertex region corresponding to the vertices of the octahe-
dron (Figure 2B and C). Both the 3-arm and 4-arm ver-
tices have 21 bp per edge, with a vertex bulge region con-
sisting of five ssDNA bases. The 3-arm vertex includes two
double-crossovers and one single-crossover on the edges,
and the 4-arm vertex includes two double-crossovers and
two single-crossovers on the edges. All-atom Protein Data
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Table 1. Rotational stiffness coefficients of the double crossover, the single crossover, the open nick and the bulge.

Rotational stiffness coefficients [pN nm rad–1]
(Figure 1B) Double crossover Single crossover Open nick Bulge

About axis x 1353 1353 13.53 13.53
About axis y 1353 1353 0 0
About axis z 135.3 13.53 13.53 13.53

Figure 2. Mechanical models of unconstrained multi-arm vertices. (A) Secondary structures (top) and corresponding FE models at the ground-state
mechanical free energy (bottom) of 3-arm, 4-arm, 5-arm, and 6-arm vertices consisting of duplexes, double crossovers, single crossovers, and bulges. An
N-arm vertex contains N ssDNA regions, each of which comprises five unpaired thymine bases. As an example, one of the three ssDNA regions in the 3-way
vertex is encircled by red dots. The secondary structure and the first orthogonal view of each vertex are oriented such that the minor grooves of DNA at
the center of the vertex face the reader. The FE models are represented as all-atom models with DNA stranded colored in the same way as in the secondary
structures. All scale bars are 5 nm. (B) (Top) Four aligned snapshot sampled at 100, 200, 300, and 400 ns in the MD trajectory of the 3-arm junction.
(Bottom) Four aligned snapshot sampled at 100, 200, 300, and 400 ns in the MD trajectory of the 4-arm junction. (C) Histogram of various geometric
values calculated from MD trajectories. Duplex bend-angles in degrees (top left), duplex torsional twist-angles in degrees (top right), out-of-plane bend-
angles in degrees (bottom left), and radial vacancies in angstroms (bottom right) during 500-ns (3-arm junction, 4-arm junction) and 1-�s (duplex bulge)
MD simulations. Solid lines indicate the mean value during the MD trajectory and dashed lines indicate the value obtained from the ground-state FE
model.
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Bank (PDB) files for the tetrahedron (63 bp per edge), the
octahedron (52 bp per edge), the bulge, and the 3-arm and
4-arm vertices were generated using the atomic structure
generator in the lattice-free implementation of CanDo (30),
where the DNA scaffold routing for the tetrahedron and the
octahedron were constructed using DAEDALUS (11). All-
atom systems were solvated in TIP3P water (75) with ex-
plicit Mg2+ and Cl− ions added to neutralize DNA charges
and to set the simulation cell Mg2+ ion concentration to 12
mM, consistent with experimental conditions (11).

MD simulations were performed using the program
NAMD2 (76) with the CHARMM36 force field (77–80)
and Allnér Mg2+ parameters (81) using an integration time
step of 2 fs and periodic boundary conditions applied in an
orthogonal simulation cell. Van der Waals energies were cal-
culated using a 12 Å cut-off, a switching function applied
from 10 to 12 Å, and a 14 Å pair list distance. The Par-
ticle Mesh Ewald (PME) method (82) was used to calcu-
late full electrostatics with a maximum grid point spacing
of 1 Å. Full electrostatic forces were computed every two
time steps (every 4 fs) and non-bonded forces were calcu-
lated at each time step (2 fs). Simulations were performed in
the NpT ensemble using the Nosé–Hoover Langevin piston
method (83,84) for pressure control with an oscillation pe-
riod of 200 fs and a damping time of 100 fs. Langevin forces
were applied to all heavy atoms for temperature control (300
K) with coupling coefficients of 5 ps−1. All hydrogen atoms
were constrained to their equilibrium lengths during the
simulation and system configurations were recorded every 1
ps for downstream analysis of coordinate trajectories. Un-
constrained all-atom energy minimization was performed
in the orthogonal simulation cell prior to dynamics using
the conjugate-gradient and line search minimization algo-
rithms implemented in NAMD2 for 10 000 steps. Prior to
production MD, solvent and ions were allowed to equili-
brate for 1 ns while the nucleic acid atoms were spatially
constrained. During this equilibration phase, the integra-
tion time step was 1 fs, and Langevin forces were applied to
all atoms, including hydrogen atoms. For production MD,
all simulated systems were run for a minimum of 150 ns.

Due to the large number of atoms in the all-atom sol-
vated models of the tetrahedron and octahedron, produc-
tion MD simulations were run only for 150 ns. The uncon-
strained all-atom solvated models of the 3-arm and 4-arm
vertices were run for 500 ns, and the unconstrained all-atom
solvated model of the duplex bulge was run for 1 �s. Supple-
mentary Table S1 shows the ramp-up in processor-hours re-
quired for the larger systems studied. To determine whether
the properties studied in the all-atom models of the tetrahe-
dron, octahedron, unconstrained 3- and 4-arm vertices, and
the unconstrained duplex bulge represent equilibrium val-
ues, temporal autocorrelation functions (ACFs) are com-
puted for each property (Supplementary Figures S6, S8,
S10, and S12).

Edge and vertex analysis of polyhedral MD trajectories

A geometric approach for analyzing each frame in the MD
trajectory of a DNA origami nanoparticle (Supplementary
Figure S2) was developed. Two M-bp DNA duplexes of
each edge are connected with a 1-bp offset along the edge di-

rection, resulting in a protruding base pair at each end of the
edge. The protruding base pairs are excluded from down-
stream analysis, and the remaining base pairs of the edge
are indexed as bp1, 1, bp1, 2, . . . , bp1, M−1, bp2, 1, bp2, 2, . . . ,
bp2,M−1. The Python package ProDy (85) then computes
the geometric center of atoms in each base pair, denoted
x1, 1, . . . , x2, M−1, and the geometric center of atoms in each
pair of base pairs (bp1,i, bp2,i), i = 1, 2, . . . , M − 1, de-
noted ci. A right-handed orthonormal basis (b1, b2, b3) is
defined using the three principal axes of the point cloud
{x1, 1, . . . , x1, M−1, x2, 1, . . . , x2, M−1}, in which b1 is co-
incident with the first principal axis and points from c1 to
cM−1, b2 is coincident with the second principal axis and
points from bp1, 1 to bp2, 1, and b3 is coincident with the
third principal axis and points outwards of the nanoparti-
cle. Next, a L-bp-long region at the starting end of the edge
is selected to define a vector a1, which is coincident with
the first principal axis of the point clouds {c1, . . . , cL}, and
points from c1 to cL. The bow- and twist-angles associated
with the left half-edge are computed by projecting a1 onto
the b3-b1 plane and the b1-b2 plane as a1, bow and a1, twist, re-
spectively. The bow-angle is defined as the right-handed ro-
tation angle from a1, bow to b1 about b2, and the twist-angle
as the right-handed rotation angle from b1 to a1, twist about
b3.

This geometric approach allows calculation of three
properties of an N-arm vertex in each frame: average bow-
angle, �, average twist-angle, �, and radial vacancy, Rvac.
The average bend- and twist-angles are averaged over the
N half-edges that are directly connected to the vertex. The
vertex contains N bulges, of which ProDy calculates the ge-
ometric centers of atoms of the unpaired nucleotides as y1,
y2, . . . yN , respectively. In addition, ProDy calculates the
geometric centers of atoms of all the unpaired nucleotides
in this vertex as y. The radial vacancy of this vertex is de-
fined as the average Euclidean distance between yi and y,
i = 1, 2, . . . , N.

Edge and vertex analysis of unconstrained bulge and vertex
MD trajectories

A similar approach for analyzing each frame in the MD tra-
jectory of unconstrained DNA nanoparticles including a
duplex bulge, a 3-arm vertex, and a 4-arm vertex was de-
veloped, again utilizing the Python package ProDy (85).
Duplex bend-angle, θ , and duplex torsional twist-angle,
φ − ψ , are defined as previously performed by Schreck et
al. (58,86). In the present work, the duplex bend-angle is re-
ported as 180 − θ , because this quantity is more intuitive
to visualize. To determine these duplex properties, a right-
handed orthonormal basis (b1a, b2a, b3a) and (b1b, b2b, b3b)
is defined for each DNA duplex segment on either side
of the bulge. The duplex bend-angle is calculated using
b1a · b1b = −cos(θ ), where a positive θ value refers to the
duplex arms bending away from the bulge. Next, two vec-
tors d1 and d2 are defined which point from the geometric
centers of each base flanking the bulge. The duplex torsional
twist-angles φ and ψ are calculated using d1 · z = cos(φ)
and d2 · z = cos(ψ), where z = b1a × b1b. The relative du-
plex torsional twist-angle is defined as φ − ψ .
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Figure 3. Equilibrium structures of the polyhedral nanoparticles generated by the FE framework and the MD simulations. (A) Four aligned snapshots at
25, 50, 75, and 100 ns of the MD trajectory of the tetrahedron. (B) The snapshot at 25 ns of the tetrahedron with vertices with the absence and presence
of interactions between unpaired bases termed as ‘open vertices’ and ‘closed vertices’, respectively. (C) Four snapshots at 25, 50, 75, and 100 ns of the
MD trajectory of the octahedron are rendered in the same way as in (a). (D) The snapshot at 25 ns of the octahedron. (E) The distribution of the twist-
angle, bow-angle, and radial vacancy during the MD simulations of the tetrahedral and octahedral nanoparticles. Each angle is averaged over the four
vertices of the tetrahedron or the six vertices of the octahedron. Solid lines indicate the mean value during the MD trajectory and dashed lines indicate
the value obtained from the ground-state FE model. (F–J) FE equilibrium structures, colored in blue, of (F) the tetrahedron, (G) the octahedron, (H) the
icosahedron, (I) the cuboctahedron, and (J) the reinforced cube were fit into the reconstructed cryo-EM map using the software UCSF Chimera (91). All
scale bars are 5 nm.

Next, for the 3-arm and 4-arm vertices the out-of-plane
vertex bend-angle, χ , is calculated. To determine this bend-
angle, the geometric center of the last pair of base pairs
of the N edges {cL,1, cL,2, . . . , cL,N} is defined. A right-
handed orthonormal basis (p1, p2, p3) is then calculated us-
ing this set of centroids, which is subsequently used to de-
fine the planarity of the DNA vertex. The out-of-plane ver-
tex bend-angle is calculated using b1 · p3 = −cos(χ ), where

a positive out-of-plane vertex bend-angle refers to the N
edges bending away from the N bulges. The radial vacancy
of each vertex is defined as in the previous section. Addi-
tionally, for the 3-arm and 4-arm vertices Jtwist is calcu-
lated for each edge, which all contain one single or dou-
ble crossover. A right-handed orthonormal basis is calcu-
lated for the left (l1, l2, l3) and right (r1, r2, r3) duplex at
each crossover using the centroids of each base pair for the
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left and right duplex, respectively. Left and right duplexes
for each edge are defined such that the minor grooves at
the bulge regions are facing towards the viewer. The vector
pointing from the centroid of the right duplexes at the junc-
tion towards the centroid of the left duplexes at the junction
is defined as g2. To compute Jtwist, l1 and r1 are projected
onto the plane orthogonal to g2 as l1,proj and r1,proj, respec-
tively. Jtwist is calculated using l1,proj · r1,proj = cos(Jtwist),
where positive Jtwist corresponds to right-handed twist as
measured from the left to the right duplex.

RESULTS AND DISCUSSION

Model parameters determined from molecular dynamics sim-
ulations

As previously noted, an all-atom model of an unconstrained
duplex bulge was built to generate the ground-state geom-
etry and stiffness coefficients for the FE models. MD sim-
ulations of an unconstrained duplex bulge provide insight
into the equilibrium structures of building blocks of larger
DNA origami nanoparticles. Over a 1-�s MD trajectory,
mean values for the duplex bend-angle, 180 − θ , and the
duplex twist-angle, φ − ψ , can be identified (Figure 2C and
Supplementary Figure S5). The first 200 ns of the MD tra-
jectory were discarded as non-equilibrium relaxation (Sup-
plementary Figure S5E and F, and S6), where both duplex
properties equilibrate within this time-frame. The 1 �s MD
trajectory of an unconstrained duplex bulge yields mean
values of 180 − θ = 142.0 ± 13.6◦ duplex bend-angle, and
φ − ψ = 58.8 ± 32.8◦ duplex twist-angle. In Schreck et al.,
a relaxed duplex represented by oxDNA has a twist-angle of
φ − ψ = 32◦, and a duplex with a bulge contains a second
twist-angle distribution ∼70◦ (86). During the MD simu-
lation, the duplex bulge mainly samples twist-angles ∼70◦,
and has a tail containing twist-angles ∼32◦, both consistent
with previous data (86). The MD trajectory for the twist-
angle distribution shows the duplex bulge residing in both
states, with a clear preference for the twist-angle ∼70◦ (Sup-
plementary Figure S5).

Using the equipartition theorem as done previously (30),
we infer the two linear rotational stiffness coefficients about
axes x and z, respectively, from the MD trajectories of the
unconstrained duplex bulge. The two rotation angles θx and
θz about axes x and z, respectively, are computed from the
MD trajectory after 200 ns equilibration. From the proba-
bility densities of these two angles (Figure 1C), the equipar-
tition theorem is used to estimate the rotational stiffness
about the x-axis as kBT/var(θx) = 18.7 pN nm rad−1 and
that about the z-axis as kBT/var(θz) = 18.8 pN nm rad−1.
From these results, we set the rotational stiffness coefficients
about the x- and z-axes to 13.53 and 13.53 pN nm rad−1.
Note that these values equal the corresponding rotational
stiffness coefficients of double crossovers divided by factors
of 100 and 10, respectively (Table 1).

Equilibrium structures of geometrically distinct DNA
origami nanoparticles

We demonstrate the application of the bulge model to DNA
origami nanoparticles published in recent work (11). Six of

these nanoparticles, a tetrahedron, an octahedron, an icosa-
hedron, a cuboctahedron, a reinforced cube, and a nested
cube, have been synthesized and imaged using cryo-EM
(11). The architecture of each nanoparticle is a wireframe,
of which each edge consists of two parallel DNA duplexes
connected by at least two crossovers, and edges are con-
nected to their neighbors at vertices containing bulges. For
example, in the design of the 3-arm vertex shown in Fig-
ure 2A, two neighboring arms are connected by a single
phosphodiester bond in the green strand and five unpaired
thymine bases in the blue strand, forming a bulge in the
center of the vertex. Geometrically distinct DNA origami
nanoparticles have been designed by changing the number
of arms in each vertex and the length of each edge (11).

Modeling of DNA origami vertices. As a starting point, we
constructed the FE models of unconstrained 3-, 4-, 5-, and
6-arm vertices, respectively, and computed their equilibrium
structures (Figure 2A). In the equilibrium structures of all
four vertices the arms bend toward the major grooves of
DNA at the bulges, which agrees with a previous structural
analysis of 4-arm vertices within a self-assembled octahe-
dron imaged using cryo-EM (87). This prediction suggests
an enantiomeric preference for the self-assembled nanopar-
ticles with minor grooves facing outwards at the vertices.

Molecular dynamics simulations of the unconstrained 3-
arm vertex and the unconstrained 4-arm vertex allow com-
parison between the duplex bulge building block, and the
larger DNA origami nanoparticles, such as the tetrahedron
and the octahedron. Over a 500-ns MD trajectory we quan-
tified the average duplex bend-angle, 180 − θ , the average
duplex twist-angle, φ − ψ , the average out-of-plane bend-
angle, χ , and the radial vacancy, Rvac (Figure 2C and Sup-
plementary Figure S5). The first 100 ns of the MD trajec-
tories were discarded as non-equilibrium relaxation (Sup-
plementary Figures S5 and S6). While the duplex proper-
ties of the 3- and 4-arm vertex equilibrate within 100 ns, the
out-of-plane bend-angle does not, indicating that there may
be long time-scale fluctuations that are not accurately cap-
tured by the length of this trajectory (Supplementary Fig-
ure S6C). The MD trajectory of a 3-arm vertex yields mean
values of 180 − θ = 127.1 ± 5.9◦ for duplex bend-angle,
φ − ψ = 37.1 ± 14.0◦ for duplex twist-angle, χ = –3.2
± 4.8◦ for out-of-plane bend-angle, and Rvac = 16.5 ± 2.8
Å for radial vacancy. The MD trajectory of a 4-arm vertex
yields mean values of 180 − θ = 108.9 ± 7.0◦ for duplex
bend-angle, φ − ψ = 83.4 ± 12.6◦ for duplex twist-angle,
χ = 23.9 ± 5.5◦ for out-of-plane bend-angle, and Rvac =
25.6 ± 1.6 Å for radial vacancy. Compared with the un-
constrained duplex bulge, the 3-arm and 4-arm vertices are
unsurprisingly more rigid, with distinct mean values for the
duplex bend- and twist-angles. The out-of-plane bend-angle
for the 4-arm vertex shows a significant bending towards
the major groove of DNA at the bulges, as previously ob-
served by He et al. for DNA tiles, which display preferen-
tial inward bending due to chirality (87). This out-of-plane
bend-angle is also seen in the majority of the trajectory for
the 3-arm vertex, but this trajectory also exhibits an oscilla-
tory behavior towards the opposite out-of-plane bend-angle
(away from the major groove of DNA).
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Additionally, for the unconstrained 3- and 4-arm vertices,
Jtwist is computed for each crossover from a 500-ns MD tra-
jectory (Supplementary Figure S11) in order to compare to
the value of Jtwist = 0◦ used as the ground-state value in the
FE model. The first 100 ns of the MD trajectories were dis-
carded as non-equilibrium relaxation (Supplementary Fig-
ures S11 and S12), and although Jtwist angles are mostly
equilibrated after this time, the unconstrained vertices are
slower to equilibrate than the bulge and DNA polyhedral
nanoparticles. The 3-arm vertex has a mean value of Jtwist
= 6.1 ± 28.8◦, and the 4-arm vertex has a mean value of
Jtwist = –6.7 ± 39.6◦, comparing favorably with the ground-
state value of 0◦. Notably, individual crossovers in both the
3- and 4-arm vertices deviate significantly from this mean
and form local maxima near –55◦ (4-arm vertex), –15◦ (3-
and 4-arm vertex), 30◦ (3-arm vertex), and 55◦ (3- and 4-
arm vertex) (Supplementary Figure S11F).

Modeling of DNA origami nanoparticles. These N-arm ver-
tices serve as the building blocks of the DNA origami
nanoparticles whose equilibrium structures were computed
in this work. The tetrahedral nanoparticle comprises four 3-
arm vertices connected by six edges, with each edge consist-
ing of two parallel 63-bp DNA duplexes that are connected
to one another by crossovers. Both the reconstructed cryo-
EM map and the computed equilibrium structure show a
slight bowing in each edge (Figure 3F). This bending is due
to the rotational stiffness of the three bulges in the center of
each 3-arm vertex. Topological constraints force the vertex
to deform away from the nearly planar equilibrium struc-
ture (Figure 2A) to the constrained 3D structure in a tetra-
hedron, and most of the deformation in the vertex occurs in
the three rotational DOF of each bulge. A parameter scan
of the rotational stiffness coefficients of bulges shows that
the restorative moment of bulges about the reference axis
z, which is defined in Figure 1B, contributes to the bowing
of the edges (Supplementary Figure S3). The edge length of
DNA origami nanoparticles is also a factor in the degree of
edge-bowing, as seen when comparing 52- and 63-bp edge-
length tetrahedra, and 52- and 63-bp edge-length octahedra
(Supplementary Figure S4). Because the type of nanoparti-
cle appears to affect the degree of edge-bowing, and is likely
related to the number of arms per vertex, the optimal edge
length for minimizing the degree of edge-bowing should be
distinct for each DNA origami nanoparticle.

An MD simulation of the 63-bp edge-length tetrahedral
DNA nanoparticle allows the analysis of global features
such as the bowing of the edges away from the vertices (Fig-
ure 3A, B, and E, Supplementary Figure S7, and Support-
ing Movie 1). Over a 150-ns MD trajectory, we quantified
the average twist-angle around each vertex, �, the average
bow-angle of each edge, �, and the radial vacancy of each
vertex, Rvac. The first 50 ns of the MD trajectory were dis-
carded as non-equilibrium relaxation (Supplementary Fig-
ures S7 and S8). While the vertex geometric properties for
the tetrahedral nanoparticle appear to be equilibrated on
the time-scale of 50 ns, based on the corresponding ACFs, a
longer MD trajectory would offer greater confidence in this
assumption. For example, long time-scale dynamics associ-
ated with transformation from a right- to left-handed twist-
angle may occur, but are not observed during the 150-ns tra-

jectory simulated here. The 150-ns MD trajectory of a tetra-
hedral nanoparticle yields mean values of � = 8.8 ± 8.8◦
for twist-angle, � = 13.8 ± 5.0◦ for bow-angle, and Rvac =
11.5 ± 2.3 Å for radial vacancy (Figure 3E and Supplemen-
tary Figure S7). The twist-angle shows signs of slight right-
handedness, while allowing for some vertices to present left-
handed twisting around the vertex.

The cryo-EM map of the tetrahedral nanoparticle does
not present any clear evidence of right- or left-handed twist-
ing (11), so the ability of the tetrahedral nanoparticle in the
MD trajectory to assume both forms may have resulted in
an averaged cryo-EM structure with no measurable twist-
angle (see the trajectory for Vertex D in Supplementary Fig-
ure S6). The bow-angle, on the other hand, shows a dis-
tinct outward bowing of 14◦ (Figure 3A), which matches
the edge conformation seen in the cryo-EM map (Figure
3F), and no edges present any signs of inward bowing over
the MD trajectory (Supplementary Figure S7C). The ra-
dial vacancy of the tetrahedral vertices is 12 Å, which al-
lows for interaction between the three bulges at the center
of each vertex. These interactions are expected to contribute
to stiffening the tetrahedral vertices, and possibly also influ-
ence the twist-angles of the vertices and the bow-angles of
the edges. Compared with the unconstrained 3-arm junc-
tion, the radial vacancy is slightly less, which can be at-
tributed to lower flexibility of each vertex due to the rigid-
ity of the nanoparticle. As seen in Figure 3B, the tetrahe-
dron exhibits some evidence of ‘open vertex’ states, in which
little-to-no hydrogen-bonding is present between distinct ss-
DNA regions within the vertex. In general, the vertices in
the tetrahedron adopt ‘closed vertex’ states in which there
is some hydrogen-bonding present between distinct ssDNA
regions in the vertex, as indicated by the lower average ra-
dial vacancy at these vertices. These hydrogen-bonding in-
teractions may affect the global structure of the vertex, re-
sulting in the ability to form both right- and left-handed
twisting conformations depending on which ssDNA bases
are hydrogen-bonded.

Distinct DNA origami nanoparticles are designed by
changing the numbers of arms of each vertex and the num-
bers of base pairs constituting each edge. Compared with
the tetrahedral nanoparticle, an octahedral nanoparticle
contains six 4-arm vertices that are connected by twelve
edges. In addition, the length of each edge in the octahedral
particle decreases from 63 to 52 bp. The shorter length in-
creases the effective, overall bending stiffness of the edges. In
fact, the curvature in the edges of the octahedral nanoparti-
cle is seen to be less than that of the tetrahedral nanoparticle
as a consequence of the increased bending stiffness (Figure
2B). Interestingly, the reconstructed cryo-EM map of the
octahedral nanoparticle indicates a 15◦ counterclockwise
twist from the computed equilibrium structure at each ver-
tex (11) (Figure 2B). This twist may be attributed to the in-
teraction between unpaired bases in the immediate vicinity
of vertices, as well as the chirality of the assembled nanopar-
ticle (87).

An MD simulation of the 52-bp edge-length octahedral
DNA nanoparticle allows for the comparison of global fea-
tures with those of the tetrahedron in order to gain insight
into the distinct structural dynamics of the equilibrated
nanoparticles (Figure 3C–E, Supplementary Figure S9, and
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Supporting Movie 2). Like the tetrahedral DNA nanopar-
ticle, over a 150-ns MD trajectory, we quantified the av-
erage twist-angle around each vertex, �, the average bow-
angle of each edge, �, and the radial vacancy of each vertex,
Rvac. The first 50 ns of the MD trajectory were discarded as
non-equilibrium relaxation (Supplementary Figures S9 and
S10). While vertex properties for the octahedral nanopar-
ticle appear to be equilibrated on the time-scale of 50 ns,
like for the tetrahedral nanoparticle, a longer MD simula-
tion would offer greater confidence on the impact of long
time-scale fluctuations on these conformational properties.
The 150-ns MD trajectory of the 52-bp edge-length octa-
hedral nanoparticle yields mean values of � = 8.8 ± 6.6◦
twist-angle, � = 8.6 ± 5.5◦ bow-angle, and Rvac = 19.4 ±
2.6 Å radial vacancy (Figure 3E and Supplementary Fig-
ure S9). The twist-angle shows a global right-handedness,
with no vertices presenting sustained left-handed twisting
around the vertex.

The cryo-EM map of the octahedral nanoparticle shows
evidence of an estimated 15◦ right-handed twist (Figure 3G)
(11), which matches the right-handed result from the MD
trajectory (Figure 3E). (See the trajectories for all vertices in
Supplementary Figure S9.) The bow-angle shows an aver-
age slight outward bowing of 8◦, which is similar to the edge
conformation seen in the cryo-EM map (Figure 3G), and
distinct from the noticeable outward bowing of the tetrahe-
dron. Also, several edges present slight signs of inward bow-
ing over the MD trajectory (Supplementary Figure S9C).
The radial vacancy of the octahedral vertices is 19 Å, al-
lowing for less interaction between the four bulges at the
center of each vertex. These lesser bulge interactions within
the octahedral vertices influence the noticeable twist-angles
of the vertices, since there is little-to-no stabilization across
the bulges. Compared with the unconstrained 4-arm junc-
tion, the radial vacancy is slightly less, a relation also seen
in the tetrahedral vertices, which is attributed to lower flex-
ibility of each vertex due to the rigidity of the nanoparticle.
As observed in Figure 3D, vertices in the octahedron gen-
erally reside in the ‘open vertex’ state, in which little-to-no
hydrogen-bonding occurs between distinct ssDNA regions
within the vertex. This is in contrast to vertices in the tetra-
hedron, and it may explain the origin of the right-handed
twist conformations observed in the former because non-
interacting ssDNA regions may not interfere with the pre-
ferred chirality at the vertex.

Multi-arm vertices are useful building blocks for con-
structing larger polyhedral nanoparticles as well as tile-
based systems. For example, the icosahedral nanoparticle
and the cuboctahedral nanoparticle consist of twelve 5-arm
vertices connected by thirty 52-bp-long edges and twelve 4-
arm vertices connected by twenty-four 52-bp-long edges, re-
spectively. A nanoparticle may also comprise heterogeneous
vertex designs and edge lengths. For example, a reinforced
cube is formed by four 3-arm vertices, four 6-arm vertices,
twelve 52-bp-long edges as the sides, and six 73-bp-long
edges as the diagonals of all faces.

Both the reconstructed cryo-EM map and the computed
equilibrium structure for the icosahedral nanoparticle con-
tain at each vertex a pentagonal cavity with the side length
about twice the diameter of a DNA duplex (Figure 3H),
similar to that existing at an unconstrained 5-arm vertex

(Figure 2A). The 5-fold rotational symmetry and the near-
planar geometry of the vertex jointly contribute to the
formation of the cavity. In contrast, the hexagonal cavity
present in an unconstrained 6-arm vertex (Figure 2A) is ab-
sent in the 6-arm vertices of the reinforced cube (Figure 3J),
which lose the 6-fold rotational symmetry and have the arms
bent from the unconstrained structure. The 73-bp diago-
nal edges are bowed in an outward curvature in both ex-
periment and simulation, similar to that of the tetrahedral
nanoparticle. In contrast, the 52-bp edges in the same re-
inforced cube are nearly straight due to increased bending
stiffness (Figure 3J). Despite the cuboctahedral and octahe-
dral nanoparticles both having 4-arm vertices, the cuboc-
tahedral nanoparticle (Figure 3I) does not display the 15◦
counterclockwise twist seen in the vertices of the octahedral
nanoparticle (Figure 3G), indicating the dependence of lo-
cal base interactions on vertex geometry.

Further application of the finite element bulge model to DNA
origami nanoparticles. In our final application, we applied
our FE modeling framework to compute the equilibrium
structures of 45 DNA origami nanoparticles of diverse ge-
ometric shapes (Figure 4A) designed in a recent work (11).
Our FE modeling framework is also used to compute ther-
mal fluctuations quantified by the root-mean-square fluc-
tuations (RMSF) of base pairs at 298 K for each object
(Table 2 and Supplementary Figure S13) (29,30). All struc-
tures are qualitatively similar to their corresponding ideal-
ized 3D geometric models that are based on target, user-
defined CAD designs that assume all DNA duplexes are
straight (11). This overall similarity is largely due to the
mechanical compliance of bulges that are present in each
vertex. Compared with other secondary structural motifs,
such as the duplexes, nicks, and crossovers used in these
nanoparticles, the stiffness coefficients of bulges are lower
by approximately two orders of magnitude. Such mechan-
ical compliance renders bulges capable of connecting arbi-
trarily placed duplexes and multi-helical bundles in nearly
arbitrary directions within large DNA nanoparticles.

For many of the 45 nanoparticles, the idealized geomet-
ric model represents an accurate representation of the FE-
model-predicted structure, with low root-mean-square devi-
ation (RMSD) (Figure 4A and B). The geometric model has
the lowest deviation from the FE model (RMSD < 2.0 nm)
for the simplest classes of structures: in increasing order of
complexity, the Platonic, Archimedean, and Johnson solids
(Table 2). These structures have edges of equal lengths, with
their complexity arising from differences in the degree of
vertices (N-arms) and face geometries. The Catalan solids
have slightly larger deviation as a whole because their edge
lengths are not always uniform within the structure. In con-
trast, the rhombic dodecahedron (Figure 4B) and the rhom-
bic triacontahedron are Catalan solids with uniform edge
lengths that also have RMSD values similar to the Platonic
solids (Figure 4B).

In general, objects with non-uniform edge lengths, in-
cluding many of the Catalan solids and miscellaneous ge-
ometries, exhibit larger differences between the FE and ge-
ometric models. Because of the requirement that each edge
length is a multiple of 10.5 bp rounded to the nearest nu-
cleotide, more complex structures require that some edge
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Figure 4. Equilibrium structures generated by the FE framework compared to the geometric model. (A) Equilibrium structures of the 45 polyhedral
nanoparticles presented in a recent study (11). The nanoparticles consist of five Platonic solids (blue), 10 Archimedean solids (red), 10 Johnson solids
(green), 10 Catalan solids (orange), and 10 polyhedra with miscellaneous shapes (purple). The geometric shapes of these structures are listed in Table 2.
(B) Zoom-ins of the octahedron, cuboctahedron, gyroelongated square bipyramid, and rhombic dodecahedron (left to right, boxed in dashed lines in A)
highlight similarities between the recent study and the current work, indicated by small RMSD values. (C) Zoom-ins of the Goldberg polyhedron, double
helix, nested cube, and double torus (left to right, boxed in solid lines in A) highlight differences between the two works, indicated by large RMSD values.

lengths be adjusted to meet this requirement. However, be-
cause energy minimization was not performed to reposition
the vertices to account for these edge length changes, the ge-
ometric model continues to use the CAD design coordinates
(11). For the eight Catalan solids with unequal edge lengths,
the amount of adjustment required was small, resulting in
an increase of the RMSD only up to 3.0 nm (Table 2).

However, numerous miscellaneous geometries, such as
the Goldberg polyhedron, double helix, nested cube, and
double torus, display significantly larger RMSD values of
up to 16.2 nm, which can largely be attributed to edge-
length adjustment, as well as their large size (Figure 4C). In
particular, the Goldberg polyhedron has edge lengths close
to one another in the CAD design that are then rounded
to the same length in the geometric model, which leads to

puckering on the surface and a relatively large RMSD value.
This level of deviation can be seen in the other, larger spher-
ical structures such as the small stellated dodecahedron and
the rhombic hexecontahedron. The model double helix has
the largest RMSD value, which is due to the reduced turn
of the helix in the FE model as compared with the geomet-
ric model. Because the turn of the helix is controlled by the
relative lengths of the edges along the structure, deviations
from these lengths deform the shape to an under-wound
geometry. On a smaller scale, the nested cube resolves its
edge-adjustment constraints by undergoing a global twist
deformation, though there may not be a propensity for a
certain twist direction as Figure 4C might imply. Rather,
the computational framework of CanDo only solves for
a single equilibrium structure, and the cryo-EM map of
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Table 2. RMSD and average RMSF values of the equilibrium structures of the 45 polyhedral nanoparticles rendered in Figure 4. Each row in this table
corresponds to a column in Figure 4.

Category RMSD [nm] / 〈RMSF〉 [nm]

Platonic Tetrahedron Cube Octahedron Dodecahedron Icosahedron
0.61 / 0.93 0.38 / 2.07 0.28 / 1.03 0.45 / 2.82 0.64 / 1.18

Archimedean Cuboctahedron Icosidodecahedron Rhombicuboctahedron Snub cube Truncated cube
0.61 / 1.85 1.46 / 2.28 0.74 / 2.58 1.59 / 1.54 1.12 / 3.85

Truncated
cuboctahedron

Truncated
dodecahedron

Truncated icosahedron Truncated octahedron Truncated
tetrahedron

0.99 / 4.72 1.08 / 5.15 1.38 / 3.68 0.66 / 3.40 0.92 / 2.55

Johnson Gyroelongated
pentagonal pyramid

Triangular bipyramid Pentagonal bipyramid Gyroelongated square
bipyramid

Square gyrobicupola

1.16 / 1.31 0.89 / 1.01 0.93 / 1.09 0.76 / 1.16 1.06 / 2.21

Pentagonal
orthocupolarotunda

Pentagonal
orthobirotunda

Elongated pentagonal
gyrobicupola

Elongated pentagonal
gyrobirotunda

Gyroelongated square
bicupola

1.61 / 2.32 1.78 / 2.25 1.95 / 2.77 1.90 / 2.66 1.48 / 1.87

Catalan Rhombic
dodecahedron

Rhombic
triacontahedron

Deltoidal
icositetrahedron

Pentagonal
icositetrahedron

Triakis octahedron

0.49 / 2.48 1.25 / 2.77 2.20 / 3.24 1.31 / 3.62 1.10 / 1.48

Disdyakis
dodecahedron

Triakis icosahedron Pentakis dodecahedron Tetrakis hexahedron Triakis tetrahedron

2.92 / 1.39 1.66 / 1.71 1.29 / 1.30 0.64 / 1.14 1.27 / 1.35

Miscellaneous Heptagonal
bipyramid

Enneagonal
trapezohedron

Small stellated
dodecahedron

Rhombic
hexecontahedron

Goldberg polyhedron
G(2,1), dk5dgD

0.74 / 2.16 1.62 / 8.83 4.62 / 1.73 6.66 / 2.83 6.13 / 3.13

Double helix Nested cube Nested octahedron Torus Double torus
16.19 / 2.37 2.53 / 2.17 2.10 / 1.61 6.04 / 2.45 5.49 / 3.29

the nested cube demonstrates an average non-twisted shape
(11), so equal populations of each twist conformation may
be present.

Notably, the relatively large RMSD value of the double
torus is unlikely to be due to just edge-length adjustment.
Since there are two edge lengths present, one twice as long as
the other, no edge-length adjustment was required. Rather,
the open quadrilateral faces allow the strain at the vertices
to be relaxed in a large structural deformation, which could
be prevented through the use of reinforcing edges to create
triangular faces. Beyond these geometric differences, higher
RMSD values across all structures can be attributed to bow-
ing of the edges or twisting at the vertex, as in accordance
with the aforementioned comparisons with the cryo-EM
maps and MD simulations, as well as highly constrained
arms that the current bulge model does not describe well, es-
pecially in the concave and non-spherical topologies. Over-
all, the equilibrium structures of these DNA nanoparti-
cles are adequately predicted using the FE modeling frame-
work, able to take into account structural deviations due to
edge-length adjustment that the geometric model does not.
While the FE model was improved in this work to predict
edge bowing, further accuracy of geometric features, such
as twisting at the vertices, can be better approximated using
all-atom models.

CONCLUSION

Structured DNA nanoparticles are simulated using all-
atom and coarse-grained modeling to reveal their subtle
local, as well as global, structural features. Toward this
end, we implemented a mechanical model of a bulge, a sec-
ondary structure motif widely used in the design of DX-
based DNA origami nanoparticles, determining empirical
model parameters using all-atom modeling and comparison
with reconstructed 3D cryo-EM maps. Understanding the
structural and mechanical properties of bulges enables the
coarse-grained modeling of high molecular weight DNA
origami nanoparticles in a hierarchical way. For example,
the nanoparticles studied here consist of a finite number of
vertices with N-arm architecture, N = 3, 4, 5, 6, . . ., and
an N-arm vertex contains N bulges that connect duplexes
together in the center of the vertex. The FE modeling frame-
work is able to capture expected deviations from the geo-
metric model due to edge-length adjustment as well as edge-
bowing. The characterization of the latter was particularly
improved in the coarse-grained model using refined param-
eterization based on all-atom models. Further, comparison
between all-atom models of the nanoparticles and recon-
structed cryo-EM maps demonstrates that the model is able
to predict the positions of most atoms in the nanoparticle
with an accuracy of within one nanometer. Some geometric
features seen in cryo-EM maps, such as the twisting of ver-
tices in the octahedron, are still not yet well predicted using
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our coarse-grained model, although these features are pre-
dicted using all-atom modeling.

Besides the aforementioned model of bulges, we also in-
troduced the models of open nicks to assemble a set of
secondary structure motifs in programmed DNA assem-
blies that rely on the canonical Watson–Crick base pairing
(Figure 1B). This set of models allows our lattice-free FE
framework (30) to compute equilibrium structures of ar-
bitrarily designed DNA assemblies with the exception of
those containing non-Watson–Crick base pairs. It is also
worth noting that this FE framework requires an immutable
secondary structure of the DNA assembly as the input.
Assemblies with non-Watson–Crick base pairing, such as
those with triple-stranded (88) and quadruple-stranded (89)
DNA, and assemblies with mutable secondary structures,
such as those containing DNA toeholds (90), are beyond
the scope of our FE framework and necessitate nucleotide-
level models and all-atom models. In this work, we have im-
proved the ability of the coarse-grained FE modeling frame-
work to predict many of the features of DNA assemblies
that use canonical Watson–Crick base pairing, achieving a
higher level of accuracy compared with an idealized geo-
metric model. Improvement was achieved not only through
the introduction of additional structural motif models, but
also through comparison with experiment and all-atom
modeling, which predicted structures of highest fidelity.
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