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Abstract: Ticks are widely distributed across the globe, serving as hosts for numerous pathogens
that make them major contributors to zoonotic parasitosis. Borrelia burgdorferi is a bacterial species
that causes an emerging zoonotic tick-borne disease known as Lyme borreliosis. The role of ticks in
the transmission of this pathogen was explored in this study. According to this systematic review,
undertaken according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, 19 tick species are known to carry Borrelia burgdorferi, with more than half of
the recorded cases in the last two decades related to Ixodes ricinus and Ixodes scapularis ticks. Forty-six
studies from four continents, Europe, North America, Asia, and Africa, reported this pathogen in ticks
collected from vegetation, animals, and humans. This study highlights an increasing distribution of
tick-associated Borrelia burgdorferi, likely driven by accelerated tick population increases in response
to climate change coupled with tick dispersal via migratory birds. This updated catalogue helps in
compiling all tick species responsible for the transmission of B. burgdorferi across the globe. Gaps
in research exist on Borrelia burgdorferi in continents such as Asia and Africa, and in considering
environmentally friendly vector control strategies in Europe and North America.
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1. Introduction

Globally, one-third of the emergence in infectious diseases during last two decades
is due to zoonotic vector-borne diseases, which have major devastating effects on human
and veterinary health and welfare [1]. Especially, the incidence of Lyme disease in USA is
expected to increase by about 20% in the next 1 or 2 decades due to climate change [2]. Ticks
are considered as the second-most threatening vector for human health after mosquitoes,
transmitting various pathogens [3]. Transmission channels of tick-borne infections must be
well understood to mitigate livestock production losses and impacts on animal welfare and
reduce disease exposure in humans [4]. This is especially important given that tick-borne
zoonosis is increasing in the twenty-first century, driven largely by climate change impacts
on tick lifecycles and the transboundary movement of tick-infested animals [5].

Lyme borreliosis (LB) is an example of a significant, and increasing, tick borne zoonosis,
caused by the Borrelia burgdorferi sensu lato (s.l.) complex [6]. New species are still being
identified within this complex, which contains 21 species to date [7]. It is primarily
comprised of Borrelia burgdorferi sensu stricto (s.s.), Borrelia afzelii, and Borrelia garinii, which
are common in Europe and Asia, and B. burgdorferi in North America but is also associated
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with other unknown pathogens that pose a threat to human health [8,9]. The overall burden
of Borrelia burgdorferi (B. burgdorferi) is poorly understood [10], despite the CDC reporting
over 476,000 cases annually in the United States alone [11]. A study conducted in Europe
estimated more than 200,000 B. burgdorferi infections in humans annually [12].

Borrelia burgdorferi infection occurs in a wide variety of animals, along with humans,
including small wild mammals and birds [13]. Typically, uninfected six-legged larvae
feed on infected small mammals (domestic and wild) or birds, moulting into an infected
eight-legged nymph, though unfed larvae are also a source of transovarial transmission.
During the period of transformation from nymph to adult, infested ticks will feed upon
small mammals, domestic animals, or humans as secondary hosts, potentially resulting
in B. burgdorferi transmission. Adult ticks then seek a final host for mating, which may be
either white-tailed deer (in case of Ixodes scapularis) or other animals, including humans [14].
If infected, Borrelia burgdorferi in humans causes fatigue, fever, musculoskeletal pain,
erythema migrans, and the potential for cardiac and neurological symptoms, with an
incubation period of 3–30 days [15]. In the case of Europe, Lyme neuroborreliosis (10–15%
cases) is the neurological sign that may be observed in early stages of Lyme disease [16].
The most common sign observed is Bannwarth syndrome in Europe, in which individuals
feel intense nerve pain radiating from the spine. That situation is uncommon in North
America [9,17], though; arthritis is the most common complication observed in the US
which is rarely seen in Europe [9].

Borrelia burgdorferi is the most prevalent tick-borne pathogen in temperate regions of
the Northern Hemisphere, but the expansion of geographical boundaries of ticks makes
this pathogen a significant health concern worldwide [6]. Ticks as a vector play a central
role in geographical disease expansion and host-to-host transmission of B. burgdorferi [18].
This pathogen is vectored by the genus Ixodes, commonly by Ixodes scapularis (I. scapularis,
Ixodes ricinus, Ixodes persulcatus, and Ixodes pacificus) species, but with other members of
this genus also contributing to transmission [19]. The species of vector determines the
range of host availability for B. burgdorferi, which can significantly affect transmission
dynamics [20].

At present, attempts to control the transmission of Lyme disease relies on targeting
ticks directly. Many of these control strategies give cause for concern, however, they risk
damage to the natural environment through widespread deployment of various acari-
cides [21], and often only target ticks during an isolated stage of their lifecycle. Effective
control of tick-borne pathogens can only be achieved if delivered to consider interrelated
human, animal, and ecological perspectives, but the deployment of holistic approaches is
hard to implement. For instance, biodiversity protection and creation of urban green areas
are crucial for animal and human health but increase the burden of tick-borne diseases
(TBDs). In contrast, a decreased population of wild animals carrying ticks, or implemen-
tation of measures such as fencing to exclude them from certain areas, will reduce the
transmission of TBDs, but could have devastating effects on biodiversity that are socially
unacceptable [22].

In this study, we aimed to systematically analyze the research on B. burgdorferi in ticks
during the first two decades of the twenty-first century. We focused on the prevalence rate
of ticks carrying B. burgdorferi, the method of detection, location of cases, and the changes
in prevalence over time. In this way, we highlight the emerging trend of this zoonotic agent
through ticks worldwide, also suggesting preventive strategies for its control.

2. Materials and Methods
2.1. Study Protocol

We collected data following Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [23]. Using this format, we systemically reviewed the
relevant literature on Borrelia burgdorferi in ticks across the world.
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2.2. Data Sources and Search Strategy

In the data-retrieving process, five search engines, namely Scopus, PubMed, Google
Scholar, Science Direct, and Web of Science, were used between 1 March 2021 and 8 August
2021 to search for articles published on Borrelia burgdorferi in ticks from 1 January 2001 to
15 June 2021. The keywords used for the search included tick(s), zoonosis, borreliosis, and
Borrelia burgdorferi. We used the library online search database of the City University of
Hong Kong. We requested access to those articles also which were not available online
with full text.

2.3. Data Extraction

To maximize accuracy, information was extracted and compiled in Microsoft Excel
2019 by two authors (S.H. and A.H.) independently, screened to remove repeated studies
in individuals’ files, and then merged to avoid duplication. The discrepancy in extracted
data from both authors (S.H. and A.H.) was double-checked by the third author (O.S.) and
discussed to create the relevant article lists, which included authors, study title, year of
publication, journal name, volume, issue, page number, DOI, author affiliations, abstract,
and keywords.

2.4. Study Selection Criteria

Our screening strategy consisted of two steps. First, titles, abstracts, and keywords
were used to eliminate duplicates, extraneous review studies, and those not published in
English. In the second step, the full text of all relevant studies was thoroughly reviewed to
screen and extract the necessary details. The key features that were taken into account for
the inclusion of studies in the second step were (i) study included the detection of Borrelia
burgdorferi in ticks (with tick species detection) or tick-infested animals/humans, (ii) study
provided details about positive cases and total samples, (iii) study stated the location of
sample collection sites, and (iv) study mentioned the techniques used for detection.

2.5. Quality Assessment and Selection

During the first step of screening, data compiled in Microsoft Excel 2019 files by two
authors independently included 574 and 603 studies, resulting in a total of 734 studies
after merging into a single file. The third author removed the duplicate studies (n = 25).
Subsequent screening on the basis of titles, abstracts, and keywords removed a further
390 studies, which were not focused on Borrelia burgdorferi, but on other aspects of Lyme
disease, followed by removal of another 47 that did not contain original research (e.g., re-
view articles, meta-analysis, and opinion pieces) to avoid the repetition in reported data.
Only one study was removed in a language other than English (Chinese), with 152 stud-
ies excluded because they did not investigate ticks or tick-infested animals/humans for
pathogen detection; rather, they focused on seroprevalence of Borrelia burgdorferi without
including any history related to ticks. Those studies (n = 52) which did not investigate
the prevalence of pathogen, and instead investigated some ecological, biological, and
evolutionary aspects of the pathogen, were also eliminated, as were three studies that did
not mention an exact location for sampling, and 18 studies where diagnostic methods were
not given. A total of 46 studies were finalized, their references were reviewed by authors,
and data from those studies were arranged in tabular form using Microsoft Word 2019,
with details included for the title of study, year of data collection, year of publication, sites
for sample collection, country of study, the continent of study, number of positive samples,
total samples, prevalence, confidence interval (CI 95%), technique used, and reference of
study (Figure 1).
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Figure 1. An overview of the selection procedure for studies recruited to this review according
to PRISMA.

3. Results and Discussion
3.1. Spatial Distribution of Borrelia burgdorferi and Ticks

Several species of ticks reported positive for Borrelia burgdorferi from studies conducted
in the previous two decades. The majority of these studies reported positive cases in Ixodes
ricinus (n = 33; 71.7%) and Ixodes scapularis (n = 9; 19.5%), followed by the other 17 tick
species shown in Figure 2. In many studies, more than one tick species was found to
be positive for this pathogen; therefore, the percentages (Figure 2) are given with this in
mind. The spatial distribution of B. burgdorferi in ticks was found to be global in nature,
with B. burgdorferi reported from ticks in four out of the seven continents, namely Europe,
North America, Asia, and Africa. The highest proportion of studies reported cases from
Europe (n = 34; 73.9%) followed by North America (n = 9; 19.6%), Asia (n = 2; 4.3%), and
Africa (n = 1; 2.2%). At a national level, the highest proportion of studies reporting Borrelia
burgdorferi in ticks were from Italy (n = 8; 17.4%) and the US 17.4% (n = 8; 17.4%) (Figure 3).
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3.2. Distribution/Prevalence of Borrelia burgdorferi in Ticks of Different Continents
3.2.1. Europe

In the previous two decades, 34 studies have been conducted that report Borrelia
burgdorferi from European ticks. Of these, the highest number of studies were from Italy
(n = 8) followed by Finland (n = 3), the Netherlands (n = 2), Slovakia (n = 2), Serbia
(n = 2), Romania (n = 2), Ukraine (n = 2), Belarus (n = 2), Latvia (n = 2), Sweden (n = 1),
Germany (n = 1), Scotland (n = 1), England (n = 1), England and Scotland (n = 1), Denmark
(n = 1), Luxembourg (n = 1), Switzerland (n = 1), Poland (n = 1), and Czech Republic,
Estonia, Germany, Greece, Hungary, Netherland, Portugal, Slovenia, Spain, and Sweden
(all combined) (n = 1). Out of these 34, in 44.1% (n = 15) of studies, ticks were collected from
vegetation (e.g., parks, forest, and hilly areas), while 38.2% (n = 13) of studies involved
collection of ticks from wild and domestic animals, and 17.6% (n = 6) collected ticks from
both vegetation and animals (Figures 4 and 5; Table 1). Almost 97% (n = 33) of studies
conducted in Europe identified Ixodes ricinus ticks as being positive for Borrelia burgdorferi,
which indicates that this species is the major transmitting source of this pathogen in this
region. PCR was used to confirm the presence of Borrelia burgdorferi in all 34 studies, and
a 17.7% prevalence of Borrelia burgdorferi was found in European ticks when taking the
average of the prevalence mentioned in all studies.
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Table 1. Literature focusing on detection of Borrelia burgdorferi in ticks during the last two decades across the world.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

Europe

Europe

Slovakia Western Slovakia

Vegetation (Parks) Ixodes
scapularis 1294 420 33% Not given PCR 1999–2000

[24]Birds
(Parus major,

Turdus merula,
Turdus philomelos)

Ixodes
scapularis 57 16 28% Not given PCR

Serbia Vojvodina Vegetation
(Forest) Ixodes ricinus 764 169 22.1% 11–29 PCR 2006–2008 [25]

Luxemburg Not mentioned Vegetation (Forest) Ixodes ricinus 1394 157 11.3% Not given PCR 2007 [26]

Switzerland
11 sites located

between 400 and 900
m above sea level

Vegetation (Parks) Ixodes ricinus 1458 328 22.5% Not given PCR 2009–2010 [27]

Sweden Southern Sweden
Rodents (Myodes

glareolus, Apodemus
flavicollis)

Ixodes ricinus 276 137 49.6% Not given q-PCR 2008-2010 [28]

Belarus
Brest, Gomel,

Grodno, Minsk,
Mogilev, Vitebsk

Vegetation (Parks) Ixodes ricinus 553 52 9.4% Not given PCR 2009 [29]

Italy Borzonasca, Chiavari Vegetation (Forest) Ixodes ricinus 170 31 18.2% Not given PCR 1998–1999 [30]

Denmark South Jut land Dogs Ixodes ricinus 661 99 15% Not given PCR 2011 [31]

Italy Emilia-Romagna Vegetation (Forest) Ixodes ricinus 284 78 27.5% Not given Real-time
PCR 2010 [32]

Italy
Ossola Valley

Province of Verbano–
Cusio–Ossola

Vegetation and
Wild animals

(chamois, roe deer,
red deer)

Ixodes ricinus 1766 530 30% Not given PCR 2011 [33]

Scotland and
Northern
England

Not mentioned Gray squirrel Ixodes ricinus 1585 189 11.9% 9.7–14.6 PCR 2012–2013 [34]

Italy Belluno, Perugia Vegetation (Forest) Ixodes ricinus 447 17 3.8% Not given PCR 2007–2010 [35]

Italy Tuscany
Wild animals

(Dama dama, Cervus
elaphus)

Ixodes ricinus 420 6 1.4% Not given PCR 2015–2019 [36]
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Table 1. Cont.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

Europe

Netherlands

Flevoland,
Gelderland,

Noord-Holland,
Utrecht, and

Zuid-Holland

Hedgehogs Ixodes ricinus 460 67 14% Not given q-PCR 2010–2014 [37]

Netherlands Not mentioned Horse Ixodes ricinus 120 52 43.3% Not given PCR 2018 [38]

Serbia

Forests (Lipovica,
Bojčinska, Avala,

Miljakovačk, Makiš),
Park-forests (Ada

Ciganlija, Zvezdara,
Banjica, Košutnjak,
Jajinci) Parks (Hajd

park, Belevode, Usće,
Šumice, Kalemegdan,
Topčider, Tašmajdan,

Banovobrdo,
Pionirski park)

Vegetation (Forest) Ixodes ricinus 3199 704 22% Not given PCR 2009 [39]

Finland Southwestern
Finland Vegetation (Forest) Ixodes ricinus 3169 217 6.8% Not given PCR 2013–2014 [40]

Poland Goleniowska Forest
Shetland ponies Ixodes ricinus 1737 333 19% Not given PCR

2010–2012 [41]
Vegetation (Parks) Ixodes ricinus 371 18 4.8% Not given PCR

Romania Eastern Romania Vegetation (Forest) Ixodes ricinus 534 138 25.8% Not given PCR 2014 [42]

UK Not mentioned Cat

Ixodes ricinus,
Ixodes

hexagonus,
Ixodes

trianguliceps

541 15 2.8% Not given PCR 2016 [43]

Germany Saxony

Small mammals
(Apodemus agrarius,
Apodemus flavicollis,

Microtus arvalis,
Microtus agrestis,
Mustela nivalis,

Myodes glareolus
Sorex araneus,

Talpa europaea)

Ixodes ricinus 2802 154 5.5 3.5–8.3 PCR 2012–2016 [44]
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Table 1. Cont.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

Europe

Slovakia Bratislava

Birds
(Parus major,
Sitta europaea,
Turdus merula,

Erithacus rubecula,
Dendrocopos major,

Parus montanus,
Fringilla coelebs,
Parus caeruleus,

Muscicapa striata)

Ixodes ricinus 295 37 12.5% Not given PCR 2011–2012 [45]

Italy
Dolomiti Bellunesi

National Park in the
Province of Bellun

Red foxes (Parks) Ixodes ricinus 2248 28 1.25% Not given Real-time
PCR 2011–2016 [46]

Scotland
Loch Lomond and
Trossachs National

Park
Vegetation (Forest) Ixodes ricinus 6567 91 1.4% 1.1–1.7 PCR 2011–2015 [47]

Latvia Not mentioned Dog
Ixodes ricinus,
Dermacentor

reticulatus
608 48 7.9% Not given Nested-PCR 2011–2016 [48]

Italy Aosta Valley, western
Alps Vegetation (Forest) Ixodes

scapularis 30 12 40% 22.5–57.5 PCR 2016 [49]

Latvia All regions of Latvia Vegetation (Parks)

Ixodes ricinus,
Ixodes

persulcatus,
Dermacentor

reticulatus

4593 657 14% Not given PCR 2017–2019 [50]

Italy 64 Italian provinces Dog
Ixodes ricinus,

Ixodes
hexagonous

723 3 0.4% 0.2–0.8 PCR 2016–2017 [51]

Finland 8 sites on the coast of
Bothnian Bay Vegetation (Forest) Ixodes

persulcatus 163 101 62% 55–70 PCR 2019 [52]
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Table 1. Cont.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

Europe

Czech
Republic,
Estonia,
Finland,

Germany,
Greece,

Hungary,
Netherlands,

Portugal,
Slovenia,

Spain and
Sweden

11 European
countries Birds

Ixodes ricinus,
Ixodes

arboricola,
Ixodes frontalis

656 244 37.2% Not given PCR
2005–2008
2013–2014
and 2016

[53]

Ukraine

Chernivtsi,
Khmelnytskyi, Kyiv,
Ternopil, Vinnytsia

regions

Vegetation, wild
and domestic

animals (brown
bear, raccoon, red

fox, lynx, cats,
cattle dogs)

Ixodes ricinus 99 25 25% Not given PCR 2019–2020 [54]

Belarus
Brest Gomel, Grodno,
Minsk, Mogilev and

Vitebsk

Vegetation and
Cow

Ixodes ricinus,
Dermacentor

reticulatus
4070 253 6.2% Not given PCR 2012–2019 [55]

Romania

Luliu Haţieganu
Park,

Alexandru Borza
Botanical Garden,

Mănăştur Cemetery
Hoia,
Făget
forest

Vegetation (Forest)
Ixodes ricinus,
Haemaphysalis

punctata
148 39 26.35% 19.46–34.22 PCR

2018 [56]

Rodents, birds, and
hedgehogs

Ixodes ricinus,
Ixodes

hexagonus,
Haemaphysalis

punctata,
Haemaphysalis

concinna

222 81 36.5% 29.29–42.27 PCR

Ukraine

Southeastern
Ukraine

(Zaporizhzhya
region)

Vegetation (Forest) Ixodes ricinus 358 115.6 32.3% Not given PCR 2014–2018 [57]
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Table 1. Cont.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

North America

North
America

US Southern coastal
Maine

Pets, chipmunks,
white-footed mice

Ixodes
scapularis 394 88 22.3% Not given PCR 1995–1997 [58]

US

University of
California Hopland

Research and
Extension Center

(HREC)

Vegetation (Forest) Ixodes
pacificus 181 7 3.9% Not given PCR 2003 [59]

US Southwestern
Michigan Birds

Ixodes
dentatus,

Haemaphysalis
leporispalus-
tris, Ixodes
scapularis,

Dermacentor
variabilis

12,301 517 4.2% Not given PCR 2004–2007 [60]

US Southwestern
suburban Chicago Wild birds

Ixodes
scapularis,

Haemaphysalis
leporispalus-

tris

120 5 4% Not given PCR 2005–2010 [61]

US Hudson Valley Vegetation (Forest) Ixodes ricinus 1245 760 61% Not given PCR 2011 [62]

US New Castle County,
Delaware Vegetation (Parks) Ixodes

scapularis 441 46 10.4% Not given PCR 2013–2014 [63]

US New York State Vegetation (Forest) Ixodes
scapularis 677 346 51% 39.3–63.3 rt-PCR 2018 [64]

US Marin County
California Vegetation (Parks) Ixodes

pacificus 1419 41 2.9% 2.3–3.7 rt-PCR 2015–2018 [65]

Canada Ontario
Human Ixodes

scapularis 17,230 3015 17.5% 16.97–18.09 PCR
2011–2017 [66]

Companion
animals (dogs)

Ixodes
scapularis 4375 433 9.9% 9.15–10.78 PCR
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Table 1. Cont.

Continent Country Region Host/Sampling
Site Tick Species Total Ticks

Collected Positive (n) Prevalence % 95% CI Molecular
Technique Year of Study Refs.

Asia

Asia

Korea

Pocheon, Donghae,
Sejong, Boryeong,
Uiseong, Jeongup,

Geoje, Goheung, and
Jeju Island

Wild rodents

Ixodes
nipponensis,

Ixodes
angustus,

Haemaphysalis
longicornis

738 248 33.6% Not given PCR 2017 [67]

China
Great Xingan

Mountains, Small
Xingan Mountains

Vegetation (parks) Ixodes
persulcatus 1345 454 33.8% Not given PCR 1999–2001 [68]

Africa

Africa Egypt
Cairo, Giza,

Al-Buhayrah, and
Matrouh govern

Dog Rhipicephalus
sanguineus 60 1 1.67% Not given PCR 2017 [69]
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The consideration of associations of B. burgdorferi with ticks and the environment is
inevitable. Thus, any change in these associated factors will create a major impact on this
pathogen’s distribution, and unexpected consequences may result [70]. According to our
literature review, the tick species most associated with B. burgdorferi was I. ricinus, which is
continuously expanding its latitudinal and altitudinal range in Europe [71]. Environmental
factors play a vital role in the distribution of ticks, as most of I. ricinus lifecycle is spent
off-host, where factors such as growth, reproduction, survival, and activity can be affected
by environmental changes. It is predicted that the annual temperature of Europe will rise
1.5–2.5 ◦C in the coming few decades due to climate change, which may contribute to
further expansion of tick distribution boundaries [72]. In more than 40% studies, ticks
were collected from vegetation, so this habitat and the seasonal changes affecting it can be
viewed as important. Free-living stages of I. ricinus, for example, require their vegetative
habitats to retain 80% humidity to aid tick survival, with this, therefore, also promoting
B. burgdorferi transmission. In contrast, areas with low humidity may reduce tick survival
rates, activity, and distribution of I. ricinus. Understanding such microclimatic factors is
crucial to understanding tick distribution and their role in the spread of the pathogens,
and persistent monitoring is needed to observe the dynamic changes in tick habitats, the
distribution of ticks, and the pathogens they carry.

Out of the 34 studies from Europe, 55% (n = 19) collected ticks from animals, with a
high percentage of these (36.8%, n = 7) detecting B. burgdorferi in ticks from wild mammals
(e.g., hedgehog, deer, brown bear, raccoon, and red foxes). Of the remaining studies, 21%
(n = 4) collected B. burgdorferi-positive ticks from cats and dogs, 16% (n = 3) from birds,
10.5% (n = 2) from rodents, 10.5% (n = 2) from horses, and 5.2% (n = 1) from cows (Figure 3).
Almost 95% (n = 18) of studies detected B. burgdorferi in Ixodes ricinus, which supports
this tick’s importance as a major transmission risk of the pathogen in animals (Table 1).
According to our literature review, a large proportion of studies reported that B. burgdorferi
was circulating in ticks associated with wild animals, covering a vast range of hosts that
could facilitate the movement of ticks. The contribution of wild animals in tick movement
is also supported by another study conducted in the UK, where heavy infestation of ticks
carrying B. burgdorferi were reported on gray squirrels [34]. The same authors also recovered
ticks present on cats and dogs that were positive for this pathogen, thus posing a threat
to the owners of these pets in terms of their risk of acquiring Lyme disease. According to
a study by TickNET (a collaborative public health effort established by the CDC in 2007
which fosters coordinated surveillance, research, education, and prevention of tick-borne
diseases), tick bite risk is increased nearly twofold through owning a pet [73], where
companion animals that are allowed to roam freely can present a particular risk of bringing
ticks into the home, creating both animal and public health concerns. Almost 16% of studies
reported this pathogen’s detection in ticks from birds, among which Ixodes scapularis was the
major vector after Ixodes ricinus. Infested birds, especially migratory birds, have potential
to carry tick species over large distances, including from one continent to another, with this
dispersal mechanism being at least partly responsible for increases in the distribution of
ticks and the zoonotic pathogens they carry. According to a recent study, migratory birds
were considered as a major factor in the expansion of Ixodes scapularis and its pathogen
Borrelia burgdorferi [74]. As already discussed, climate change is another cause of enzootic
transmission of B. burgdorferi and tick expansion, but yearly bidirectional migration of
songbirds carrying ticks infected with zoonotic pathogens such as B. burgdorferi, Borrelia
mayonii, Borrelia miyamotoi, and Bartonella in spring and fall may be even more significant,
where it has been shown that birds infested with Ixodes ricinus and Ixodes scapularis can start
new foci of this tick on islands [9,75–78] (Table 1).

3.2.2. North America

In the previous two decades, a total of nine studies reported B. burgdorferi from ticks in
North America; 88.9% (n = 8) studies reported this pathogen from the US and 11.1% (n = 1)
from Canada. More than 50% (n = 5) of studies collected ticks from vegetation, and 44.4%
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(n = 4) from animals (e.g., pets, chipmunks, white-footed mice, dogs, and birds). Of these
four, in one case, tick collection was from humans and found to be positive for B. burgdorferi
(Figures 5 and 6). PCR was used to confirm the presence of Borrelia burgdorferi in all of
these studies and found an average of 19.2% prevalence of Borrelia burgdorferi in ticks of
North America in all studies. In 66.7% (n = 6) of studies, the tick species testing positive
for the pathogen was Ixodes scapularis (I. scapularis), while in 22.2% (n = 2) of studies, it
was Ixodes pacificus (I. pacificus). This demonstrates the significant contribution of both
ticks for transmission of B. burgdorferi in North America (Table 1). According to a study
from Michigan State University, B. burgdorferi was typically transmitted by black-legged
ticks (Ixodes scapularis) in the east of the Rocky Mountains and by I. pacificus in the Western
United States [79], which aligns with the findings of this review. A study in Canada
based on passive surveillance data revealed that I. scapularis ticks are more common than
previously suspected in this country [80]. In two studies from North America reviewed
here, ticks collected from birds provided positive results for B. burgdorferi, with the role of
migratory birds in spreading B. burgdorferi and I. scapularis reported in a study conducted
in Ontario, Canada [81].
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As with other tick species, climate change also exerts effects on the expansion of
I. scapularis distributions; this is reported to be increasing where warmer conditions are
prevailing [82], supporting claims of higher risks of Lyme disease in these areas in the
future. Two studies have been conducted in North America which found B. burgdorferi in
ticks collected from pets (cats and dogs), and in one study conducted in Ontario, Canada,
pathogen-positive tick samples were collected from both humans and companion ani-
mals, reporting prevalence of the pathogen in I. scapularis at 17.5% and 9.9% respectively.
The presence of ticks on companion animals is a significant risk factor for spread of the
pathogens they carry. Studies considered in this review revealed the presence of B. burgdor-
feri carrying I. scapularis on pets, which is not only a source of transmission of B. burgdorferi
to the pets themselves, but also poses a threat to humans with regard to Lyme disease
transmission. The increasing population of black-legged ticks is also contributing to the
transmission of other zoonotic pathogens such as Anaplasma phagocytophilum, Babesia microti,
Powassan virus, and Ehrlichia muris [76]. In North America, this expansion of black-legged
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tick distribution, attributed to changes in land usage and climate change, is the major factor
predicting the increased prevalence of zoonotic tick-borne diseases such as Lyme disease.

3.2.3. Asia and Africa

In Asia, B. burgdorferi prevalence is quite low. In this review, China and Korea were
the only countries in which this pathogen was reported in ticks, collected from vegetation
and wild rodents, respectively. A study published in 2003 detected B. burgdorferi from
Chinese Ixodes persulcatus collected from vegetation (Great Xingan Mountains, Small Xingan
Mountains), with a prevalence of 33.8% (454/1345), while a 2020 study detected this
pathogen in Ixodes nipponensis, I. angustus, and H. longicornis collected from wild rodents in
Korea (Pocheon, Donghae, Sejong, Boryeong, Uiseong, Jeongup, Geoje, Goheung, and Jeju
Island), with a prevalence of 33.6% (248/738) (Figures 5 and 7) (Table 1).
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Ixodes persulcatus are widely distributed from Russia to Eastern Asia, where one-fifth of
the world’s human population resides. The study results conducted in China demonstrated
that B. burgdorferi poses a health threat not only to animals, but also to humans, where
I. persulcatus is prevalent [83]. Ixodes persulcatus is the most abundant tick species in China
and is the major cause of tick bites in humans. I. persulcatus infests a range of nonhuman
animal hosts as well, providing the opportunity to acquire more than one pathogen from
different reservoirs [83]. In the case of Korea, the study reviewed here is the only one
from this country evidencing B. burgdorferi in ticks, in this case taken from wild rodents,
where these ticks had a high prevalence of pathogen, presenting a high risk of causing
Lyme disease. Agriculture workers, hikers, and people living near tick-infested areas in
Korea are thus at high risk of exposure to Borrelia due to proximity to wild rodents and
the ticks they carry. Hence, continuous surveillance of tick species in various geographical
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regions of Korea can be considered important to minimizing possible disease transmission
to humans.

In the case of Africa, prevalence of B. burgdorferi was unknown. Nevertheless, a recent
2021 study conducted in Egypt (Cairo, Giza, Al-Buhayrah, and Matrouh governorates)
reported this pathogen in Rhipicephalus sanguineus ticks collected from dogs with a preva-
lence of 1.67% (Figure 6; Table 1). In Egypt, domestic animals are often highly infested with
hard ticks. Although the rate of B. burgdorferi infection in dogs and ticks is low, dogs act as
sentinel carriers for this pathogen. From a public health perspective, researchers should be
aware of tick activity under various climatic conditions, which is often more than expected.
The current data regarding B. burgdorferi transmission related to tick bites remains quite
scarce, and its occurrence is thus likely underestimated.

3.3. Vector Control

Effective management of ticks is required for control of B. burgdorferi, as well as a
range of other TBDs. Ixodes ricinus, for example, acts as a major vector responsible for
spreading not only B. burgdorferi, but also other pathogens, including Borrelia miyamo-
toi, Rickettsia slovaca, Rickettsia helvetica, Rickettsia monacensis, Anaplasma phagocytophilum,
Babesia divergens, Babesia venatorum, Babesia microti, Bartonella henselae, Coxiella burnetii, and
Francisella tularensis, across the world [84]. In Europe, more than 90% of studies detected
B. burgdorferi in this tick, which indicates the critical demand for control strategies against
I. ricinus. Leveraging the low tolerance of this species for relative humidity levels below 85%
could offer significant potential in managing this species and the diseases it spreads [85].
At low humidity, I. ricinus is unable to survive, and this intolerance can be used as a
target to prevent tick infestations [86]. The second most important tick for B. burgdorferi
transmission is I. scapularis, especially in the US. A retrospective review of I. scapularis has
demonstrated significant range expansion over the last century in the US, which has had to
be mitigated through appropriate control strategies to reduce the chances of transmission
of B. burgdorferi [87].

There are various tick-control strategies used worldwide, many of which are associ-
ated with negative effects on the environment. A wide variety of chemical products in
different compositions are effective against ticks such as I. ricinus and are commonly used
to control ticks on domestic animals [88]. More environmentally considerate approaches
are relatively rare, though advances in this space should be possible with increased research
into delivering tick control through habitat management/manipulation, interrupting the
tick lifecycle, or obtrusion of associated pathogenic transmission. In some cases, such
measures should be relatively practical to deploy at scale, even utilizing existing animal
management/husbandry techniques such as fencing, grazing, and mowing [89]. Never-
theless, the utility of environmental-friendly tick control approaches has received little
attention, whilst, in contrast, the use of acaricides has been widespread. During the period
from 1970 to 1980, for example, wide-ranging and extensive spraying of acaricides was
carried out in Russia to control I. persulcatus, the main vector of the tick-borne encephali-
tis virus (TBEV) [90]. Such extensive acaricide use remains commonplace but is now
increasingly considered as socially unacceptable, primarily due to the damaging effects
of these chemicals on the environment and the biodiversity it contains [91]. Alternative
and integrated approaches of controlling ticks should therefore be prioritized to reduce
tick and TBD incidence on humans and animals whilst safeguarding the environment and
better aligning to shifting societal needs. Design and development of such strategies is
likely to benefit from cross-disciplinary collaboration, drawing from ecology, epidemiology,
entomology, and the social sciences.

4. Conclusions

This review demonstrates that the number of tick species vectoring B. burgdorferi is
increasing, reaching 19 to date. Ixodes ricinus is the most common tick found to be positive
for this pathogen, in more than 70% of the studies considered, followed by I. scapularis
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(almost 19%). The wide distribution of these tick species is a concern, with this threatening
to extend the geographic boundaries of emerging zoonotic diseases, including Lyme disease.
Climate change and migratory birds with more exposure to ticks are playing a significant
role in increasing the zoonotic transmission of B. burgdorferi across the world. Whilst recent
research has clearly depicted this increased distribution (Figure 8), more comprehensive
studies are still needed to better quantify the extent of this expansion and the prevalence of
pathogens in tick species in some areas, especially on continents such as Asia and Africa.
Advances in our understanding of effective nonchemical tick control measures are also
needed if we are to address increasing threats from ticks and TBDs in an environmentally
considerate manner.
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