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1 | INTRODUCTION

Abstract

Hypertension is an important global public health issue because of its high morbid-
ity as well as the increased risk of other diseases. Recent studies have indicated that
the development of hypertension is related to the dysbiosis of the gut microbiota
in both animals and humans. In this review, we outline the interaction between gut
microbiota and hypertension, including gut microbial changes in hypertension, the
effect of microbial dysbiosis on blood pressure (BP), indicators of gut microbial dys-
biosis in hypertension, and the microbial genera that affect BP at the taxonomic
level. For example, increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia,
and Bifidobacterium are associated with reduced BP, while increases in Streptococcus,
Blautia, and Prevotella are associated with elevated BP. Furthermore, we describe the
potential mechanisms involved in the regulation between gut microbiota and hyper-
tension. Finally, we summarize the commonly used treatments of hypertension that
are based on gut microbes, including fecal microbiota transfer, probiotics and prebi-
otics, antibiotics, and dietary supplements. This review aims to find novel potential
genera for improving hypertension and give a direction for future studies on gut mi-

crobiota in hypertension.

KEYWORDS
blood pressure, diversity, gut microbe, hypertension, probiotic

by 2025.2 From 1990 to 2015, the number of deaths from cardio-

vascular and cerebrovascular disease has dramatically increased, fol-

Hypertension, the major risk factor for cardiovascular disease, is a lowing the trend of hypertension prevalence.> The pathogenesis of

major healthissue that affects people worldwide. In 2015, 1.13 billion hypertension is complex, with many factors.® Numerous single-gene

people suffered from hypertension,! predicted to reach 1.56 billion variants associated with hypertension were discovered in previous
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study, although they explained only a small fraction of the variation
in blood pressure (BP) between individuals (<5%).”

Emerging evidence suggests that gut microbes can regulate
BP.8"1° Gut microbial dysbiosis may be attributed to lifetime pat-
terns of cardiovascular disease from childhood to adulthood.!?
The effect of antibiotic therapy on hypertension in rats provides
first evidence that the gut microbiota are involved in the etiol-
ogy of hypertension.'?> Gut microbes may contribute directly to
the pathogenesis of hypertension through cellular targets down-
stream.®13 There are some reviews focusing on the relationships
between gut microbiota and hypertension.'**” However, there
are no reviews summarizing the potential microbes regulating BP
at the taxonomic level and the variety of probiotics for improving
hypertension.

We present a summary of the current developments in under-
standing the regulatory effects of gut microbes on BP. Specifically,
we discuss the interaction observed between gut microbiota and hy-
pertension, categorize the microbial genera that affect BP, and out-

line how to regulate BP on the basis of gut microbes or probiotics.

2 | THE INTERACTION BETWEEN GUT
MICROBIOTA AND HYPERTENSION

2.1 | Changes to gut microbial community in
hypertension

Previous studies have suggested the occurrence of gut micro-
bial dysbiosis in animal models and patients with hypertension
(Table 1), including decreased microbial diversity as well as dis-
ordered structures and functions within the microbial commu-
nity. Animal models of hypertension, including spontaneously
hypertensive rats (SHRs),8:18-20 angiotensin Il (Ang Il)-induced

rats,® Dahl salt-sensitive rats,'?

and NG-nitro-L-arginine me-
thyl ester (L-NAME)/salt-induced mice,?* were found to have
altered structure of gut microbiota compared with their respec-
tive normotensive strains. Dysbiosis of gut microbiota was also
observed in studies on patients with hypertension, conducted

24 and Brazilian,25

mainly in Chinese,®??2% American, popula-
tions. In a population of 41 healthy people, 56 patients with
prehypertension, and 99 patients with primary hypertension
in northern China, Li et al. revealed dramatically decreased mi-
crobial diversity and dysbiosis of microbial function in patients
with prehypertension and those with hypertension.® In another
Chinese population, Xie et al. further analyzed the relationship
between gut microbiota and BP, finding that the dysbiosis of gut
microbiota differed among patients with hypertension, isolated
diastolic hypertension, and systolic hypertension.?? Differences
in gut microbiota between White and Black individuals were
observed in an American population. They reported that Black
individuals with hypertension had higher BP, higher prevalence
of treatment-resistant hypertension, stronger pro-inflammatory

ability of gut microbiota, and more oxidative stress markers than

White individuals with hypertension.?® However, a longitudinal
26-patient cohort with a follow-up of 5years suggested that no
significant change was observed in gut microbial composition,
whereas the fecal metabolome was linked to 24-h BP levels and
elevated levels of short-chain fatty acid (SCFA) in the feces of pa-
tients with hypertension. The function of gut microbiota seemed
to be more modified over time than the composition of the gut
microbiota in patients with altered BP level.?’

Furthermore, dysbiosis of gut microbiota was observed in
patients suffering from hypertension combined with other dis-
eases (Table 2). Two recent investigations have revealed that
gut microbiota and hypertension were linked to neurogenic vari-
ables. Wang et al. revealed that hypertension with stress could
destroy the domino effect between gut microbiota and homeo-
stasis.?® Stevens et al. suggested that the endotype of patients
with depressive hypertension differed from that of patients with
depression or hypertension alone.?’ Wedgwood et al. found that
postnatal growth restriction in a rat model caused pulmonary hy-
pertension and disturbed the microbiota of the distal small intes-
tine and cecum.®° Recently, coronavirus disease 2019 (COVID-19),
which is caused by coronavirus and leads to severe acute respira-
tory syndrome, became a pandemic in 2020 and 2021. Patients
with COVID-19 who had higher BP displayed more than 3-fold
higher mortality rates than patients with normotension.?! In a
review, Magalhaes et al. proposed that dysbiosis of gut microbi-
ota was responsible for the poor results of COVID-19 in patients
with hypertension.32 In a cohort of 48 subjects, the activation of
TLR4 through lipopolysaccharide (LPS) from the gut microbiota of
patients with hypertension may be associated with the severity
of COVID-19.%® Moreover, gastrointestinal regulation of butyrate
may be key to the increased comorbidity observed in patients
with hypertension in COVID-19.3

2.2 | Dysbiosis of gut microbiota contributes to
hypertension

A typical strategy for confirming the links between gut micro-
biota and disease is to use germ-free animals. Ang-ll-induced
increase in BP was lower in germ-free mice than conventional
mice,®> which suggested that gut microbiota promoted the de-
velopment of hypertension. Joe et al. found that germ-free rats
have relative hypotension compared with their conventional rats,
suggesting an obligatory role of gut microbiota in BP homeosta-
sis.3¢ Using cross-fostering method, in spontaneously hyperten-
sive stroke-prone rats (SHRSPs), an SHRSP-like microbiota not
only enhanced inflammation and elevated BP, but also caused
harm to the blood-brain barrier compared with a WKY-like mi-
crobiome.%” Fecal microbiota transfer (FMT) from hypertensive
controls®2%38-42 t5 normotensive control elevated BP, while FMT
from normotensive to hypertensive controls reduced BP,3843
which confirmed a causal relationship between dysbiosis of gut
microbiota and hypertension.
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(Continued)

TABLE 1

Main results

Method

Source

Year

Study

Reduced biodiversity and distinct bacterial signatures, an inflamed immune

16S rDNA V3-V4 using lllumina

48 hypertensive and 32 normotensive

2020

Silveira-Nunes

profile with an increase in TNF/IFN-g ratio, and in TNF and IL-6 production in

individuals with hypertension

Miseq

Brazilian individuals aged >25 years from

Southeast Brazil

etal.?

No significant differences in the overall bacterial composition and diversity of

16S rDNA V3-V4 and

29 nontreated hypertensive and 32

2020

Calderén-Pérez

bacterial community between the 2 groups, a positive correlation between the
hypertension-associated species and systolic and diastolic blood pressure

metagenomic sequencing using

Illumina Miseq

normotensive subjects

etal”®

Significant taxonomic and functional changes of microbial communities between 2

Metagenomic sequencing Illumina

18 patients with PAH and 13 controls

2020

Kim et al.*>°

\ -WILEY

groups, increased synthesis of arginine, proline, and ornithine pathways in the

patients with PAH

HiSeq4000

YAN ET AL.

No significant change in composition of gut microbial community, while the fecal

16S rDNA V1-V3 using lllumina

6 men and 1 woman were categorized as

2021

Huart et al.?’

metabolome is associated with 24-h BP levels, with higher SCFA levels in the

feces of patients with hypertension

Miseq

patients with hypertension, while the

remaining 10 men and 9 women were

normotensive

Hypertension contributes to microbial translocation in the gut and eventually

16S rDNA V3-V4 using lllumina

8 hypertensive and 8 normotensive primates

2022

Vemuri et al.>®

unhealthy shifts in the gut microbiome

Miseq

(Mscaca mulatta)

2.3 | Indicators of gut microbial dysbiosis in
hypertension

2.3.1 | Diversity

In most diseases, lower microbial diversity is considered as an in-
dicator of gut microbial dysbiosis,** which may make individuals
vulnerable to potential risks such as hypertension.*> Decreased
diversity of gut microbiota was observed in various hyperten-
sive animal models, such as SHRs,? Ang-ll-induced rats,®4¢ hy-
pertensive obstructive sleep apnea rats,*’ high-fructose-induced
hypertensive rats,*” and Dahl rats.” The same results were con-
firmed in patients with hypertension, such as a cohort of 56 pre-
hypertensive cases, 99 hypertensive cases, and 41 controls in
Chinaé; a cohort of 60 cases and 60 controls patients in China48;
a small cohort of 7 cases and 10 controls in the United States®;
a cohort of 57 hypertensive women cases and 391 controls from
TwinsUK*’: a cohort of the biracial (Black and White) population
in the United States (186 cases, 343 controls)®*: a recent study
of 80 Brazilian adults (48 cases and 32 controls)?®; a cohort of
patients with pulmonary arterial hypertension (PAH) in Brazil (16
cases, 12 controls).’® Another cohort study with employees of
the Kailuan Group Corporation in China suggested that patients
with isolated diastolic hypertension had lower gene numbers and
bacterial richness than control and patients with isolated systolic
hypertension.51 However, some studies have come to a contrary
conclusion. Callejo et al. showed that no difference in diversity
was observed in a rat model of PAH.>? In a cohort of 50 patients
with grade 3 hypertension and 30 healthy controls, the gut micro-
biota of the individuals with hypertension was more diverse than
healthy controls.>3

2.3.2 | Firmicutes/Bacteroidetes (F/B) ratio
Increased F/B ratio is often used as an indicator of gut micro-
bial dysbiosis.>* An increased F/B ratio has been reported in

hypertensive animal models such as SHRs,?

Ang-ll-induced
rats,® PAH rats,”? hypoxia-induced pulmonary hypertensive
mice,> Dahl salt-sensitive hypertensive heart failure rats,>®
stroke-prone spontaneously hypertensive rats,° high-fat-diet

8 and patients

L-NAME-induced rats,” hypertensive monkeys,®
with hypertension,® while a decrease of F/B ratio was observed
in high-fructose-induced salt-sensitive hypertensive rats.*’
The F/B ratio in these studies has been described in details in
Table 3. The increase of Firmicutes in hypertension may be due
to Firmicutes being the main phylum to produce TMA,>?%% which
is harm to hypertension. Besides, Firmicutes members produce
butyrate, while Bacteroidetes produce acetate and propionate.®
Olfactory receptor 78 (Olfr78) can bind acetate and propionate,
which induces an increased BP response. In contrast, G-protein-
coupled receptor 41 (GPR41) induces a decrease of BP response
to butyrate.?
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2.4 | Potential taxa to regulate BP

Many studies have identified a few possible microbes involved in the
regulation of BP. To determine the potential taxa for regulating the
BP, we summarize the potential genera, sorting by classification level
(Table 4). The details are listed in Supporting File S1.

To further uncover the potential genera for regulating BP, we
construct a phylogenetic tree based on bacterial 16S-rRNA se-
qguences using neighbor-joining methods (Figure 1). Lactobacillus
(11 studies), Roseburia (8 studies), Akkermansia (8 studies),
Coprococcus (7 studies), and Bifidobacterium (7 studies) were
enriched in healthy or treated groups with lower BP (Figure 1,
Table 4), suggesting that they have the potential to reduce BP.
Streptococcus (3 studies), Blautia (3 studies), and Prevotella (3 stud-
ies) were enriched in hypertensive groups, which suggests that
they are potentially harmful for hypertension (Figure 1, Table 4).
However, the roles of some microbes in hypertension are debated.
For example, 4 studies suggest that Bacteroides may be beneficial
in reducing BP, while 5 studies suggest that it may be harmful to
hypertension. These results could be due to microbial differences
(most studies were based on amplicon sequencing, for which it is
hard to obtain accurate results at the species level or strain level)
and host differences (including age, gender, disease type, immu-
nity, etc.), which need to be further studied.

obesi, Holdemania filiformis, and Lacnospiraceeae bacterium 1.1.57FAA with Streptococcus salivariu
in depression plus hypertension. The corresponding microbial functional genomics of depressive

hypertension engaged pathways degrading GABA and beneficial short chain fatty acids, and are

associated with enhanced sodium absorption and inflammasome induction
Dramatic changes in the intestinal genera and species composition and intestinal function were

IL-6 along with a decrease in the diversity of gut microbiota and an imbalance in the F/B ratio
microbial enterotype in smoker with hypertension was inclined to Prevotella-dominant type.
observed in smoker with hypertension

levels, and unique gut-microbial metabolic pathways, such as elevated lipopolysaccharide

synthesis and glutathione metabolism in TIDM with elevated BP

microbiota of the distal small bowel and cecum

There was a remarkable significant increase of stress-related hormones and pro-inflammatory factor
plasma and the changed gut microbiota

Postnatal growth restriction with or without hyperoxia (but not hyperoxia alone) altered the
Increased expression of acyl-CoA oxidase 2 in the kidney along with increased phytanic acid in
Gut bacterial community ecology was defined by co-occurrence of Eubacterium siraeum, Alistipes
Distinct gut microbial composition, reduced diversity, a significant reduction of Bifidobacterium

Main results

3 | THE POTENTIAL MECHANISMS
INVOLVED IN THE REGULATION BETWEEN
GUT MICROBIOTA AND HYPERTENSION

Evidence shows that gut dysbiosis induces high levels of BP through
SCFAs, trimethylamine N-oxide (TMAO), hormonal regulation in-

cluding gaseous signal molecule, gut bacteria-derived bioactive pep-

length polymorphism
sequencing
Illumina platform

Miseq
16S rDNA V3-V4 using lllumina

Miseq
Miseq

tides, serotonin, steroid hormones, and immunity response such as
63-65

Metagenomic sequencing using The gut microbiota in smoker with hypertension was disordered, with lower microbial diversity. The

Terminal-restriction fragment
16S rDNA V3-V4 using lllumina

16S rDNA V4 using Illumina
Metagenome shotgun

Method

inflammation Figure 2).

3.1 | SCFAs

SCFAs (mainly including acetate, propionate, and butyrate) are the
main metabolites produced by gut bacteria in the gut. Animal stud-
ies have demonstrated a direct correlation between fecal SCFAs
and BP.62¢%%7 A reduction in SCFA-producing bacteria seems to be
involved in the increase of BP found in SHRs, Ang-ll-induced mice,

and patients with hypertension.s’“ Administration of SCFAs low-
68-72

depression only, 8 depression plus
hypertension, and 21 reference subjects
with neither hypertension nor depression
smokers without HTN, 18 nonsmokers
with hypertension, and 23 smokers with
hypertension in China

groups: 5 healthy controls, 17 TIDM with
normal BP, and 7 TIDM with elevated BP

growth restriction and hyperoxia
29 pediatric subjects and divided them into 3

Sprague-Dawley rats combining postnatal
Restraint stress in hypertensive rats

18 diagnosed with hypertension only, 7

9 nonsmokers without hypertension, 9

SHR, stroke-prone SHRs

Source

ered BP in mice and rats, while in humans, evidence of the re-
lationship between fecal SCFA levels and BP are conflicting. Both

higher and lower fecal SCFAs have been associated with higher
Bp 27487378

Year
2020
2021
2021
2021
2021

which may be due to gut permeability and absorp-
tion. Potential mechanisms of SCFAs on the regulation of BP have

been suggested, including specific receptors, anti-inflammatory

etal.>®
etal.®
etal.??
et al.1*?

Wang et al.?®

effects, nervous system, metabolic regulation, and gut epithelial
17,79,80

Wang et al.’’® 2021

Wedgwood
Okamura
Stevens
Lakshmanan

TABLE 2 Recent studies on the changes of gut microbiota in hypertension associated with other disease
Study

integrity.
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TABLE 3 The average F/B ratio in the study considering F/B ratio as indicator of gut dysbiosis
Hypertensive Normal Treatment
group group group Source Study Year
254 4.4 - SHRs Yang et al.® 2015
37.22 6.6 2.57 Chronic Ang-ll-induced rats Yang et al.8 2015
0.63 - 0.15,0.19 DOCA-salt mice Marques et al.”® 2017
3.61 1.88 2.89 Spontaneously hypertensive stroke prone rats Adnan et al.?° 2017
72.7 25.5 - PAH rats Callejo et al.? 2018
3.33 1.44 1.62 High-fat-diet .L-NAME-induced hypertensive rats Chen et al.’ 2019
16.67 5.5 5.37 SHRs Han et al.'® 2019
4.31 2.59 3.31 SHRs Yu et al.'® 2019
0.38 0.46 High-fructose-induced salt-sensitive hypertensive Chen et al.¥’ 2020

rats

0.35 0.27 0.31 Hypoxia-induced pulmonary hypertension mice Luo et al.”® 2021
3 1.67 - Hypertensive heart failure rats Li et al.> 2021
2.42 - 1.35 SHRs Han et al.!”® 2021
55.56 17.46 14.29 SHRs Robles-Veraetal”* 2021
10 5.75 - Hypertensive monkeys Vemuri et al.*® 2022

3.2 | TMAO 3.3.2 | Gut bacteria-derived bioactive peptides

TMAQOQ is a circulating metabolite produced from choline, phosphati-
dylcholine, and carnitine by hepatic enzymes or gut microbes.?!
TMA-producing bacteria are widely distributed in Actinobacteria
and Proteobacteria and more abundant in Firmicutes. At the genus
level, Clostridium, Shigella, Proteus, and Aerobacter are the main
TMA-producing bacteria.>**° In addition, some pathogens, such
as Aeromonas, Burkholderia, Salmonella, Shigella, Campylobacter,
and Vibrio, can produce TMA.>? In recent years, animal®>%* and
cohort®1858 studies have indicated a significant positive dose-

dependent association between circulating TMAO and BP.

3.3 | Hormonal regulation

3.3.1 | Gaseous signal molecule

NO and H,S can be produced by gut bacteria and are important
vasodilators. They are reported to relax various blood vessels,
such as thoracic aorta, portal vein, and peripheral resistance
vessels.87-87 H,S can restore NO bioavailability and reduce oxida-
tive stress with alterations of gut microbiota. %4270 Dietary nitrate
reduced BP in healthy volunteers and patients with hyperten-
sion, indicating the antihypertensive role of NO through gut mi-
crobiota.”® Administration of Enterococcus faecalis decreased the
production of NO in the renal medulla and increased BP through
upregulation of lysophospholipase A1l and phospholipase A2
group 4 A.%? Daliri et al. reported that soy protein decreased BP,
possibly by increasing the colonization of H,S-producing bacteria
in hypertensive rats.”

In some cases, commensal gut bacteria-derived bioactive peptides
have anti-inflammatory effects and can modulate host hyperten-
sive hormones, such as angiotensin-converting enzyme and renin.?*
Gao et al. indicated that the novel angiotensin-converting enzyme
(ACE)-inhibitory peptides could regulate the renal renin-angiotensin
system, reduce BP, and rebalance gut microbial dysbiosis.”® Edwards
et al. suggested that N-formyl peptides lead to severe hyperten-
sion.”® Some probiotics can improve hypertension via bioactive
peptides. For example, recombinant Lactobacillus plantarum NC8,
which expresses ACE-inhibitory peptides, can significantly reduce
BP in SHRs.”” A randomized, placebo-controlled study indicated
that Lactobacillus helveticus LBK-16H fermented milk, which contains
bioactive peptides, has an antihypertensive effect in patients with

hypertension.”®

3.3.3 | Serotonin

Serotonin is a neurotransmitter with diverse functions that
can cause hypertension by increasing arterial contractility and
smooth muscle growth.15 The synthesis and secretion of seroto-
nin can be influenced by gut microbiota. Previous studies have
suggested that germ-free mice with human gut microbiota in-
crease the levels of serotonin in serum, colon, and feces.?*1%°
Spore-forming bacteria can promote serotonin biosynthesis
through elevation of metabolites such as a-tocopherol, deoxy-
cholate, and tyramine.101 Commensal bacteria can promote the
production of serotonin. For example, Escherichia coli K12 in the
gut can produce serotonin.®? Clostridium ramosum can promote
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TABLE 4 Potentially beneficial and harmful gut microbes for hypertension

Taxa

Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae

Firmicutes; Bacilli; Lactobacillales; Streptococcaceae
Firmicutes; Bacilli; Lactobacillales; Streptococcaceae
Firmicutes; Bacilli; Lactobacillales; Enterococcaceae
Firmicutes; Bacilli; Bacillales; Staphylococcaceae
Firmicutes; Bacilli; Bacillales; Paenibacillaceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Lachnospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Oscillospiraceae
Firmicutes; Clostridia; Eubacteriales; Eubacteriaceae

Firmicutes; Clostridia; Eubacteriales;
Christensenellaceae

Firmicutes; Clostridia; Eubacteriales; Peptococcaceae

Firmicutes; Clostridia; Eubacteriales; Eubacteriales
Family XllI

Firmicutes; Clostridia; Eubacteriales;
Peptostreptococcaceae

Firmicutes; Clostridia; Eubacteriales; Clostridiaceae

Firmicutes; Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae

Firmicutes; Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae

Firmicutes; Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae

Firmicutes; Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae

Firmicutes; Erysipelotrichia; Erysipelotrichales;
Turicibacteraceae

Firmicutes; Negativicutes; Selenomonadales;
Selenomonadaceae

Firmicutes; Negativicutes; Selenomonadales;
Selenomonadaceae

Genus

Lactobacillus

Lactococcus
Streptococcus
Enterococcus
Staphylococcus
Paenibacillus
Sporobacter
Robinsoniella
Oribacterium
Roseburia
Butyrivibrio
Coprococcus
Marvinbryantia
Blautia
Anaerostipes
Faecalibacterium
Oscillibacter
Anaerotruncus
Ruminiclostridium
Butyricicoccus
Ruminococcus
Pseudoflavonifractor
Subdoligranulum
Oscillospira
Eubacterium

Christensenella

Peptococcus

Anaerovorax

Romboutsia

Clostridium

Allobaculum

Dubosiella

Faecalibaculum

Holdemania

Turicibacter

Quinella

Megamonas

Potentially beneficial

Mou 58,21'192 rat,16°'169'172'182'184’193’195

human?116

Rat197

Human'??

Human®’

Human,6'25'29'48'76 rat183,197,200

human®°°

6,25,50,201 55 rat8'2°2

Human, mouse,

Human'??
Rat43.197

Rat204

Human6,48,76,165,201

Human®

Mouse®

Human*>1%?

Mouse,*® rat!®3

Human'??

Human,'? mouse!??
Rat205

Human,5°’77'2°1 ratSé

Human®’

RatZOé

Human>!

Rat178,183,205,207

Mouse!’?

Rat178

[I‘L\AS—WI LEYJﬂ

Potentially harmful

Human?®

Human?®

Human?2%:48.198
Rat??

Rat56,169

Human®’

Human'’®

203 46

Human,“”” mouse

Rat®¢

Human?®

Mouse?®

Human?’

Mouse,55 human®’

Rat®¢

Rat,137 human®®

Rat>¢

Rat®¢

Human?’

Rat®¢

Human?®

(Continues)
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TABLE 4 (Continued)

Taxa
Firmicutes; Negativicutes; Selenomonadales;
Selenomonadaceae

Firmicutes; Negativicutes; Veillonellales;
Veillonellaceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Prevotellaceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Prevotellaceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Bacteroidaceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Porphyromonadaceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Odoribacteraceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Odoribacteraceae

Bacteroidetes; Bacteroidia; Bacteroidales;
Rikenellaceae

Bacteroidetes; Sphingobacteriia; Sphingobacteriales;

Sphingobacteriaceae

Actinobacteria; Actinomycetia; Corynebacteriales;

Corynebacteriaceae

Actinobacteria; Actinomycetia; Micrococcales;
Micrococcaceae

Actinobacteria; Actinomycetia; Bifidobacteriales;
Bifidobacteriaceae

Actinobacteria; Actinomycetia; Actinomycetales;
Actinomycetaceae

Actinobacteria; Coriobacteriia; Eggerthellales;
Eggerthellaceae

Actinobacteria; Coriobacteriia; Eggerthellales;
Eggerthellaceae

Proteobacteria; Gammaproteobacteria;
Enterobacterales; Erwiniaceae

Proteobacteria; Gammaproteobacteria;
Enterobacterales; Enterobacteriaceae

Proteobacteria; Betaproteobacteria; Burkholderiales;

Sutterellaceae

Proteobacteria; Betaproteobacteria;
Nitrosomonadales; Spirillaceae

Verrucomicrobia; Verrucomicrobiae;
Verrucomicrobiales; Akkermansiaceae

Desulfobacterota; Desulfovibrionia;
Desulfovibrionales; Desulfovibrionaceae

Deferribacteres; Deferribacteres; Deferribacterales;

Deferribacteraceae

Spirochaetes; Spirochaetia; Spirochaetales;
Treponemataceae

the secretion of serotonin from enterochromaffin cells.

Genus

Anaerovibrio

Megasphaera

Prevotella

Alloprevotella

Bacteroides

Parabacteroides

Odoribacter

Butyricimonas

Alistipes

Pedobacter

Corynebacterium

Rothia

Bifidobacterium

Actinomyces

Adlercreutzia

Gordonibacter

Erwinia

Klebsiella

Sutterella

Spirillum

Akkermansia

Desulfovibrio

Mucispirillum

Treponema

100 In

addition, metabolites of gut microbiota such as SCFAs and

bile acids (BAs) can induce enterochromaffin cells to secrete

serotonin.”?10?

Potentially beneficial

Mouse*!

Human'?®

Mouse,*? rat'?”

Rat,'%> human®>°%77

Rat40,207,210

Human,78 rat*®

Rat195

2 rat,172’174’183
6,29,112

Mouse,?
human

Mouse41,205

Human'¢?

Rat 57,183,184,195 H uman24,50,165,212

Rat207

Rat>®

| Steroid hormones

Potentially harmful

Human?®

Human,®?%8 rat!”°

Rat,137’173’197 mouse,42’7°

huma n76,196,208,209

Mouse,46 human*®

Rat*®®

192,211
23,29

Mouse,

human

Rat182

Human®?

50,162

Human

Human

Rat>¢

Rat>¢

Rat204

Human*®

Human

There is a possible relation between hypertension and gut-
associated steroid metabolism. Through oxidation and reduction
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FIGURE 1 Phylogenetic tree of potential genera for regulating hypertension. The representative sequence of each genus was
downloaded from a web-based tool at EzTaxon (https://www.ezbiocloud.net/),*8¢ which is listed in Table S1. The sequences were aligned
using the default settings of MAFFT online.*®” The evolutionary trees were constructed using MEGA software version 11 on the basis of the

neighbor-joining method!®® and visualized using Interactive Tree of Life (https://itol.embl.de/

reactions, gut microbiota can regulate the levels of androgens
and glucocorticoids.'® Besides, studies have suggested a relation
between sex steroid hormones and hypertension. Estrogen level
was decreased in hypertensive males, while estradiol was higher
in hypertensive males and females.'®* In addition, gut microbiota-
derived arachidonic acid reduces corticosterone,'®> which can be
converted into aldosterone and increase salt and water retention

to elevate BP.

3.4 | Immunity response

Indoles are aromatic, heterocyclic, organic compounds that
can be produced through gut microbiota. Gut microbes can ex-
press indole-3-glycerol phosphate synthase, indole-3-glucerol
phosphate lyase, and indole synthase, which may promote the
production of indole.’® Indole has been reported to be asso-
ciated with hypertension. Administration of indole increased

)189

BP dose-dependently in rats.’®” However, infusion of indole in
the brain reduces BP, indicating that peripherally indoles may
be prohypertensive, while indoles in the brain may be antihy-
pertensive.108 Another study showed that probiotic Lactobacillus
inhibited Th17 cells and ameliorated hypertension by restoring
indole-3 lactic acid levels.?! Regarding the inflammation in hyper-
tension, indoles can inhibit TH17 cells and suppress the release
of IL-17A.1%? In addition, indoles can bind to aryl hydrocarbon
receptor precursor to regulate T cells, which inhibit the TH17
responses by releasing anti-inflammatory cytokine |L-10.110111
LPS, a bacterial cell wall component, may be a factor influencing
hypertension by gut microbiota. Upregulation of LPS biosynthesis
was observed in hypertension group.®*&77112113 | pg can increase
gut and neuroinflammation response in hypertension,*** which may
be a mechanism connecting gut microbiota with hypertension.**® It
is well known that high-salt diet is the major trigger of hypertension
in humans,**® which induces activation of Th17 cells™”118 and in-
creases the BP.1120 There are associations between Th17 cells and
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FIGURE 2 The potential mechanisms involved in the regulation between gut microbes and hypertension.

gut microbiota.?! In addition, IL-6 is an important cytokine in the 4 | TREATMENT OF HYPERTENSION
regulation of BP, which is responsive to Ang Il to raise BP.*?! Another BASED ON GUT MICROBES
study demonstrated an increase of pro-inflammatory cytokines in

peripheral blood samples in patients with hypertension associated Maintaining and recovering the homeostasis of the gut microbiota
with changes in the structure of gut microbiota.?® These results sug- environment may be a possible therapeutic approach to treating hy-
gest that gut microbiota could regulate BP through interaction with pertension.122'123 Use of FMT, probiotics, prebiotics, and antibiot-

the immune system. ics can reduce BP in hypertensive animals and patients, or aid the
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protective function of antihypertensive drugs.!?**2% The widely
used methods based on regulation of gut microbes are listed as

follows.

41 | FMT

20,38-40 41,42

FMT from hypertensive rats, mice, and humans® to nor-
motensive animals elevated BP with increase of plasma IL—17,41 T-cell
activation, aortic T-cell infiltration, and impaired endothelial func-
tion,%® suggesting that FMT can be used to confirm the roles of gut
microbiota in hypertension.

Transferring fecal samples from normotensive to hypertensive
animals reduced BP significantly in recipients.3®*® A recent Chinese
clinical study confirmed the effect of FMT in humans. Patients were
treated with washed microbiota transplantation, which indicated
that FMT had a BP-lowering effect in patients with hypertension.!?’
Another study demonstrated that FMT from healthy donor mice fed
resveratrol to hypertensive mice had beneficial effects in signifi-
cantly lowering systolic BP during diet-induced obesity.*?® Xia et al.
showed that FMT from exercised SHRs, which maintain lower BP,
into SHRs alters gut microbiota and decreases BP.1??

It is important to note that the complexity of the microbiota
can produce unexpected results such as increased BP in Dahl salt-
sensitive rats receiving fecal transplants from salt-resistant normo-
tensive rats.” A recent study on inter-strain fecal transplant in rats
showed no effect on BP and did not produce long-term changes in

gut bacteria composition.**°

4.2 | Probiotics and prebiotics
Much interest has been focused on the effective use of a wide va-
riety of probiotic strains.*®"'3% Probiotics can exert an antihyper-
tensive effect through reducing blood glucose levels and insulin
resistance by improving cholesterol levels, endothelial dysfunction,
and inflammatory responses.34-13¢

The antihypertensive probiotic most widely reported is
Lactobacillus. Lactobacillus fermentum CECT5716 is a potential anti-
hypertensive probiotic that can reduce BP through multiple mech-
anisms such as by impairing endothelium-dependent relaxation,
abolishing the increased superoxide levels, and restoring the imbal-
anced Th17/Treg ratio in SHRs,%¢%¥” tacrolimus-induced hyperten-

138 systemic lupus erythematosus mice,*%14% and NZBWF1

sion rats,
mice.** Other Lactobacillus strains have been studied. After daily ad-
ministration of Lactobacillus casei to SHRs for 8 weeks, antihyperten-
sive and vascular protection effects were observed.*? Lactobacillus
coryniformis CECT5711, with immunomodulatory properties, could
reduce BP in obese mice.’® In a controlled, randomized, double-
blinded trial, BP in healthy smokers was decreased after treatment
with Lactobacillus plantarum 299v.*** However, the potency for
antihypertensive activity of probiotics depends on strains. For ex-

ample, various strains of Lactobacillus plantarum show inconsistent

activities.'*> The recombinant Lactobacillus plantarum NC8 strain
was also shown to decrease BP in SHRs by restoring nitric oxide
and reducing endothelin and Ang 1.7 Lactobacillus plantarum DSM
15313 was found to ferment dietary intake of blueberries and lower
BP in .-NAME-induced hypertensive animals.}*® In a 2020 study,
administration of Lactobacillus plantarum WJL during pregnancy and
lactation in dams was reported to reduce BP and prevent cardio-
vascular dysfunction in male offspring of rats.!*” However, another
strain from Lactobacillus plantarum, HEAL19, failed to ameliorate hy-
pertension in L-NAME-induced rats.'*®

Bifidobacterium is another probiotic with antihypertensive ef-
fects. Treatment with Bifidobacterium breve CECT7263 prevented
hypertension with restored renal damage, Th17 and Treg content,
and endothelial dysfunction in lupus model induced mice, *° SHRs,%¢
and DOCA-salt induced rats.**? Bifidobacterium longum supplemen-
tation increases the level of ACE2 and mas receptor in obese mice,
supporting its potential beneficial effects in reducing BP.2>°

Nevertheless, some gut microbes, such as Enterococcus faecalis,
can exacerbate hypertension. Rats receiving live Enterococcus fae-
calis exhibited higher BP and enhanced renal injury.’? Emerging ev-
idence has suggested that Enterococcus faecalis induced pulmonary

hypertension syndrome with cardiac injury in young chickens.'*11%%

4.3 | Antibiotics

The first evidence for involvement of gut microbiota in hyperten-
sion etiology was obtained in rats on the effect of antibiotic ther-
apy on BP.*? In hypertensive animals and patients, antibiotics can
alleviate hypertension. For example, minocycline® and an antibiot-
ics cocktail®>* blunt hypertension in Ang-ll-induced hypertensive
rats. Vancomycin treatment can attenuate microbiota dysbiosis and
reduce BP in fructose-induced salt-sensitive rats.”” Vancomycin
and minocycline reduce systolic BP in older SHRs.?>®> Doxycycline
decreased systolic BP, abundance of lactate-producing bacteria,
and levels of lactate in plasma of DOCA-salt rats.*>® A cocktail of
antibiotics-induced alteration of the gut microbiota improved PAH
in SU5416/hypoxia rats.>” Vancomycin inhibited the increase in BP
and reduced Th17 infiltration in aortas in imiquimod-treated mice!
and NZBWF1 mice.*? Moreover, depletion of gut microbiota by
antibiotic (polymyxin B and neomycin) administration dramatically
ameliorated gut barrier disruption, renal injury, and BP elevation in
high-salt-intake-induced mice.'® In a clinical study, a 69-year-old pa-
tient with a long history of hypertension (44 years) had lower BP after
combined antibiotic treatment.**’ However, in healthy rats, treat-

| 155,160
’

ment with antibiotics resulted in elevated BP leve indicating

that the roles of antibiotics in regulation of BP are bidirectional.

4.4 | Dietary supplements

Diverse dietary supplements influence BP. Gut microbiota re-
spond significantly to dietary supplements, and long-term diets
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shape the gut microbiota.’®! Previous studies have indicated that

70,162,163

dietary fiber, mousse supplementation with whey protein

hydrolysate and pumpkin pectin,164 low-saturated-fat diet,'¢® poly-

166 extra virgin olive oil-enriched diet,*®” garlic oil,**8%%’ po-

phenols,
tassium alginate oligosaccharides,’® and vitamin K27* reshaped the
gut microbial community, providing beneficial effects on BP regula-
tion in animal models or patients with hypertension.

In addition, herbal medicines have been observed to regulate
BP, associated with modulating the gut microbial community. For
example, prevention of hypertension via resveratrol was related to
restoration of aryl hydrocarbon receptor signaling, TH17-mediated
inflammation, NO pathway, and gut microbiota in high-fructose-

diet rats,172’173 174

chronic kidney disease-induced hypertensive rats,
postnatal high-fat diet and L.-NAME-induced hypertensive rats,”’
and hypertensive rats with combined asymmetric dimethylarginine
and trimethylamine-N-oxide exposure.}’> Resveratrol ameliorated
hypertension by promoting the enrichment of beneficial bacte-
ria.>”172176 Curcumin also restored BP by altering the composition of
gut microbial community and improving gut pathology and integrity
in SHRs.}”7 Quinoa protein intervention decreased BP significantly
and changed the microbial community structure in SHRs compared
with nonhypertension rats.'’® A growing body of evidence has in-
dicated that berberine and its derivatives could reduce BP in pa-
tients with hypertension, and its mechanism may be attributed to
inhibition of renin-angiotensin system activity,)’”” decreased levels

179,180 1

of aldosterone, reduced arterial stiffness,*®! and improved en-

%in rats. Wu et al. indicated that Sanoshashinto

dothelial function®
and berberine-baicalin combination improved hypertension and left
ventricular hypertrophy by altering gut microbiota.'®? Baicalin low-
ered BP and increased the amount of SCFAs by changing the gut
microbiota in SHRs.*® Some compound herbal formulae have good
antihypertension effects and improve the gut dysbiosis. The combi-
nation of Astragalus membranaceus and Salvia miltiorrhiza treatment
reduced BP steadily and ameliorated the imbalance of gut microbial
structure in SHRs.*®* Zhengganxifeng decoction reduced BP, main-
tained the integrity of the gut barrier, and elevated the proportion
of SCFA-producing bacteria by decreasing the expression of ACE in
lungs of SHRs.*8°

5 | CONCLUSIONS AND PROSPECTS

Several studies have suggested that the dysbiosis of gut micro-
biota and hypertension is causally related in animals and humans.
Using germ-free animal or cross-fostering method, dysbiosis of gut
microbiota has been confirmed to lead to changes in BP. Lower
diversity and increased F/B ratio may be used as indicators of gut
microbial dysbiosis in hypertension, yet the exceptions should be
noted. Studies on the composition of gut microbiota have sug-
gested that Lactobacillus, Roseburia, Coprococcus, Akkermansia,
and Bifidobacterium might be the potential microbe reducing BP,
while Streptococcus, Blautia, and Prevotella might be potential
harmful microbes for hypertension. The potential mechanisms

involved in the regulation between gut microbiota and hyperten-
sion through SCFAs, TMAO, hormonal regulation, and immunity
response should be further studied. FMT is an easy method based
on gut microbes to improve hypertension, although safety and ef-
fectiveness are still a challenge. Though many microbes were con-
sidered to regulate BP, only a small number were used to improve
hypertension. The commonly used probiotics are Lactobacillus
and Bifidobacterium, which validates the effectiveness of anti-
hypertension in various animal models and humans. In addition,
evidence suggests that antibiotics and dietary supplements can
be used to regulate BP.

Previous studies have provided enough evidence that gut mi-
crobes can regulate BP. However, there is still a long way to go
before gut microbes can be applied to improve hypertension. We
are not sure how to assess which therapeutic method based on gut
microbes is appropriate for which patient. There are not enough in-
dicators available to estimate the dysbiosis of patients with hyper-
tension or to what extent we should use therapeutic methods based
on gut microbes. Besides, the interaction between gut microbe and
response from immunity in hypertension should be further investi-
gated as immunity plays important roles in both gut microbe and hy-
pertension. Though many researchers are optimistic that probiotics
can be used to improve diseases, the number of probiotics is limited
in hypertension. In recent decades, Lactobacillus and Bifidobacterium
have remained the commonly used probiotics in diseases, including
hypertension. It is urgent to develop new probiotics to improve hy-
pertension with safety and specificity. Many bacteria were reported
to be associated with hypertension, but as an important group in
the gut, fungi, especially yeast, should be studied. In addition, we
can obtain a vast amount of information on microbial communities
through metagenome, transcriptome, metabolome, and proteome
using high-throughput sequencing. Nonetheless, more work should
be focused on identifying novel strains with antihypertension func-
tion, which have great value in human health.
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