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A B S T R A C T

Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular
profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes,
the descriptions of human health on an individual level have been far less elaborate.
Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma
collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After
applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the indi-
viduals’ short-term health trajectories.
Findings:We found signatures of circulating proteomes to be highly individual-specific. Considering technical
and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also
identified eight networks of proteins in which 11�242 proteins covaried over time. For each participant,
there were unique protein profiles of which some could be explained by associations to genetic variants.
Interpretation: This observational and non-interventional study identifyed noticeable diversity among clini-
cally healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of
the circulating proteomes over time. To enable more personal hence precise assessments of health states,
longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine
approaches.
Funding: This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung
Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish
Research Council.
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1. Introduction

Human blood serves as a minimally-invasive source to gain
insights about different physiological processes by studying the
transcriptome, proteome, or metabolome. Just recently multi-omics
studies have emerged to also determine longitudinal profiles of
human health and disease [1�3]. Regular monitoring of molecular
markers holds the promise to identify perturbations affecting an indi-
vidual’s baseline levels and follow these changes as a healthy system
transitions into a disease state [4]. However, longitudinal studies of
clinically healthy subjects remain sparse and limited to certain tech-
nologies and analytes.
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Research in Context

Evidence before this study
Proteins circulating the human blood can provide important

information about health or disease states of an individual.
Today, many studies focus on finding proteins related to dis-
eases or specific conditions even though our knowledge about
if and why proteins differ between individuals, which protein
levels vary over time, and how protein profiles appear in clini-
cally-healthy persons is still limited.

Added value of this study
Here, we used multiplexed immunoassays to study a large

number of proteins circulating in plasma of 101 clinically
healthy and well characterized individuals over one year. We
found a substantial individuality in the protein profiles
between the participants, which for some of the proteins could
be explained by genetic variants. Our analysis also showed that
protein profiles varied among the participants over time, which
indicated that a variety of short-term as well as continuous
changes can occur even in healthy people.

Implications of all the available evidence.
Our findings add to the understanding of molecular signa-

tures of human health and provide important information for
studies aiming at finding common protein biomarkers for dis-
eases. Together with evidence from other studies, it appears
necessary to consider the diversity, individuality, and variabil-
ity over time as critical aspects of molecular signatures that aid
to advance precision medicine.
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The blood proteome, consisting of both cellular and soluble pro-
teins, has received a revived interest due to advances in protein tech-
nologies. This includes mass cytometry [5] to study immune systems,
as well as mass spectrometry [6] and affinity assays [7] for profiling
serum or plasma. For the circulating plasma proteome, nearly 5,000
proteins have this far been detected when combing discoveries from
all assays and technologies [8]. Surprisingly, only 730 proteins are
predicted to be actively secreted into the circulation,[9] attributing
many of the currently detected proteins to cellular leakage that occur
naturally due to cell apoptosis or renewal, or may possibly appear
during sample preparation [10]. Even though highly multiplexed
assays have enabled large scale assessment of pre-symptomatic
health states,[3] additional investigations will complement our
molecular description and understanding of the facets of health in
healthy individuals.

Here, we used an affinity-based proteomics approach [11] to
explore the longitudinal profiles of circulating proteins from 101 clin-
ically healthy individuals selected from the Swedish SCAPIS cohort,
[12] who donated blood four times during one year. The objective of
this study was to capture the signatures and variability of personal
plasma proteomes at baseline and follow these proteins over one
year.

2. Materials and methods

2.1. Wellness samples

The Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) pro-
gram consists of 101 individuals recruited from the Swedish CArdio-
Pulmonary bioImage Study (SCAPIS), an ongoing prospective
observational study [12]. SCAPIS includes 30,154 individuals between
50-65 years that have been randomly selected from the general
Swedish population and invited to join the study. All individuals are
extensively phenotyped prior to entering the S3WP program. The
S3WP study is non-interventional and observational with the aim of
collecting longitudinal clinical traits and molecular omics data for all
101 participants. Primary exclusion criteria in SW3P are; (1) previ-
ously received health care for myocardial infarction, stroke, periph-
eral artery disease or diabetes, (2) presence of any clinically
significant disease that may interfere with the results or the subject�s
ability to participate in the study, (3) any major surgical procedure or
trauma within four weeks of the first study visit, or (4) medication
for hypertension or hyperlipidaemia. During 2015�2016, the 101
subjects in SW3P visited the clinic every three months, four times in
total. In 2016�2018, 97 subjects continued to visit the clinic two
additional times with a gap of six months between appointments.
Each visit included the measurement of body weight, waist and hip
circumference, body fat using bioimpedance (Tanita MC-780MA),
and blood pressure. Changes in health and lifestyle was recorded at
each visit with a questionnaire covering factors such as diseases,
infections, medication, exercise level, and personal perception of
health. All 101 subjects were instructed to fast overnight (at least 8
hours) before the collection of blood, urine and feces. Human EDTA
plasma samples were transferred on dry ice to SciLifeLab and stored
at -80°C upon arrival. The experimental design is described in the
Supplementary Information. Clinical and demographic characteristics
are presented in Table S1 and Table S2. Genome analysis is described
in the Supplementary Materials and Methods. Informed consent was
obtained for all participants. The study was performed in accordance
with the declaration of Helsinki and the study protocol was approved
by the Ethical Review Board of G€oteborg, Sweden (Regionala etikpr€ov-
nignsn€amnden, Gothenburg, Dnr 407-15, 2015-06-25).

2.2. TwinGene samples

In the present study, serum samples from a set of 3,000 individu-
als from the TwinGene study [13] were used for validation purposes.
The details about the study, the sample selection criteria and ran-
domization, the plasma protein profiling and genome analysis of the
samples are described in the Supplementary Materials and Methods,
as well as by Hong et al. [14] The TwinGene study was approved by
the Ethical Review Board (Regionala Etikpr€ovningsn€amnden, Stock-
holm, Dnr 2007/644-31) and informed consent was received from all
participants.

2.3. Sample preparation

Crude EDTA plasma was stored at -80°C. Prior to aliquoting, sam-
ples were transferred to -20°C overnight, thawed at 4°C and then vor-
texed and centrifuged at 3000 rpm for 2 minutes (Allegra X-12,
Beckman Coulter). Using a liquid handling robot (EVO150, TECAN),
samples were randomized across 96-well microtiter plates (Supple-
mentary Information). Protein labelling was performed with biotin,
as previously described by Drobin et al. [11] Briefly, EDTA plasma
was diluted ~1:10 in Phosphate buffered saline (PBS) (09-9400-100,
Medicago) and biotinylated with EZ-Link-NHS-PEG4-Biotin (21330,
Thermo Scientific) dissolved in dimethyl sulfoxide (DMSO) (276855,
Sigma-Aldrich). Following 2 h incubation at 4°C, the reaction was
quenched with Tris-HCl 0.5 M, pH 8.0. Prior to analysis, a test was
performed to confirm successful biotinylation: 24 randomly selected
samples were diluted, incubated with the antibody array, and ana-
lyzed using the protocol detailed below (see Antibody suspension
bead array assays). Further, a test measuring reactivity of human IgM
to rabbit IgGs was performed as described in the Supplementary
Information and Materials and Methods (Fig. S11). Labelled plasma
was stored at -20°C until analysis.

2.4. Antibody suspension bead array assays

We used a total of 1,450 antibodies raised against 896 unique pro-
tein targets, including 1,285 antibodies from the Human Protein Atlas
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(HPA) project,[15] 72 mouse monoclonal antibodies (BioSystems
International Kft) and 93 antibodies from other commercial vendor
(Supplementary Data file S1). Each suspension bead array (SBA) was
assembled by covalently coupling antibodies to magnetic and color-
coded MagPlex beads (Luminex Corp.) and mixing these beads to cre-
ate the arrays. The procedures for antibody coupling and bead mixing
can be found in the Supplementary Materials and Methods, and
together with the following protocol for plasma profiling described
by Drobin et al. [11] Briefly, 5 ml of the beads from one SBA was ali-
quoted into each of the wells of 384-well microtiter plates. Biotiny-
lated plasma was diluted 1:50 in PVXC buffer (0.1% casein, 0.5% (w/v)
polyvinylalcohol, 0.8% (w/v) polyvinylpyrrolidone (P8136 and
PVP360, Sigma-Aldrich), supplemented with 0.5 mg/ml purified rab-
bit IgG (P120-301, RRID: AB_479829, Bethyl laboratories) and then
heated at 56°C for 30 minutes. Forty-five microliters plasma was
transferred to the bead plate and incubated with the beads overnight,
during which time the antibodies bind their corresponding antigen in
the sample. Low-affinity complexes and unbound proteins were
removed in consecutive washing steps with PBS-T 0.05% (1xPBS with
0.05% Tween20 (P9416, Sigma-Aldrich)) (EL406 washer, BioTek).
Beads were incubated for 10 minutes with 0.4% paraformaldehyde
(16% W/V, 43368.9M, Alfa Aesar), washed, and then incubated for 20
minutes with R-phycoerythrin-labelled streptavidin 1:750 (SA10044,
Invitrogen). Lastly, the beads were washed and fluorescent signal
from binding events were detected with a FlexMap 3D instrument
(Luminex Corp.). Signal intensities reported as Median Fluorescent
Intensity (MFI) were exported from the software xPONENT (Luminex
Corp.) and at least 32 events per bead ID were used for data process-
ing. As described in Table S3, Table S4, Table S5, and Supplementary
Materials and Methods, a subset of antibodies was selected for statis-
tical analyses. The antibody selection was based on performance in
the SBA assay, GWAS, and orthogonal proteomics approaches includ-
ing sandwich assays, mass spectrometry and proximity extension
assays (Table S6, Table S7, Supplementary Data file S2, and Supple-
mentary Materials and Methods).
2.5. Statistical analysis

Data analysis and visualizations were performed using the statis-
tical software R version 3.6.0 [16] as described below, with details
provided in the Supplement. All statistical and technical evaluations
were performed using log-transformed MFI unless otherwise stated.
Fig. 1. Experimental design and data analysis pipeline. (A) Over the course of one year, sam
proteins were measured from 1 ml EDTA plasma with antibodies conjugated to beads. (C) Fo
together with all previously collected visits. In total, four SBAs were created and incubated w
tions to clinical traits, longitudinal stability, networks of co-regulation and GWAS.

The underlined labels correspond to assays where the complete set of samples were an
with 96 replicated samples for technical validation. SBA, suspension bead array; GWAS, geno
To account for plate and batch effects, AbsPQN with Multi-MA nor-
malization was applied by 96-well microtiter plate (Supplementary
Statistical Analysis and Fig. S12). Associations between protein pro-
files and clinical traits were tested by linear mixed effects models
using the R package lmerTest (v3.1-1)[17] (Supplementary Data file
S3) and visualized with the circlize package (v0.4.8) [18]. The ranking
of P-values from the association tests was confirmed in a sensitivity
analysis by linear mixed effects models applied on the complete data
set from 101 individuals. Spearman's rho statistic was used for esti-
mating the correlation between variables, unless otherwise specified.
Inter-class correlations were calculated with the R function ICC()
from the psych package (v1.9.12.31) and out of six possible ICC forms
we selected ICC(3, 1) levels as output. The arbitrary level of ICC � 0.8
was selected for indicating stability, based on suggested guidelines
on the interpretation of ICC values [19]. For the seasonal association
analysis, a model for regular cyclic movements across time was fitted
to each protein profile (Supplementary Statistical Analysis). UMAP
analysis was performed on centered and scaled SBA data using the R
package umap (v0.2.4.1). As UMAP has several hyperparameters that
can influence the resulting embedding, we compared if results were
conserved with Euclidian distance while varying the set seed,
n_neighbors and min_dist parameters, as exemplified in Fig. 4 with
n_neighbors = 10 and min_dist = 0.25. Protein modules were defined
using the WGCNA (v1.66)[20,21] as described in further detail in the
Supplementary Statistical Analysis. Protein profiles were standard-
ized to z-scores and applying a linear model, three variables; inter-
cept, slope, and sum of residuals (absolute value) were calculated
over time for each individual and protein (Supplementary Statistical
Analysis).
3. Results

3.1. Study overview

We delineated the longitudinal characteristics of proteome pro-
files in a Wellness profiling cohort (denoted S3WP) of 101 individuals
who donated plasma samples at four visits during one year (Fig. 1).
With our antibody bead array data, we performed a series of data
analyses on clinical, longitudinal, network and genetic aspects in
order to capture the inter-individual diversity and longitudinal vari-
ability in the circulating proteomes. Further details about the
ples from 101 individuals were collected at four different visits to the clinic. (B) Plasma
llowing each completed visit, samples were randomized within an assay and analysed
ith the samples as indicted in the flowchart. (D) Protein profiles were tested for associa-

alysed in duplicate. Labels in bold correspond to assays where the SBA was incubated
me wide association study



Table 1
Circulating proteins with cis-pQTLs.

Protein Antibodyy Pz Top SNPz Variant* TwinGene Px

CLEC3B HPA034794 5.31 £ 10�38 rs4683026 Gly - Ser n.a.
HRG Bsi0137 3.65 £ 10�25 rs12493926 Asn - Ile < 1 £ 10�300

C1R HPA001551 2.18 £ 10�22 rs1801046 Leu - Ser n.a.
GC Bsi0185 8.13 £ 10�20 rs843005 Asp - Glu 1.17 £ 10�95

CFH MAB4779 7.60 £ 10�17 rs61818923 n.a.
CFH Bsi0885 1.81 £ 10�16 rs1048663 Glu - Asp 8.96 £ 10�269

AGT HPA001557 3.26 £ 10�16 rs4762 Thr - Met n.a.
F9 HPA000254 5.16 £ 10�16 rs422187 Thr - Ala n.a.
F12 Bsi0849 1.25 £ 10�14 rs1801020 7.62 £ 10�126

C4A OASA01015 5.15 £ 10�14 rs386480 n.a.
LRG1 Bsi3134 8.50 £ 10�10 rs10426311 n.a.
C6 Bsi0731 3.88 £ 10�9 rs7443604 Ala - Glu 1.67 £ 10�71

AHSG Bsi0907 4.58 £ 10�9 rs13073106 Ser - Thr 1.24 £ 10�16

FGL1 HPA049320 6.83 £ 10�9 rs10093134 n.a.
HP Bsi1809 1.18 £ 10�8 rs811053 4.86 £ 10�88

y The ID of the antibodies used in SBA assays.
z Top associated SNP by ranking and the nominal P-value for the association (lin-

ear regression).
* Non-synonymous SNPs in almost perfect linkage disequilibrium (LD) with the

top SNP (R2 � 0.8) in genomic data of Utah residents from north and West Europe
(CEU) in the 1000 Genome project. The amino-acid variants were shown after the
SNP ID. Additional details are provided in Table S6.

x GWAS analysis conducted with the TwinGene cohort also revealed significant
associations when matching SNPs with those identified in the S3WP study.
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demographic characteristics and experimental design can be found in
Table S1, Table S2, and in the Supplementary Information.

3.2. Annotation of antibody-derived protein profiles

First, we selected the most reliable antibodies from the initial set
of 1,450 antibodies targeting nearly 900 unique proteins (Supple-
mentary Data file S1, Fig. S1). As described in the Supplementary
Fig. 2. Association map of proteomics and clinical traits. Chord diagram of associations
(FDR P< 0�001) between protein profiles and clinical traits obtained from linearmixed effec

tein features that represent a family of several proteins are denoted with one gene name follow
blue if they appear in blood due to cell leakage [9,40] (For interpretation of the references to color
Information, we applied a combination of antibody validation criteria
that resulted in the measurement of 734 proteins (Table S3, Table S4,
and Table S5). This assessment included the use of genome wide
association studies (GWASs) to identify single nucleotide polymor-
phisms (SNPs) in the protein-encoding regions of the target genes
(Table 1 and Fig. S2). Further, sandwich immunoassays, proximity
ligation assays and targeted proteomics assays (Supplementary Data
file S2, Table S7) were used for antibody scoring (for details see Sup-
plement). In summary, we annotated the 1,450 antibodies included
in the assays and selected 734 unique protein features for further
investigations.

3.3. Clinical associations of circulating proteins

First, we referenced the 734 protein profiles to the clinical traits
measured with standardized clinical tests, BMI and smoking habits.
Applying linear-mixed effect models, we identified statistically sig-
nificant protein-trait associations (FDR P � 0�001). As shown in Fig. 2
and Fig. S3, these associations were enriched for traits like triglycer-
ides (TG) (n = 42), CRP (n = 32), apolipoprotein B (ApoB) (n = 21), total
cholesterol (Chol) (n = 19), low-density lipoprotein (LDL) (n = 28), and
the ratio of ApoB/apolipoprotein A1 (ApoB/ApoA1) (n = 13). As
expected, correlations were observed between clinical and proteomic
data for CRP (r=0.93) and ApoB (r=0.71). In the linear-mixed effect
models, this translated to strong associations for CRP (FDR
P = 3�47 £ 10�160) and ApoB (FDR P = 3�90 £ 10�25). We discovered
other noticeable associations for TNFRSF1B and DAPK1 with TG (FDR
P = 3�01 £ 10�55 and P = 5�20 £ 10�48) (Supplementary Data file 3).
Other top-ranked associations for the clinical traits (FDR P <

1 £ 10�3) were for BLVRB to hematocrit (Hct); THBS1 to platelet
count (Plt); S100A9 to the count of white blood cells (WBC) and
neutrophils (Neut); SAA and FGL1 to CRP; LEP to BMI; ANGPTL3
to ApoA1; RARRES2 to cystatin C (CystC); CCL16 to of gamma-
glutamyl transferase (GGT); and IGFBP2 to levels of N-terminal pro
t models. Line thickness is proportional to -log10(P-value) and coloured by clinical trait. Pro-
ed by “*”. Feature names are coloured red if predicted to be actively secreted into blood, or
in this figure legend, the reader is referred to the web version of this article.).
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B-type natriuretic peptide (NTproBNP). This showed that a variety
of expected associations were replicated in our proteomics
approach, many related to secreted proteins, and that associations
to the traits related to inflammation and lipid metabolism were most
prominent.
3.4. Assessment of longitudinal protein profiles

To capture longitudinal changes across the four consecutive vis-
its, we investigated the reproducibility of protein measurements
across repeated assays (Fig. 1). We performed inter-assay correla-
tions of the protein levels (“technical variability”) and compared
these to inter-visit correlations (“longitudinal variability”)(Fig.
S4A). Intraclass correlations (ICC) were computed for both meas-
ures and allowed us to consider the technical variability when
judging the longitudinal variability. Protein profiles with ICC � 0.8
were defined as technically consistent and/or longitudinally stable.
Out of all protein targets, 61% (447/734) revealed a high technical
stability and 58% (428/734) were stable longitudinally. Reassur-
ingly, the distribution of ICCs obtained from the proteomics
Fig. 3. Inter-assay and inter-visit variability. Shown are correlations of technical (inter-assa
(CD5L) represents a both technically and longitudinally stable protein, while levels of (B) C
one individual, coloured by sex (F, female; M, male), MFI relates to median fluorescent inten
(Pearson correlation coefficient).
approach was similar to the values obtained from the clinical tests
(Fig. S4A). A total of 49% (359/734) of all proteins could be mea-
sured with a high precision when including both the inter-visit
and inter-assay ICC � 0.8. Both inter-assay ICCs and inter-visit ICCs
of these proteins were not influenced by the mean levels of the
obtained profiles (r= -0.19 and r = -0.03).

The most consistently measured and longitudinally least variable
protein was CD5 antigen-like (CD5L, inter-visit ICC = 0.97) as exem-
plified by its technical and longitudinal profiles shown in Fig. 3A and
Fig. S4B. On the other end, Caldesmon 1 (CALD1) was one of the pro-
teins with high technical precision (inter-assay ICC = 0.88) but also a
high variation between consecutively collected samples (inter-visit
ICC = 0.32), as shown in Fig. 3B and Fig. S4C. This aligns with our pre-
vious findings of CALD1 being susceptible to conditions related to
plasma preparation [22]. In summary, we found that ~50% of the pro-
teins were measured with high precision and low longitudinal vari-
ability in blood plasma throughout one year. An additional analysis of
seasonal effects on the plasma proteome only found levels of FLNA
and BLVRB to fluctuate with season (FDR P < 0�01) (Fig. S5 and Sup-
plementary Information)
y, upper panel) and longitudinal (inter-visit, lower panel) profiles. (A) CD5 antigen-like
aldesmon 1 (CALD1) vary between visit but not repeated assays. Each dot represents
sity and AU are arbitrary units. Correlations are indicated by r (Spearman’s Rho) and r



Fig. 4. Diversity of individual-specific protein profiles. UMAP analysis of 734 protein
features and samples from four visits, coloured by subject (N = 101). Coloured lines
indicate which samples belong to the same individual. UMAP, Uniform Manifold
Approximation and Projection.
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3.5. Global analysis of protein profiles

Next, we investigated if the combination of protein profiles con-
tributed to personal plasma proteome signatures. We used Uniform
Manifold Approximation and Projection (UMAP)[23] to compress the
data from all 101 samples and 734 proteins into two dimensions
(Fig. 4). Each subject clustered predominantly with itself across all
four visits. This implied that the plasma proteome signatures were
diverse and composed of unique combinations of protein profiles for
each individual participant. In Fig. S6, we provide an example of con-
trasting the technical and biological variability per individual, and
experiments performed closest in time had the lowest technical vari-
ability. Computing the individual longitudinal variability per partici-
pants revealed ICCs = 0.99 § 0.005 (mean § SD). This highlights the
Fig. 5. Networks of co-varying proteins.WGCNAwas used to determine co-varying protein
sents one protein and its mega module membership in each visit. Proteins are coloured acco
are grey. Each core pattern is annotated to the right with the number of proteins it contains
the given pattern. The examples of proteins given are the five proteins with the highest corre
existence of a stable and person-specific proteome signature, but also
suggests that there is a considerable diversity in the circulating pro-
teomes between clinically healthy subjects.

3.6. Longitudinal co-regulation of plasma proteins

In addition to investigating each protein individually, we explored
if there were longitudinal networks of co-varying protein profiles.
We used weighted gene co-expression network analysis (WGCNA) to
define, annotate and analyse modules of co-regulated and intercon-
nected protein profiles (for details see Supplementary Information).

Computed for each visit, WGCNA resulted in eight mega modules
(Fig. S7) and each mega module contained 11�242 proteins. We then
tracked the mega module membership across all visits to create a
map of the longitudinally patterns of conserved “core modules” (Fig.
S8). From the eight mega modules per visit, we created core modules
by matching all possible combinations of sequential overlaps
between the mega modules across the visit (Fig. S9). A protein was
ultimately assigned to one of the core modules if it was part of a par-
ticular pattern across all visits. Eight out of nine core modules con-
tained at least one protein, and 59% (434/734) of the proteins could
be assigned to one of these eight core modules (Fig. 5).

The eight core modules were then annotated for their biological
functions and their relation to clinical traits, as it is expected that pro-
teins within the same core module could share biological functions
and interactions, or can be controlled by common mechanisms
(Fig. 5, Supplementary Data file S4). This revealed associated path-
ways and annotations related to biological functions like complement
system, vesicle transportation, platelets and metabolic processes.
Next, we explored links between groups of co-varying proteins with
the available clinical traits. We identified a number of statistically sig-
nificant associations (FDR P < 0�01, linear regression or analysis of
variance) for the blue and black WGCNA core modules that correlated
with lipid related traits, but in opposite directions. The blue pattern
was negatively correlated with the levels of triglycerides and the
fraction of ApoB and ApoA1, and conversely the black pattern was
positively correlated with these traits as well as levels of ApoB and
LDL. Additionally, the blue pattern was negatively correlated with
CRP. Thus, these two different sets of co-regulated proteins likely
have opposite functions within lipid metabolism by being linked to
LDL and HDL respectively. This is consistent with the fact that the
LDL associated protein ApoB follows the black core pattern and the
HDL associated proteins ApoA1 and ApoA4 follow the blue pattern.
s per visit (stacked groups) and across visits (horizontal bands). Each vertical line repre-
rding to the core pattern they belong to. Proteins that do not belong to any core pattern
, a summary of associated pathways and GO terms, and examples of proteins following
lation to the core pattern eigengene.
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None of the other core modules had significant associations to the
available clinical traits, even though the effects were mostly consis-
tent across visits. None of the core modules had significant associa-
tions to sex or age.

In summary, we found longitudinally conserved modules of pro-
tein co-expression networks with associations to biological functions
and clinical traits.

3.7. Genetic effects on the measurement of the plasma proteome

As introduced above, we used genetic data obtained by whole
genome sequencing (details in Supplementary Materials and Meth-
ods). Using linear regression, we found 15 cis-protein quantitative
trait loci (pQTLs) for 14 proteins’ profiles (P < 1�35 £ 10�8, Bonfer-
roni P < 0�05) from the association tests with non-redundant ~3.7M
SNPs (see Table 1 and Fig. S2). All 14 unique proteins were annotated
to be secreted into blood and primarily expressed by the liver [9] and
the longitudinal profiles stratified by genotypes are shown in Fig. 6A-
O. Following our previous observations [14] and recent insights con-
necting the circulating proteome with genetic variation,[24] we
investigated if differences in detected proteins can be linked to pro-
tein polymorphisms (Supplementary Information). Even though non-
synonymous SNPs are rare (< 0.3%),[25] we found these to be over-
represented among the identified cis-pQTLs. Indeed, out of the 15
identified pQTLs, nine of the loci (60%) contained variations that
induce a change of amino acids in the protein sequence. Because
these genetic associations were obtained in the relatively small
S3WP cohort of 101 subjects, we corroborated the results by checking
for the same associations between genetic variation and circulating
proteins in an independent set of 3,000 individuals from the Twin-
Gene study [13].

Among the most significant association between genetic variation
and circulating proteins were Tetranectin (C-type lectin domain fam-
ily 3 member B, CLEC3B) and the SNP rs4683026 (P = 5�31 £ 10�38).
One of the perfect linkage disequilibrium (LD) proxys (R2 = 1) of that
SNP is rs13963, which can lead to two proteoforms with either a ser-
ine at the 106th position or a glycine. For CLEC3B, a protein secreted
by the lung, muscle, spleen, and adipose tissue, the profile levels
were highest for the CC genotype and decreased as the number of C
alleles decreased (Fig. 6A). This indicated that the assay preferred the
Gly106 isoform produced by the C allele over the Ser106 isoform pro-
duced by the T allele.

Similarly, proteoforms of liver secreted vitamin-D-binding protein
(GC) could be linked to non-synonymous SNPs, hence reporting an
isoform-specific affinity rather than differences in abundance [26].
We indeed found that specific alleles had major effects on the profiles
of this circulating protein (Fig. 6D). We concluded that the profiles of
GC detected by the assays were strongly determined by the genetic
variants rs222047, rs843005 and rs7041. Reassuringly, rs7041 had
previously been described as a cis-pQTL of GC when using an even
larger study set and another type of quantitative immunoassay [27].

As shown in Fig. 6I, we also found a cis-pQTL SNP rs1801020
(P = 1�25 £ 10�14) corresponding to the 5’ untranslated region of the
coagulation factor XII (F12) gene,[28] and we replicated this associa-
tion in the TwinGene cohort (P = 7�61 £ 10�126). The common
genetic variant rs1801020 modulates F12 liver expression,[29] and
thus provides additional evidence that the detected SNP modulates
gene expression, which in turn impacts the F12 protein abundance
rather than the protein sequence. Out of all 101 subjects, we found
that among seven participants with the F12 genotype, one individual
had substantially lower secreted levels of F12. Subsequent tests of
the participant in the clinic confirmed a delayed activated partial
thromboplastin time (aPTT), which has also previously been
described for this F12 polymorphism [29].

Besides GC and F12, we identified subgroups of individuals linked
to differences in plasma protein levels for the secreted liver proteins
haptoglobin (HP) and complement factor H (CFH). Lower levels of HP
were determined in 22% (21/93) of the plasma samples from the
S3WP study participants and in 15% (447/2,974) of the sera from
TwinGene study (Fig. S10A). For one of the anti-CFH antibodies
(Bsi0885), the detected protein levels were lower in plasma of 2% (2/
93) of the S3WP individuals, and equally in 2% (62/2974) of the Twin-
Gene participants (Fig. S10B). Compared to the second anti-CFH anti-
body (MAB4779), which was not included when analysing the
TwinGene samples, the main SNP for Bsi0885 did induce a missense
mutation affecting the protein’s sequence. This effect could explain
the differences in binding properties of the antibodies towards the
variants of CFH. No distinct population subgroups with either lower
GC or F12 protein levels were detected in the serum samples of the
TwinGene study (Fig. S10C-D). As further described in the Supple-
ment, we also compared pQTLs with eQTLs and other RNA expression
data to pinpoint the source of expression regulation of proteins with
cis-pQTLs (Table S6). There were no significant associations between
the genetic and clinical data.

In summary, distinct differences in plasma protein levels can be
explained by genetic variants. These insights are valuable when com-
paring the protein levels between individuals as they can provide
another motivation for why a more precise and personalized assess-
ment of health in circulation requires both longitudinal monitoring
and the influence of genetics.

3.8. Facets of individual and longitudinal protein profiles

UMAP analysis revealed that overall, person-specific profiles
remained stable over time. To identify inter-individual differences on
a protein level, we z-scored the data and determined the inter-quar-
tile range (IQR) as a measure of diversity between individuals. Only
minor differences between the participants of the study where seen
for proteins such as DSC3, GFAP, and GDF15 (IQRs � 0.15), as com-
pared to more prominent inter-individual diversity in levels for the
liver proteins LEPR, IGFBP2, FCN2 or SERPINA1 (IQRs � 1.5).

To further illustrate changes occurring in the plasma proteomes,
we queried the data for representative examples among the partici-
pant’s protein profiles (Fig. 7). We asked which protein might vary
due to distinct events, remain different during the study, or gradually
change over time in any of the individuals. We again used protein z-
scores with all participants serving as a reference population. To this
end, we selected the 359 most stable protein profiles (ICC � 0.8) in
order to focus on capturing individual rather than common patterns.
We applied an annotation scheme that was based on the parameters
we obtained from fitting linear models to every protein profile (Sup-
plementary Statistical Analysis). We scored each of the protein pro-
files for every individual based on three criteria:

(i) baseline = individual deviation of protein levels from the popula-
tion,

(ii) trend = a person’s changes in (increasing or decreasing) protein
levels,

(iii) fluctuation = fluctuation of protein levels as deviation from linear
changes.

In total, 33,028 profiles were derived from 359 proteins and 92
individuals. We classified each profile to each criterion as deviating if
the obtained values were >§3xSD of the population average. As
shown in Fig 7, 3,7% (1,223/33,028) of all possible participant-protein
measurements revealed a variation at the individual level on one or
several of the categories. This frequency is ten times higher than
observing these variations by chance (0,27%). We then summarized
these scores and evaluated the outcome per protein (including all
individuals) and per participants (including all profiles), as reported
in Supplementary Data file S5.



Fig. 6. Longitudinal characteristics of plasma protein genotypes. The line plots show plasma proteins associated to genetic variants where z-scores were used to represent pro-
tein levels. Each line represented one individual and colour codes the genotypes. Only individuals with data from all four visits were included for visualization.
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Concerning the proteins, levels of CAPZB, RPSA, FGFR1, BPGM, and
PECAM1 were longitudinally preserved and least unique to any par-
ticipant as these were neither elevated, changed nor fluctuated over
time. Interestingly, none of these proteins were annotated to be
secreted into bloodstream, hence likely represent leakage products.
In contrast, we found that secreted blood proteins GDF15 and MMP9,
as well as LCT, were variable proteins along the longitudinal axis
when considering the total number of individuals with changes to
any of the three annotation criteria. As exemplified by GDF15, aspects
of inter-individual diversity and longitudinal variability can present
as independent characteristics of circulating proteins.

Among the protein profiles of each participant, there was at least
one protein with elevated baseline or trends of fluctuating levels
(Fig. 7B and C). The most variable profiles were found for participant
W0065, as there were 39 proteins being different in term of baseline
levels, 51 increased or decreased, and 49 proteins fluctuated over
time. In contrast, participant W0086 was ranked as most stable (accu-
mulated score = 2, for calculation see Supplementary Statistical
Analysis) and the two deviating profiles corresponded to elevated
baseline for the two proteins PDZD2 and KLK11.

This analysis illustrated that there is diversity in terms of how lon-
gitudinally stable or variable an individual’s plasma proteome can be.
It is likely that many of the unique and stable trajectories that deviate
from the average population baseline might be due to genetic effects,
lifestyle factors or medication, however our study was underpowered
to extract other associations of weaker effect sizes.
4. Discussion

We profiled 101 individuals using a multiplexed affinity proteo-
mic assay and found that the plasma proteome signatures were
highly individual-specific. To address concerns about antibody vali-
dation, our exploratory multiplexed approach applied a scoring
scheme to identify binders with consistent performance across assays
and longitudinally collected samples. We highlighted findings related
to individual protein variability, found interesting links to genetic



Fig. 7. Facets of longitudinal protein variability. Protein profiles were stratified by their longitudinal profiles. (A) Venn Diagram indicates the number of observations (protein per
individual) that was deviating (§ 3xSD) from the population mean in terms of protein baseline, trend and fluctuations. Here, we selected 14 protein profile examples. Each grey line
represents one individual. One selected individual with a particular protein profile is highlighted in red, and the category of the red profile is marked on the left side of the protein
name. (B) Distribution of the three annotation criteria per subject, and (C) the sum of the three annotation criteria per individual (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.).
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components and networks of co-regulatory proteins, and lastly dem-
onstrated the potential benefits of individual-level, longitudinal pro-
tein profiling. Our observations can have substantial impact on
studies searching for common disease proteins across a population,
because both the inter-individual diversity and longitudinal
variability can have influence on the composition of the circulating
proteome.

Affinity binders are important tools frequently used in research
and as diagnostic reagents. The current concern surrounding the
reproducibility of data derived from such research has raised
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awareness and increased the efforts in developing strategies for anti-
body validation [30]. The utility of antibodies is context dependent
and the performance may vary depending on technological method
or sample composition. Therefore, it is necessary to annotate and val-
idate the specificity of each binder in its intended application, prefer-
ably by using orthogonal methods as applied here. The selected
antibodies have passed several validation steps in the generation
pipeline,[31] but validation needs to be tailored for plasma analysis
[32,33]. The multiplexed assay applied here was an exploratory effort
allowing the analysis of large numbers of samples and analytes. The
method relied on a single binding event between an antibody and its
target protein, hence, the inherent risk of the method is off-target
binding, non-specific binding, or capturing of protein complexes [34].
Notably, several proteins measured with our assays were identified
with a cis-pQTL, providing inferred evidence for on-target binding. By
combining information for each antibody regarding technical repro-
ducibility and supportive data including other antibody-free assays,
[35] we developed a transparent annotation strategy to limit our
analysis from the initial 1450 antibodies to a set of ~700 high confi-
dence protein profiles of which almost 50% were very stable over
time. Indeed, many proteins in the latter selection can be expected to
be detectable in the circulation because these were either secreted
from solid tissues into blood or leaked from blood cells.

Considering the intra-individual diversity, we found that ~50% of
the studied protein profiles were stable across the four sampling
occasions over one calendar year. We acknowledge though that some
proteins can appear to be more dynamic depending on the studied
timespan, or if any other perturbation, disease or intervention occur
among the participants. For the majority of the proteins, variability
was low for both the technical replicates and between time points.
Hence, the fluctuations observed between two time points could also
likely be due to technical variability rather than lifestyle related per-
turbations. Nonetheless, changes that occurred on a continuous scale
for a subset of the study group could serve as supportive evidence for
physiological rather than technical changes. Clearly, our observations
are restricted to the proteins targeted by our assays and may be
affected by limitations in terms of the sensitivity to the effects from
protein interactions as well as co-enrichment of other proteins [34].
Nonetheless, we observed a high consistency when profiling circulat-
ing proteins in the longitudinal sample collection, which encom-
passes the process of drawing blood, processing the collections and
analysing different samples from the same subject. Hence, a longitu-
dinal assessment reflected a combination of different variables such
as sampling, biobanking, assays and physiological changes. However,
we found and focused on protein profiles with low longitudinal vari-
ability. This indicated that the applied concept, sampling schemes
and method had the precision to define personal baseline values and
capture individual changes.

We applied multivariate analysis to cluster 734 protein features
from four time points and found individual-specific profiles that
were retained throughout one year. This observation was further
supported by the fact that the majority of proteomic and clinical pro-
files showed ICC > 0.9 between the visits for each individual. Com-
paring the technical and biological variation within each patient, we
observed a supportive consistency between repeated assays and vis-
its. However, and subject to further investigations, we found that
reprocessing of the samples, time between experiments, and sample
freezing/thawing cycles were factors that can affect the consistency
of some of the protein profiles.

It is worth noting that our study included a small number of sub-
jects (n=101) followed during a relativity short time span (one year).
Further, the participants were deemed clinically healthy with a bal-
anced (and possibly more deliberately healthy) lifestyle during this
period. Both the intra-individual diversity and the longitudinal vari-
ability are important observations because these can lay the founda-
tion for a next-generation of studies aiming to more accurately assess
diseased individuals or those in treatment. It will, however, require
even larger study populations with defined interventions such as
common disease incidence, drug treatment, or surgery, to determine
which subset of proteins are informative for a particular disease phe-
notype.

We also applied a network approach to study any coordinated
change of several proteins over time. Although proteins within the
same WGCNA-defined module were covarying, we did not collect
evidence about their physical interactions. These modules rather sug-
gest that there is an interconnection that can coordinate protein
expression. Hence, and as previously observed by others on single
time point measurements,[36] there are possible processes that co-
regulate protein levels via common mechanisms. Indeed, most of the
identified core patterns were significantly enriched by proteins
related to a particular biological function such as lipid metabolism
(LDL, HDL and triglycerides). An added value of longitudinal profiling
was further illustrated by WGCNA because not all proteins that co-
varied within a single time point also continued to do so across all
visits. Our findings suggested that coordination of other disease
related networks and processes exists, but these may require a more
dedicated study design and include pre-selected proteins. Nonethe-
less, we demonstrated in a study of clinically healthy individuals that
processes related to metabolism, coagulation and inflammation were
among the major coordinated functions of the plasma proteome and
that these should be considered in any assessment of human health
states.

Profiling the plasma proteomes identified groups of participants
that presented with distinct differences in circulating protein levels.
These subgroups could be linked to cis-pQTLs such as for the proteins
GC, F12, CFH and HP. Investigating the identified SNPs, we found that
the variation at the loci for GC and CFH coded for a missense muta-
tion. This implied that the assay measured the relative abundance of
specific proteoforms rather than detecting different concentration
levels. We explained this by changes inducted to the sequence, struc-
ture or even post-translational modifications that will make the anti-
bodies bind to each of the proteoforms with a different affinity.
Reassuringly, we observed concordant associations even in serum
samples of the TwinGene cohort, which we used as a validation set
and that consisted mainly of elderly individuals.

One striking observation from a precision profiling perspective
was to find a single participant with deficiency in F12 among all 101
individuals, and being able to use proteomic and genetic information
to pinpoint a possible mechanism of lower levels of circulating F12. A
deficiency in F12 is rare and generally non-symptomatic, however, in
vitro F12 deficiency results in prolonged activated partial thrombo-
plastin time (aPTT) [37]. Indeed, aPPT is a common screening test for
hemostatic function. An underlying unknown F12 deficiency can
have clinical consequences for the patient through inhibited or
delayed invasive procedures or surgery.Furthermore, common var-
iants of F12, not resulting in deficiency, have been correlated with
aPTT, presumably through modulating F12 levels [38]. A patient
would therefore benefit from knowing about such a deficiency prior
to surgery, in order to avoid extensive diagnostic workup aiming to
exclude clinically relevant hemostatic disorders. The case of F12 illus-
trates how our proteomics data from continuous monitoring of a par-
ticular parameter can be combined with genetic data to generate
information with direct clinical utility.

Collecting the pQTLs also allowed us to annotate whether differ-
ences in protein profiles were due to missense variants in protein
coding regions or rather affecting gene expression. We used eQTL
data accessible on the GTEx portal,[39] accepting that the data is
derived from tissues and cells from other individuals than the ones
included in this study. Ideally, transcriptomic data from the same
individuals should be incorporated in future analysis. Nonetheless,
we found eQTLs in the liver (LRG1; F12), the artery (C6), pancreas
(FGL1) or thyroid (C4A). Similarly, the relation of the pQTLs and
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splicing QTLs (sQTLs) were studied to annotate circulating proteins
levels in relation to alternative splicing. We found sQTLs in the liver
(AHSG; CFH), adipose tissue (CLEB3B), spleen (CFH), and thyroid (C4A).
Connecting information from the pQTLs provides a useful approach
to further annotate the levels of circulating proteins, even in 101 indi-
viduals. Nonetheless, the ~10 proteins we have discussed point at the
value gained when connecting proteomic with genetic data, such as
for defining patient-specific cut-offs for disease classifications. This
awareness will further assist our understanding of assay specific data
in the context of precision phenotyping.

Lastly, we investigated the longitudinal variability of each protein
across time at the level of each individual. We dissected this into
three distinct categories of longitudinal variation that occurred
among the participants. First, we identified individuals with
increased or decreased baseline abundance of proteins that are con-
sistent throughout one year. It can be hypothesized that baseline lev-
els above or below a relative population mean might be due to
genotype, and that other factors such as medication can further influ-
ence these. Next, we found proteins with gradually increasing or
decreasing abundance across time. Monitoring the progressive
changes across the consecutive sampling can highlight which pro-
teins play a role in pre-symptomatic manifestation of a condition, or
they reveal how effective a treatment of chronic conditions has been.
Lastly, we found proteins that increased or decreased during shorter
terms as these were captured only during specific visits. It remained
a challenge to link many of these perturbations to reported changes
in health, lifestyle or behaviour of an individual. Here a more detailed
integration of the data on an individual level as well as decomposing
the aspects related to sampling, shipment and analysis might be
required. However, this demonstrated the importance to follow
plasma proteomes over time in order to assess where on the spec-
trum of inter-individual diversity and longitudinal variability a spe-
cific individual resides. The distinction between time-resolved events
and consistently changing or deviating baselines will consequently
be important aspects to consider when implementing blood-based
protein measurement to assess health in a clinic setting. It is by mul-
tiple layers of interconnected data, longitudinal sampling and indi-
vidual-specific assessment over time that we can start predicting
protein trajectories in time. Hence, utilizing such collected informa-
tion will enable to distinguish between lifestyle related and short-
lasting events (e.g. stress) over physiological processes that point at
the onset, progression or manifestation of a disease or condition.

In conclusion, we profiled longitudinal plasma samples from 101
subjects using exploratory affinity assays and found that proteome
profiles of clinically healthy individuals were diverse and highly indi-
vidual-specific. While there were proteins varying over time in some
individuals, many of the circulating proteins as well as their co-regu-
lated networks were predominantly stable in this study population.
Our work highlights the facets of individual-specific proteomes and
the need to consider both inter-individual diversity and longitudinal
variability when assessing health or disease states.

5. Data and material availability

The S3WP datasets used for this report have been deposited with
the Swedish National Data Service (www.snd.gu.se, a data repository
certified by Core Trust Seal). The dataset can be made available for
validation purposes by contacting snd@snd.gu.se. Data access will be
evaluated according to Swedish legislation. Data access for research
related questions in the S3WP program can be made available by
contacting the corresponding author. Researchers interested in using
Swedish Twin Registry data must obtain approval from a Swedish
Ethical Review Board and from the Steering Committee of the Swed-
ish Twin Registry. Researchers using the data are required to follow
the terms of an agreement containing a number of clauses designed
to ensure protection of privacy and compliance with relevant laws.
For further information, contact Patrik Magnusson (Patrik.Magnus-
son@ki.se).
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