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ABSTRACT

Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and
consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure
and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly
influencing different body sites, and which have been associated with alterations in the human microbiota in terms of
composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals
possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides
associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite
contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of
population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and
aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is
thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the
urgent need for the standardisation of protocols.
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INTRODUCTION

Possibly compared with any other ecosystem, our understand-
ing of the microbiota has experienced an incomparable revolu-
tion during the 20th century (Blaser 2014). The ‘microbiota’ is
the set of microorganisms that share our body space and may
be commensal, symbionts or pathogens. The term ‘microbiome’
refers exclusively to the genomic content of the microbiota. In
each of the different locations, such as the skin (Grice and Segre
2011), the mucosa (Moen et al. 2016), the gastrointestinal tract
(Claesson et al. 2011; Falony et al. 2016), the respiratory tract
(Biesbroek et al. 2014), the urinary tract (Whiteside et al. 2015), the
vagina (Martin 2012), the mammary gland (Urbaniak et al. 2014)
or the placenta (Aagaard et al. 2014), we can find microorgan-
isms that form complex and distinct ecosystems adapted to the
peculiarities of each niche (Ding and Schloss 2014; Li et al. 2014;
Abreu and Taga 2016). Overall, rough estimates suggest that our
body is occupied by bacteria belonging to at least 5000 genera
(Table 1). Their total numbers are of the same order as the num-
ber of human cells in a ‘reference 70-kg human’ (Sender, Fuchs
and Milo 2016).

From birth a stable symbiotic relationship exists between the
microbiota and our cells, whose role in our life and medical
condition is, beyond doubt, indispensable and beneficial. Their
associations are currently the object of ongoing investigation
(Fujimura et al. 2010; Bull and Plummer 2014; Conlon and Bird
2014; May et al. 2016). This microbiota-health axis evolves over
time and adapts to the distinct habitats characterising our body
(Yatsunenko et al. 2012; Ding and Schloss 2014; Goodrich et al.
2016). Due to its vast metabolic capacity, the microbiota has
been considered as an ‘organ’ of our body, presenting phenotypic
changes with ontogeny from birth until death (Moya and Fer-
rer 2016). Its composition presents peculiarities and characteris-
tics that can be altered due to the genetic background, diseases,
diet and interaction with the environment (Bashan et al. 2016;
Noecker et al. 2017). However, our microbiota is highly resilient,
often recovering its natural original status, which is known as
‘eubiosis’ (Moya and Ferrer 2016). By contrast, on other occa-
sions, a strong imbalance in the taxonomic composition of the
microbiota can be induced, which is known as ‘dysbiosis’ (Shin,
Whon and Bae 2015). Dysbiosis can occur over a few days (Pérez-
Cobas et al. 2013b) or be acquired slowly during our lifetime.

Exploring dysbiosis by total community phenotyping

The majority of studies have analysed associations between lo-
cal or external ‘perturbations’ and dysbiosis by reporting alter-
ations in microbial taxa. In this respect, patients or individuals

Table 1. Rough estimates of size and biodiversity across body sites in
an adult body.

Body site Rough surface area1 Rough number of genera1

Gastrointestinal tract 300–400 m2 1183–3180
Oral cavity 215 cm2 600
Respiratory tract 160 m2 314
Skin 1.8 m2 113
Urinary tract 350 cm2 20–500
Vagina cavity 90 cm2 282

These are rough estimation based on bibliographic records. The number of gen-
era may be underestimated because the quantification depends on sequence
coverage and size of the population cohorts. Note that it has been estimated
that only characterising our gut microbiota would require sampling of ∼41 000

individuals (Falony et al. 2016).

not subjected to perturbations are compared to healthy indi-
viduals or to individuals not subjected to the perturbation, re-
spectively. In some cases, time-course changes are evaluated.
Hereon, we use the term ‘perturbation’ to refer to many fac-
tors such as host feeding behaviour, therapies and diseases
associated with alterations in our microbiota. Other synony-
mous terms used in this review are ‘factors’ or ‘covariates’.
Traditionally, changes in the microbiota structure have been
characterised using classical cultivation techniques, but today
we know that the majority of this ecosystem is uncultivable
(Browne et al. 2016). The utilisation of molecular tools based
on the sequencing of the 16S rDNA genes generated from to-
tal DNA, especially the second-generation sequencing (so-called
next generation sequencing) (Keller et al. 2014; Noecker et al.
2017), enables the identification and classification of the species
without requiring pre-cultivation. For the purpose of this review,
this technique is referred to as ‘phenotyping’. This approachwas
used to show that one third of our total body microbiota is com-
mon to most people, while two-thirds are specific to each indi-
vidual (Li et al. 2014). By focusing on the gut microbiota, a re-
cent study revealed that 14 out of 664 genera conforms the core
microbiota (Falony et al. 2016). This analysis can also be used
to estimate some of the health status indicators of the micro-
biota, its richness (quantity of microorganisms) and its biodiver-
sity (quantity of species) (Knecht et al. 2014). Both parameters are
commonly evaluated with the alpha biodiversity index, such as
Shannon, which reflects the heterogeneity of a community on
the basis of the number of species present, and Chao, which re-
flects the abundance and representation of each species. Due to
the individual and temporary particularities of themicrobiota, it
is difficult to establishwhat defines a normal and healthymicro-
biota, but a consensus exists that the more species it harbours
the better, with an equilibrium among species (Tuddenham and
Sears 2015).

The previous studies cannot determine associationswithmi-
croorganisms in active and potentially active state. This is be-
cause they also take into account dormant, dead and quiescent
bacteria, as they are also present in any sample (Peris-Bondia
et al. 2011; Gosalbes et al. 2012; Potgieter et al. 2015). Therefore,
16S rDNAanalysis cannot determinewhich species are activated
after the initiation of the perturbation. Activemicrobes will con-
stitute the first barrier to change or defence when faced with a
local or external perturbation. Their identities and abundances
can be estimated by monitoring the 16S rRNA amplicons gen-
erated from cDNA or so-called RNA-seq (Bao et al. 2015). They
can be also estimated by the analysis of 16S rDNA amplicons
generated from DNA from viable cells, previously separated by
flow cytometry from damaged or dead cells (Džunková, D’Auria
andMoya 2015). This analysis differs from that of the total (inac-
tive and active) species present in the microbiota, indicated by
the amounts of the 16S rDNA genes generated from total DNA
(Franzosa et al. 2014; Knecht et al. 2014). Also, the taxonomic bin-
ning of sequences fromgenes found to be expressed in themeta-
transcriptome (Pérez-Cobas et al. 2013b) and proteins found to
be synthesised in the metaproteome (Ferrer et al. 2013; Serrano-
Villar et al. 2016a) can also help to reveal the active community
members because they are transcriptionally active when con-
fronted with a given perturbation.

Exploring dysbiosis by metagenomics, transcriptomics
and proteomics

Recent observations that different intestinal populations are
metabolically redundant indicate that taxonomic diversity is
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hardly relevant for inferring functional traits (Moya and Ferrer
2016). That is, one cannot infer associations between pertur-
bations and altered microbial functions from taxonomic data
whenever they refer to dead, quiescent or active microbes, as
multiple microbial groups are known to be functionally redun-
dant or equivalent. For example, some authors have demon-
strated that the microbial metabolism remains constant over
time across individuals despite high variability in taxonomic
composition (Consortium 2012). For this reason, the utilisation
of complementary tools of massive data generation and analy-
sis was developed to reveal associations between common per-
turbations and microbial functions in humans, by means of ex-
ploring links with altered gene content and expression, protein
synthesis andmetabolite production (Bikel et al. 2015; Abreu and
Taga 2016; Aguilar-Pulido et al. 2016). The development of such
techniques and tools is responsible for the so-calledmicrobiome
revolution coined by Blaser (2014).

Thus, we have begun to apply metagenomics and metatran-
scriptomic studies based on high-throughput DNA and cDNA se-
quencing, which despite being computationally expensive (Muir
et al. 2016), enables us to quantify alterations in the content and
expression level of microbial genes (Gosalbes et al. 2011, 2012;
Greenblum, Turnbaugh and Borenstein 2012; Lepage et al. 2013;
Lim et al. 2013; Li et al. 2014; Pérez-Cobas et al. 2014; Bashiardes,
Zilberman-Schapira and Elinav 2016; Martı́nez et al. 2016). Here,
metagenomics refers to the analysis of the genetic material
(DNA) recovered directly from the microbiota, whereas meta-
transcriptomics refers to the analysis of the total content of
gene transcripts (tRNA copies) in the microbiota. An example
of results obtained through a metagenomic approach is the re-
cent finding that only 1 out of 33 microbial genes in our gut
is common to most people (Zhu et al. 2015), which would sug-
gest high interindividual genomic variability. Additionally, al-
though technically challengingwhen confrontedwith extremely
complex ecosystems such as the human microbiota, metapro-
teomics tools have also been used to assess whether changes in
population structure and gene expression are linked to changes
in protein synthesis (Pérez-Cobas et al. 2013b; Serrano-Villar
et al. 2016a,b). We use the term metaproteomics to refer to the
analysis of microbial proteins that are actively synthesised by
the microbiota. Similar to the differences between 16S rDNA
and rRNA analysis, while metagenomics can provide associa-
tions between perturbations and altered total functions (from
dormant, dead, quiescent and active bacteria) on the basis of
sequence-based predictions from genes being sequenced and
annotated, metatranscriptomic and metaproteomic tools pro-
vide associations with functions that become part of the active
metabolism (Pérez-Cobas et al. 2013b).

Exploring dysbiosis through metabolomics

Over the last 10 years, we have increasingly begun to appreci-
ate the significance of metabolite profiling (Mischke and Plösch
2016; Vernocchi, Del Chierico and Putignani 2016) and its po-
tential to have a profound impact on medical practice (Beger
et al. 2016). This technique offers the opportunity to measure
metabolites that are the final result of the action of the mi-
crobiota, independently of its community composition, gene
expression and protein synthesis, growth characteristics, gene
mutations and protein structures (Goodacre 2007). The metabo-
lites absorbed and/or produced by the action of the micro-
biota are the downstream products of gene and protein ex-
pression, whose quantification has been demonstrated to be
the most reliable snapshot of changes in metabolic perfor-

mance of the microbiota under any condition (Moya and Fer-
rer 2016). Metabolite profiling thus constitutes the next log-
ical step beyond descriptive studies of community composi-
tion, gene composition (metagenomics), gene expression (meta-
transcriptomics) and protein expression (metaproteomics), as
it may provide deeper insights into the associations between
any perturbation and the ‘metabolic changes’ of the active frac-
tion of the microbiota under any condition. Here, ‘metabolic
changes’ denote alterations in the level of metabolites (reac-
tion substrates or products) that are involved in each of the
metabolic reactions, which together conforms the microbiota
metabolism.

Aims and expected outcomes of the review

Overall, the review reflects a very broad picture of the factors
that humans commonly face at any body site, which have been
associated with alterations in the human microbiota in terms
of composition and function. We would like to point out to the
reader that the main emphasis of this review is to describe such
information and technical advances in the field ofmetabolomics
research. However, we are aware that in order to contextualise
associations between perturbations and metabolic alterations
in the microbiome, it is also essential to first fully understand
what is happening at lower levels of the functional hierarchy.
Only by achieving such holistic understanding, can one identify
and assign the species to microorganisms, the microorganisms
to genes and proteins, and those to functions (Table 2). Accord-
ingly, we have organised the review and discussion in two ma-
jor themes that commonly emerge in the study of the human
microbiome. The first is the compilation of microbial groups
whose altered abundance, indicated mostly by the amount of
16S rDNA genes generated from DNA, has been statistically as-
sociated with each of the perturbations reviewed herein. By
analysing these associations, we will provide answers to ques-
tions such as: (i) how many microbial groups are commonly in-
fluenced among those estimated to inhabit our body? or (ii) are
perturbations that substantially differ in nature and aetiology
associated to similar or different alterations in our microbes?
As we do not restrict this review in the narrow sense of com-
munity structure analysis, we secondly discuss associations at
all levels of the functional hierarchy, from potentially active mi-
crobes (i.e. by monitoring the 16S rRNA amplicons generated
from cDNA), gene level and expression (through extensive DNA
and cDNA high-throughput next-generation sequencing) and
protein synthesis (by metaproteomics) to functions (by meta-
metabolomics). These analyses provide estimates for howmany
and which species become transcriptionally active when con-
fronted with multiple perturbations, what the metabolic conse-
quences of these are and whether the associations at the level
of population structure have consequences, or not, at the func-
tional level. Finally, the use of new technologies and methods,
with a special focus on metabolomics research, is thoroughly
discussed, together with the urgent need for the standardisation
of protocols.

Here, we review main associations described in the bib-
liography. What remains to be demonstrated is whether the
observed associations are the cause or the consequence of
a disease or a specific medical condition during exposure to
each of environmental variables herein reviewed, which is out
of the scope of the present revision. In this line, we would
like to call the reader’s attention to the fact that many of
these associations may be false positives due to the nature of
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Table 2. High-throughput approaches used to study variations in the human microbiota and microbiome function. Outcome, advantages,
problems and gold standard methods are summarised.

Microbial Gold standard
Metaomics material Outcome Advantages Problems methods

Phenotyping 16S rDNA and
16S rRNA
amplicons
generated from
DNA or
RNA/cDNA

Composition of
total
microbiota or
microbiota
with protein
synthesis
(potentially
active)

1. Fast and cheap
sequencing

1. Difficulties for phylogenetic
assignations at the deepest
level of the taxonomic
hierarchy
2. Difficulties in identifying low
abundant and rare microbial
groups
3. Comparisons require
amplification of same region

Logares et al. (2014);
Takahashi et al. (2014);
Jovel et al. (2016)

Metagenomics DNA Gene content
profiling and
presumptive
function
analysis

1. No amplification
bias
2. Uncovering
microbial diversity
3. Finding new genes
with high coverage
and deep
sequencing

1. Requires high-depth
coverage
2. Assembly complicated if low
coverage and high similarities
3. No information of active
genes
4. Many unknown genes
5. Bioinformatics analysis
required
6. Functions are inferred on the
basis of sequence-based
predictions

Džunková et al. (2014);
Džunková, D’Auria and
Moya (2015); Jovel et al.
(2016)

Metatranscriptomics mRNA
cDNA

Gene
expression
profiling

1. Reveal differences
in gene expression
from active
microbiota

1. Instability of mRNA
2. Multiple purification steps to
separate mRNA from tRNA
(ratio 5:95)
3. Lack of reference databases

Hampton-Marcell et al.
(2013); Pérez-Cobas et al.
(2013b); Reck et al.
(2015); Bashiardes,
Zilberman-Schapira and
Elinav (2016); Moen et al.
(2016)

Metaproteomics Proteins Protein
expression
profiling

1. Reveal differences
in proteins being
synthesised from
active microbiota

1. Technologically challenging
2. Bioinformatic analyses of
protein mass or sequence is
complex and time consuming
3. Metagenome sequences
needed
4. Low coverage of protein
landscape

Tanca et al. (2015)

Metametabolomics Metabolites Metabolite
profiling

1. Reveal differences
in metabolite
content and fluxes

1. Lack of reference databases
2. No unique protocol
3. Many unknown metabolites
in databases
4. Strict identification of
compounds laborious

Rojo et al. (2015a,b)

high-dimensional data, and they are not supported by experi-
mental evidence. Also, we are aware that the only way to defini-
tively evaluate the impact of diseases or other perturbation in
the human microbiome is to study the microbiota in individu-
als prior to the disease or perturbation followed by the analy-
ses of changes during and after the disease progresses or the
perturbation ends. Similarly, the only way to definitively evalu-
ate the effect of a possible therapeutic intervention to control a
disease in our microbiota is to study an uninfected control (in
the case of bacterial and viral infections) patient and to anal-
yse the effects following the interventions. While these stud-
ies will likely be undertaken in the future and provide definitive
data, the complexity inherent to these study designs has so far
hampered their implementation in humans, and we feel that
cross-sectional studies still provide valuable data to tackle the
problem.

ASSOCIATIONS AT THE LEVEL OF THE TOTAL
MICROBIOTA

To date, at least 105 diseases and disorders, substantially dif-
fering in nature and aetiology, have been associated with
changes in our gastrointestinal, respiratory, oral, skin and uri-
nary/vaginal microbiota, as revealed mostly by the amounts of
the 16S rDNA genes generated from DNA. The extensive list
of diseases and disorders is provided in Fig. 1. Changes in the
composition of our total microbiota have also been associated
with 22 other major covariates listed in Fig. 2. They include age-
ing, diet interventions (38 different ones), the administration of
drugs (14), prebiotic and probiotic supplementations (15), surg-
eries and non-surgical treatments (9), pregnancy, the length of
the gestational period, delivery mode, sex and sexual prefer-
ence, discharge from an intensive care unit, postmenopause,
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Figure 1. Graphic summary of diseases and disorders associated with alterations to the total microbiota composition at the genus level. Only the 12 most influenced
bacterial genera are represented for the sake of clarity. Outer circle represents the reviewed disease categories (numbers from 1 to 28, see the legend), followed by
a green circle of subcategories within main types of disorder, identifiable by a letter code included in the legend. Next circle shaded in grey represents the type of
microbiota to which each genus belongs (see colour code in legend). Links among the different taxa associated with different disease types are depicted in the inner

circle (see the legend for colour guide). A three letter code (see legend) next to each link has been included for the sake of clarity.
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Figure 2. Graphic summary of local and external factors (other than diseases and antibiotic treatments) associated with alterations to the total microbiota, fromwhich
top 12 influenced bacterial genera were considered. Numbers in the outer circle (1 to 21) represent the different factors reviewed. The next green circle represents
subcategories within each factor considered, identifiable by a letter code included in the legend. The following circle shaded in grey represents the type of microbiota
to which the genera belong (see the legend for colour guide). Inner circle shows links among genera influenced by the diverse factors (see legend for colours). As in

Fig. 1, a three letter code is included next to each link for the sake of clarity.
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exposure to dust and chemicals, circadian rhythm, smoking, ge-
ographical origin, heritability, hospitalisation time and hospital
location and area of residence, to cite the most important. Fi-
nally, an association between antibiotic usage and changes in
the composition of our microbiota has also been evidenced by
examining 68 antibiotics used alone or in the form of antibi-
otic cocktails (Fig. 3). Full details of all factors associated with
changes in our microbiota are given in Table S1 (Supporting In-
formation).

Note that in this review we considered associations between
perturbations that differ greatly, and alterations in our micro-
biota from multiple human sites. We do not restrict the review
to the gut microbiota, which is themost extensively studied, be-
cause multiple community types at several body sites are inter-
connected and/or enriched in similar types of microorganisms
(Aagaard et al. 2014; Ding and Schloss 2014; Urbaniak et al. 2014).
Therefore, associations at several body sites, each facing ex-
tremely variable perturbations and harbouring similar types of
microorganisms (albeit with distinct taxonomic resemblance),
may be of interest to assess perturbation risks holistically.

Associations with diseases and disorders

As shown in Fig. 1 from the disease–microbiota associations
reported in the literature, 231 non-redundant genera belonging
to 15 different phyla (Actinobacteria, Bacteroidetes, Firmicutes,
Fusobacteria, Proteobacteria, Spirochaetes, Synergistetes,
Tenericutes, Verrucomicrobia, candidate division TM7, RC1,
Ascomycota, Basidiomycetes, Basidiomycota and Eur-
yarchaeota) are significantly altered according to research exam-
ining alterations in the population structure of our microbiota.
Firmicutes (92 diseases), Proteobacteria (69), Bacteroidetes (68),
Actinobacteria (56) and Fusobacteria (29) are the five phyla most
strongly influenced by the considered groups of diseases and
disorders (Fig. 1). The genera Streptococcus, Staphylococcus, Ente-
rococcus, Clostridium, Lactobacillus, Faecalibacterium and Veillonella
(within Firmicutes), Prevotella and Bacteroides (Bacteroidetes),
Bifidobacterium (Actinobacteria), Escherichia (Proteobacteria)
and Fusobacterium (Fusobacteria) are the 12 most susceptible
genera to modifications, as altered abundance of these genera
is associated with at least 50% of the diseases or disorders
herein examined (Fig. 1). Full details of similar or differential
disease–genera associations are given in Fig. 1.

Associations with other local and external covariates

As shown in Fig. 2, from the covariates (other than diseases)–
microbiota associations reported in the literature, strong asso-
ciations have been found with 130 genera belonging to 13 differ-
ent phyla, 11 from Bacteria (Actinobacteria, Bacteroidetes, Chlo-
roflexi, Fibrobacteres, Firmicutes, Fusobacteria, Proteobacteria,
Spirochaetes, Tenericutes, TM7 and Verrucomicrobia), 1 from
Fungi (Ascomycota) and 1 from Archaea (Euryarchaeota). Over-
all, this suggests that diseases most likely associated with alter-
ations in our microbiota (231 genera influenced) that are greater
than those caused by other covariates (130 genera influenced).
Streptococcus, Clostridium, Lactobacillus, Faecalibacterium, Enterococ-
cus, Ruminococcus, and Blautia (within Firmicutes phylum), Pre-
votella and Bacteroides (Bacteroidetes), Bifidobacterium (Actinobac-
teria), Escherichia (Proteobacteria) and Akkermansia (Verrucomi-
crobia), were also found to be the 12 genera most influenced
by the factors considered, as they are associated with at least
50% of the covariates (Fig. 2). Full details of similar or differen-
tial covariates–genera associations are given in Fig. 2.

Associations with antibiotic usage

Special consideration should be given to the effect of antibi-
otics. A recent study undertaking in-depth sequencing of the
gut microbiomes of 1135 participants found that the use of an-
tibiotics was significantly associated with microbiota compo-
sition alterations (Zhernakova et al. 2016). The only drugs sig-
nificantly associated with the abundance of specific genera in
phenotype-matched case–control analyses were β-lactam an-
tibiotics (Falony et al. 2016). Both studies reported that the abun-
dance of two species from the genus Bifidobacterium (Actinobac-
teria phylum), out of a total of 1649 detected genera,was strongly
associated with the use of β-lactam antibiotics. However, many
antibiotics other than β-lactam have been shown to influence
the gut microbiota composition (Ferrer et al. 2016). Figure 3
summarises a list of major 42 microbial genera whose abun-
dance is altered after treatment with 68 antibiotic therapies.
As shown in Fig. 3, from the antibiotic–microbiota associations
reported in the literature, the most influenced phyla are Acti-
nobacteria, Bacteroidetes, Firmicutes and Proteobacteria as they
are associated with at least 50% of the antibiotic treatments.
The genera Clostridium, Enterococcus, Lactobacillus, Ruminococcus,
Faecalibacterium, Streptococcus, Eubacterium and Blautia (within
Firmicutes phylum), Prevotella and Bacteroides (Bacteroidetes),
Bifidobacterium (Actinobacteria) and Escherichia (Proteobacteria)
were also found to be the 12 most influenced by the antibiotic
groups considered, being associated with at least 50% of the re-
viewed therapies (Fig. 3). Full details of similar or differential
antibiotic–genera associations are given in Fig. 3.

Depicting the existence of easily influenced microbial
groups

The data presented in Figs 1–3 reveal multiple associations
between perturbations and microbial imbalances. Their com-
parative analysis has further revealed that many bacterial taxa
associated with perturbations differing in nature and clinical
consequences. Indeed, a total of 258 non-redundant genera be-
longing to 112 distinct families and 18 different phyla have been
found to be associated with any of the factors included in this
review. Figure 4 summarises the top 10 genera comprising our
microbiota that are most commonly associated with any factor
herein reviewed. They are associated with at least 50% of the
factors reviewed. These genera included Lactobacillus, Clostrid-
ium, Blautia, Faecalibacterium, Streptococcus and Enterococcus
(Firmicutes phylum), Bacteroides and Prevotella (Bacteroidetes),
Bifidobacterium (Actinobacteria) and Escherichia (Proteobacteria).
Bacteria belonging to these genera might therefore be the most
susceptible to alterations, as their abundances were found to
be commonly altered independently of the nature, strength and
duration of any perturbation commonly faced by humans. This
is particularly noteworthy because many of these bacteria are
known to be beneficial for human health, such as the bacteria
of the genera Faecalibacterium, Bifidobacterium and Blautia, to cite
but a few. They are known to be strongly involved in short-chain
fatty acid production and the amelioration of inflammation.
Faecalibacterium is depleted during inflammatory conditions
(Sokol et al. 2008) and plays an important role in inducing regula-
tory T cells (Sarrabayrouse et al. 2014) and decreasing intestinal
permeability (Laval et al. 2015). Bifidobacteria are powerful bacte-
ria that can protect the gut, boost the immune system and con-
trol inflammatory responses (Fujimura et al. 2010; O’Callaghan
and van Sinderen 2016). Blautia abundance increases follow-
ing faecal microbiota transplantation from healthy donors to
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Figure 3. Graphic summary of antibiotics associated with alterations in the total microbiota, considering the top 12 most influenced bacterial genera. Numbers in the
outer circle (1 to 21) represent the different factors reviewed. The next green circle represents subcategories within each factor considered, identifiable by a letter code
included in the legend. The following circle shaded in grey represents the type of microbiota to which the genera belonged (see the legend for colour guide). Inner
circle shows links among genera influenced by the diverse factors (see the legend for colours). As in Fig. 1, a three letter code is included next to link for clarity.
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Figure 4. Network summary of all the interactions of the main conditions influencing our microbes reviewed herein: Diseases (triangle), other local and external
factors (square), and antibiotics (circle). Only the top 10 most influenced genera were included. Node colours illustrate subcategories within each group of influence

considered (see the legend for colour code), and links show similar patterns of action of conditions and condition types.

individualswith recurrent Clostridium difficile infectionswho rep-
resent a subgroup of individuals with an extreme impairment of
gut bacterial composition (Seekatz et al. 2014).

ASSOCIATIONS AT THE LEVEL OF THE ACTIVE
MICROBIOTA

The above data reveal that about 258 non-redundant genera, or
around 6% of the 5000 genera that are roughly estimated to con-
form our microbiota (Ding and Schloss 2014), belonging to 18
phyla and 112 families, are associated with most local or ex-
ternal perturbations commonly faced by humans. Then we re-
vised which of these bacteria, if any, become transcriptionally
activated in response to such perturbations, in order to identify
associations between an active set of microorganisms and per-
turbations. We also reviewed associations with active bacteria
undetectably altered at the level of total bacterial composition.
To do so, we reviewed studies reporting RNA-Seq, DNA-Seq of
viable cells (Džunková, D’Auria and Moya 2015) and taxonomy
of genes being expressed or proteins being synthesised (for ex-
tensive references, see Table S1).

Before describing which microbial groups react most to per-
turbations, first it is important to know the most active mem-
bers of the microbiota in healthy individuals not subjected to
any apparent perturbation. Recent investigations revealed that
many bacteria are transcriptionally active in our gut under
healthy conditions (Vázquez-Castellanos et al. 2015; Serrano-
Villar et al. 2016a) and that the Bacteroidetes phylum (partic-
ularly Bacteroidaceae) is primarily a dormant, dead and quies-
cent actor in gut function in healthy individuals, while the Fir-
micutes phylum (particularly Lachnospiraceae) is a more dom-
inant part of the metabolically active microbiome (Gosalbes
et al. 2011; Martı́nez et al. 2016). Note that this information is
mostly unknown for other body sites. Using this information

as baseline, it is possible to identify major active microbial ac-
tors known to affect the total microbiota when confronted with
perturbations. However, a careful revision of the bibliographic
records reveals that only a limited numbers of perturbations
have been investigated in the context of their association with
active microorganisms. They include diseases such as pervasive
developmental disorders otherwise unspecified and autism (De
Angelis et al. 2013), inflammatory bowel disease (Gosalbes et al.
2011; Martı́nez et al. 2016; Rehman et al. 2016), Clostridium diffi-
cile infection (Džunková, D’Auria and Moya 2015; Džunková et al.
2016), Crohn’s disease and irritable bowel syndrome (Duboc et al.
2012, 2013; Durbán et al. 2013; Rehman et al. 2016; Valles-Colomer
et al. 2016), non-alcoholic fatty liver disease (Michail et al. 2015),
HIV infection (Mutlu et al. 2014; Vázquez-Castellanos et al. 2015),
cystic fibrosis (Lim et al. 2013), asthma (Pérez-Losada et al. 2015),
periodontal disease and dental caries (Wang 2015; May et al.
2016). Factors other than diseases (four in total) included antibi-
otic therapy (Pérez-Cobas et al. 2013a,b; Knecht et al. 2014), xeno-
biotic exposure (Maurice, Haiser and Turnbaugh 2013; Ursell and
Knight 2013) and dietary interventions such as plant-based di-
ets (Ni, Li and Panagiotou 2015; Tap et al. 2015) and vitamin B12

supplementation (Kang et al. 2015).
The examination of the above bibliographic records revealed

an association between the 16 perturbations mentioned above
and a number of microbial groups. Associations were mostly
found at the family level, as major differences in the level of
sequence coverage and length and sequence binning within the
different studies preclude the acquisition of homogeneous infor-
mation at the genus level in many cases. For example, in most
cases, the expressed genes and proteins can be taxonomically
distributed at the family level as the gene sequence coverage and
peptide information commonly obtained by metatranscripto-
mics and metaproteomics does not allow deeper taxonomic
characterisation (Pérez-Cobas et al. 2013b; Serrano-Villar et al.
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2016a). We observed from the perturbation–active microbiota
associations reported in the literature that the most acti-
vated phyla (eight in total) are the bacterial Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria and
Verrucomicrobia, the archaeal Euryarchaeota and fungal Ba-
sidiomycota. Within those phyla, the most active microor-
ganisms are those belonging to the following 29 families:
Bifidobacteriaceae, Coriobacteriaceae, Eggerthellaceae and Propioni-
bacteriaceae (within the Actinobacteria phylum); Bacteroidaceae,
Odoribacteraceae, Porphyromonadaceae, Prevotellaceae and Rikenel-
laceae (within Bacteroidetes);Acidaminococcaceae, Lachnospiraceae,
Clostridiaceae, Enterococcaceae, Eubacteriaceae, Ruminococcaceae,
Carnobacteriaceae, Lactobacillaceae, Staphylococcaceae, Streptococ-
caceae and Veillonellaceae (within the Firmicutes); Enterobacteri-
aceae,Moraxellaceae, Neisseriaceae, Pseudomonadaceae, Burkholderi-
aceae and Shewanellaceae (within Proteobacteria), Fusobacteriaceae
(Fusobacteria phylum), Akkermansiaceae (within Verrucomicro-
bia); and Methanobacteriaceae (within Euryarchaeota).

Interestingly, all 8 active phyla, and 28 out 29 active fami-
lies when confronted to perturbations were also found associ-
ated with perturbations at the level of total microbiota (Figs 1–3
and Table S1). This set of microbial groups may be among those
reacting to perturbations both at the level of total and active
microbiota. Only bacteria belonging to one family (Rikenellaceae)
were found to be associated with perturbations when examin-
ing the active microbiota, which reinforces the hypothesis that
the analysis of total populations (from 16S rDNA genes gener-
ated from DNA) masks the identification of components of the
microbiota that are active players against perturbations. This
observation agrees with previous studies revealing that bacte-
ria affiliated with Shewanella, Streptococcus, Clostridium, Enterococ-
cus, Eggerthella, Enhydrobacter, Halomonas, Ralstonia, Propionibac-
terium, Staphylococcus and Granulicatella are associated to treat-
ments with β-lactam antibiotics and fluoroquinolones at the
level of RNA but not DNA (Knecht et al. 2014).

We are aware that the number of factors (16 in total) inves-
tigated as associated with alterations in the active microbiota
is significantly lower 128 (105 diseases and 23 other covariates)
reported to influence our total microbial populations. This lim-
ited information does not allow us to make a real estimation
of the percentage of bacteria reacting to perturbation. The low
availability of studies may be partially due to the fact that the
technologies needed to transcriptionally quantify active mem-
bers aremore technically challenging and time consuming com-
pared to the sequencing of 16S rDNA genes, although gold stan-
dardmethods are already available, aswill be discussed later.We
anticipate that future efforts in studying our microbiota using
RNA-Seq, DNA-Seq of viable cells, and taxonomy-based meta-
transcriptomics and metaproteomics, will shed light on the real
active players in our microbiota under perturbations for which
the total population structure is known.

ASSOCIATIONS AT THE LEVEL OF
SEQUENCE-BASED PREDICTED FUNCTIONS

Genes and proteins can be even more relevant than taxonomic
composition in understanding the associations between per-
turbations and alterations in presumptive microbiome func-
tion (Moya and Ferrer 2016). Below, we review the sequence-
based metabolic alterations associated with multiple perturba-
tions as revealed by extensive high-throughput next-generation
metasequence datasets of DNA (gene content) and cDNA (gene

expression), and metaproteomics (protein synthesis). Actually
this information is limited to 14 types of perturbations.

Briefly, genes involved in various pathogenic processes, cell
wall component biosynthesis, various transport systems, bac-
terial translocation, amino acid metabolism and energy pro-
cesses, and short-chain fatty acid metabolism have been found
altered in HIV-infected individuals (Vázquez-Castellanos et al.
2015) as well as in patients with colorectal cancer (Zeller et al.
2014; Vogtmann et al. 2016), non-alcoholic fatty liver disease
(Michail et al. 2015), type 1 diabetes (Consortium 2012), inflam-
matory bowel disease (Morgan et al. 2012), Crohn’s disease (Er-
ickson et al. 2012; Quince et al. 2015), oral diseases, such as den-
tal caries (May et al. 2016) and periodontitis (Wang 2015), and
dietary interventions including exclusive enteral nutrition (Ni,
Li and Panagiotou 2015; Quince et al. 2015). Systemic lupus ery-
thaematosus is also associated with an overrepresentation of
genes implicated in oxidative phosphorylation (Hevia et al. 2014),
but this has also been observed in lean individuals compared
to those who are obese (Papathanasopoulos and Camilleri 2010;
Greenblum, Turnbaugh and Borenstein 2012; Cox and Blaser
2013; Ferrer et al. 2013; Subramanian et al. 2014) and also as a re-
sponse to intestinal colonisation in healthy individuals (El Aidy
et al. 2013). Furthermore, as a consequence of Clostridium difficile
infection, it was found that phosphotransferase system trans-
port and the metabolism and regulation of carbohydrates and
sugar alcohols were overrepresented functions, while aromatic
amino acid family biosynthesis was significantly underrepre-
sented (Pérez-Cobas et al. 2014). Genes encoding fibre-degrading
enzymes have been found to be altered in patients with colorec-
tal cancer; accordingly, it has been suggested that the degra-
dation of host glycans might be related to the aetiology of
colorectal cancer (Zeller et al. 2014). However, such functional
consequences have also been observed in patients receiving an-
tibiotic therapy (Pérez-Cobas et al. 2013a,b), patients with non-
alcoholic fatty liver disease (Michail et al. 2015), patients with in-
flammatory bowel disease (Morgan et al. 2012; Rooks et al. 2014),
patients with systemic lupus erythaematosus (SLE; Hevia et al.
2014), patients with Crohn’s disease with exclusive enteral nu-
trition (Quince et al. 2015) and patients with oral diseases such
as dental caries (May et al. 2016), which are characterised by
quite distinct aetiologies. This suggests that multiple factors
drastically associated with changes in the microbial commu-
nity and the species responsible for the degradation of dietary
components.

The above reported data suggest, as for microbial groups
(Figs 1–3), that a number of core functions are most
sensitive to change due to perturbations. However, specific
associations were also reported. For example, based on metage-
nomic datasets, nitrogen metabolism (ko00910), the citrate
cycle (ko00020), geraniol degradation (ko00281) and lipoic acid
metabolism (ko00785) were only found to be significantly en-
riched in patients with colorectal cancer (Vogtmann et al. 2016).
The manifestation of periodontitis, a common inflammatory
disease, was associated with the upregulation of isoprenoid
biosynthesis and ciliary and flagellar motility (Wang 2015).
Vitamin B12 supplementation altered the transcriptome of
the skin microbiota promoting the expression of vitamin B12

biosynthesis genes and the production of porphyrins, which
have been shown to induce inflammation in acne (Kang et al.
2015). Finally, patients with Crohn’s disease with exclusive
enteral nutrition have been associated with a decrease in genes
involved in biotin and thiamine biosynthesis and an increase
in genes involved in spermidine/putrescine biosynthesis, or the
shikimate pathway (Quince et al. 2015).
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ASSOCIATIONS AT THE LEVEL OF MICROBE
ACTIVITY

The next logical step in the functional hierarchy after analysing
population structure, gene content and expression, and protein
synthesis is to monitor microbial activity. The effects of pertur-
bations may be reflected in decreased bacterial activity or in the
complete destruction of bacterial cells. This can be observed as
a loss of membrane integrity or membrane polarity, or in a de-
crease in nucleic acid content (Maurice, Haiser and Turnbaugh
2013). At the same time, bacteria that are resistant to a given
perturbation may substitute the susceptible ones. By the end
of the perturbation, the bacterial species composition may have
changed; however, their essential functions can be performed by
the community surviving members (Pérez-Cobas et al. 2013b).

There are recent reports of associations between a few co-
variates and the activity level of our microbiota. For example, a
recent study showed that antibiotic intervention modifies the
gut microbiota in such a way that a different set of bacterial
enzymes becomes active once therapy has ended (Hernández
et al. 2013). This new set of enzymes favours the rapid and non-
equilibrated assimilation of carbohydrates, which may have
negative health consequences such as inducing obesity and type
2 diabetes. Similar alterations have been associatedwith obesity.
Indeed, proteomic analyses associated the expressed glycoside
hydrolases from lean individuals with Prevotella species of the
Bacteroidetes phylum, whereas over 90% of those from obese
individuals belonged to Firmicutes, especially Ruminococcus
(Ferrer et al. 2013). In a subsequent study, the analysis of glu-
cosidase activity using model sugar substrates and protein ex-
tracts from gut bacteria revealed that those obtained from obese
(and that associated with the Firmicutes phylum) are at least 10-
fold more active than those from lean individuals (Hernández
et al. 2013). These observations link different gut microbial gly-
coside hydrolases with distinct metabolic functions in process-
ing dietary carbohydrates to host physiology and human health
biomarkers, such as obesity and insulin resistance.

Associations have been reported between activities other
that dietary carbohydrates degradation and local and external
factors. For example, dietary interventions with phytochemicals
have been associated with improved gut bacteria-mediated con-
version of ellagic acid to urolithin A. This activity is advanta-
geous to both host and microbiota, i.e. the urolithin A-mediated
inhibition of pro-oxidant enzymes reduces tissue inflammation,
mitigates the non-specific killing of gut bacteria and abrogates
the iron-binding property of ellagic acid, thus providing a com-
petitive edge to themicrobiota in acquiring the limiting nutrient
iron and allowing them to thrive in the gut (Saha et al. 2016). Fi-
nally, bymeasuring the activity of a specific set of gut bacteria, it
was shown that bacteria of the family Succinivibrionaceae are able
to actively transport molecules that help resolve inflammation
and immune recovery during HIV infection (Serrano-Villar et al.
2016a).

ASSOCIATIONS AT THE LEVEL OF
METABOLITE CONTENTS AND FLUXES

Even though presumptive sequence-based functional associa-
tions have been made with multiple perturbations, experimen-
tal validation is required to confirm themetabolic consequences
of differential abundances of microbes, genes and proteins. This
is of practical importance, as many microbial groups, genes
and proteins associated with perturbations differ in their nature
and clinical consequences (see previous sections). This can be

partially avoided through the direct examination of metabolites
that are the final downstream products of microbes (Goodacre
2007). They are considered as a final output within the func-
tional hierarchy. The fact that 40% of metabolites in the human
body, some of which play a crucial role in health (Vernocchi,
Del Chierico and Putignani 2016), are produced by our micro-
biota and that such metabolites provide the most reliable snap-
shot of changes in metabolic activity demonstrates the impor-
tance of metabolomics research in the context of human health
(Moya and Ferrer 2016). Metabolites can be used not only to
measure the metabolic activity of the microbiota, but also as a
measure of health status, as metabolites produced by the mi-
crobiota are neurotransmitters controlling the bidirectional gut–
brain axis (Matsumoto et al. 2013), helping to maintain and re-
pair the large intestine (Kibe et al. 2014), and playing a crucial
role in controlling intestinal inflammation (Louis, Hold and Flint
2014) and cancer cell proliferation (Bindels et al. 2012). However,
they can also influence human disease. Thus, a recent exam-
ple has demonstrated that the host sugars released by the ac-
tion of microbiota facilitate the expansion of enteric pathogens
(Ng et al. 2013). Metabolites produced by bacteria have been also
associated with higher levels of pathogenicity of Clostridium dif-
ficile (Bender et al. 2015; Shen 2015) and with various diseases,
including carcinogenesis in different regions of the intestinal
tract and associated organs (Kibe et al. 2014), and atherosclero-
sis (Tang and Hazen 2014). Therefore, metabolites are essential
molecular agents that need to be investigated due to their eco-
logical, clinical and medical relevance (Vernocchi, Del Chierico
and Putignani 2016).

Major alterations in the community structure
associated with major changes in metabolite fluxes

Regardless of the technical challenges and advances in
metabolomics that will be discussed later, associations have
been reported between the content ofmicrobial metabolites and
at least 37 diseases and disorders and environmental variables.
In this case, we restricted the revision to faecal metabolites,
as very little information is available for microbial metabolites
from other body sites. The complete list of metabolites asso-
ciated with different diseases, disorders and other local and
external factors is detailed in Table S1. Metabolites that have
been differentially found as demonstrated by metabolomic fin-
gerprinting included amino acids (alanine, cysteine, glutamate,
glycine, histidine, leucine, isoleucine, phenylalanine, proline,
serine, threonine, tryptophan, tyrosine, valine), short-chain
fatty acids (acetic acid, valeric acid, butyric acid, etc.), long
linear and branched saturated and unsaturated fatty acids, N-
acyl amino acids and polyamides (including arachidoyl glycine,
N-stearoyl proline, N-oleoyl (iso)leucine, N-stearoyl tyrosine and
N-palmitoyl threonine, etc.), hydrocarbons, xenobiotics, lipids
(including gluco-, glycero- and glycerophospho-lipids, ce-
ramides and sphingolipids, etc.), primary and secondary bile
acids, cholesterol derivatives, metabolites implicated in por-
phyrin and iron metabolism (ferroxamine, protoporphyrin
IX, mesoporphyrin IX, etc.), cell membrane components (N-
acetylmuramic, N-acetylneuraminic acids, N-acetylglucos-
amine, etc.), vitamins, polyols and sugars, trimethylamine-N-
oxide, carnitine, ribose-1,5-bisphosphate, thiamine, choline,
acetylputrescine, inosine, pseudouridine, hypoxanthine,
creatinine, N-acetylhistamine, glyoxylic acid, succinic acid,
homoserine lactone and phytochemicals (glucosinolates,
polyphenol, aglycones, etc.), to cite some. The biological
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Figure 5. Heap map displaying the metabolite biomarkers found to discriminate healthy controls and patients characterised by multiple perturbations, including
diseases and environmental pressures such as dietary interventions, exposure to metals and antibiotic treatment. A total of 621 non-redundant metabolites have

been found as biomarkers in all metabolomics (target and fingerprint) studies published to date. The number of discriminating metabolites is specified below for each
of the diseases, disorders and external factors, which are ordered from low to high effect on the metabolome. Full list of metabolites is given in Table S1. Heat map
was constructed in R (http://www.r-project.org) using the ‘heatmap.2’ function within the ‘gplots’ package.

relevance and health implications of each of these metabolites
fall outside the scope of this review and can be checked in the
references provided in Table S1.

One of the first questions to answer is whether major or
minor alterations in community structure are associated with
major or minor metabolic alterations. From Fig. 1, we observe
that diseases and factors that directly or indirectly affect the
gastrointestinal tract, the colonic space and the oral cavity are
associated with a major number of microbial alterations, e.g.
HIV (65 genera affected), Crohn’s disease (60), colorectal cancer
(59) and periodontitis (49). The heat map and clustering analy-
sis shown in Fig. 5 reveal that such alterations are also trans-
lated at the metabolic level. Thus, when compared to healthy
controls, diseases such as inflammatory bowel diseases (includ-
ing ulcerative colitis, Crohn’s disease and C. difficile infection),
colorectal cancer and HIV are associated with major metabolic
consequences. For example, an association with colorectal can-
cer was found for 78 faecal metabolites (Monleón et al. 2009;
Ou et al. 2013; Weir et al. 2013; Goedert et al. 2014; Bjerrum
et al. 2015; Wang et al. 2015; Sinha et al. 2016), 36 are associ-
ated with gastrointestinal disease cryptosporidiosis (Ng et al.
2012), 23 are associated with Crohn’s disease (Jansson et al. 2009;
Bjerrum et al. 2015), 25 associated with C. difficile infection (Rojo
et al. 2015b) and 14 associated with HIV (Serrano-Villar et al.
2016a,b). This contrasts to diseases or factors which have no
such direct influence on the gastrointestinal tract such as can-
cers, besides gastrointestinal cancer (Fig. 5). However, there are
disorders that do not directly affect the gastrointestinal tract,

which are also associated with major metabolic changes (Fig. 5),
suggesting that multiorganismal factors other than alterations
in the body site where the microbiota develop, are responsible
for the final metabolic output. For example, about 38 metabo-
lites associated to pervasive developmental disorder (De An-
gelis et al. 2013), 24 to liver cirrhosis (Cao et al. 2011; Huang
et al. 2013), 14 to SLE (Rojo et al. 2015b) and 12 to type 2 dia-
betes mellitus (Zhu et al. 2014) (Fig. 5). Of particular relevance
are the effects of dietary interventions in the metabolic alter-
ations when examining faecal metabolomes. As shown in Fig. 5,
major differences are evident. For example, about 350 metabo-
lites were found to be discriminating metabolites associated
with multiple dietary interventions (Chow et al. 2014; Roager
et al. 2014), and 15 were associated with arsenic exposure (Lu
et al. 2014). Interestingly, intervention with a single probiotic
has been shown to be associated with alterations in less than
a dozen metabolites (Roager et al. 2014) to 212 (Shi et al. 2015),
reinforcing the idea that the introduction of a single bacterium
can cause major changes in the metabolism of the gut micro-
biota (Marcobal et al. 2013). This suggests that different interven-
tions do have diverse consequences on our microbes’ metabolic
activity.

In order to reveal whether the observedmetabolic alterations
may be a reflection of the differences observed at the level of
population structure (Figs 1–3), a correlation test was performed.
To do so, the number of affected genera and metabolites per
each perturbationwere compared, including only studies report-
ing data for both circumstances. We found a positive correlation

http://www.r-project.org
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Figure 6. Associations of three key metabolisms altered as a consequence of multiple factors. The analysis is based on the differential abundance level of metabolites

involved in each metabolism (detected by metabolomics profiling; for details, see Table S1). Clustering is based on the Binary Method distance (presence or absence).

between both variables (r2 = 0.534; p value = 0.00017), reinforc-
ing the idea that major alterations in the community structure
imply major metabolic changes (by meaning of metabolite con-
tent and abundance).

A second question is to what extent each factor is asso-
ciated with different metabolic consequences. The heat map
and clustering analysis shown in Fig. 5 reveal that many of
the metabolites whose abundance level was altered are asso-
ciated with multiple perturbations. For example, short-chain
fatty acids (Fig. 6) have been associated with multiple intesti-
nal inflammatory diseases, including Hirschsprung-associated
enterocolitis (Demehri et al. 2016), irritable bowel syndrome
(Marchesi et al. 2007; Le Gall et al. 2011; Ponnusamy et al. 2011;
Duboc et al. 2012; Dior et al. 2016), ulcerative colitis (Le Gall
et al. 2011; Bjerrum et al. 2015) and Crohn’s disease (Bjerrum
et al. 2015). Its altered content also associated with autoim-
mune disease (Rojo et al. 2015b), celiac disease (Sellitto et al.
2012), chronic kidney disease (Poesen et al. 2016), colorectal

cancer (Monleón et al. 2009; Ou et al. 2013; Weir et al. 2013;
Goedert et al. 2014; Bjerrum et al. 2015; Wang et al. 2015; Sinha
et al. 2016), non-alcoholic fatty liver disease (Michail et al. 2015)
and mental diseases (autism and pervasive developmental dis-
order) (De Angelis et al. 2013). They have also been associ-
ated with multiple dietary interventions such as breast and
formula feeding (Chow et al. 2014), dietary weight loss ther-
apy (Damms-Machado et al. 2015), energy-restricted interven-
tion with low or high dairy intake (Zheng et al. 2016), enteral
nutrition (Gerasimidis et al. 2014; Berntson, Agback andDicksved
2016) and cheese (Zheng et al. 2015), grape juice andwine (Jacobs
et al. 2008), polydextrose fiber (Lamichhane et al. 2014), and resis-
tant starch and corn oil (Zheng et al. 2013) consumptions. Also,
they associated with prebiotics supplementation with wheat
bran extract and oligofructose (Windey et al. 2014), probiotic sup-
plementation (Matsumoto et al. 2014; Abdulkadir et al. 2016), and
finally prematurity and perinatal antibiotics treatment (Arbo-
leya et al. 2015). Similarly, differential metabolic signatures for
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Figure 7.Clustering of themetabolic biomarkers and gutmicrobiotamembers interlinked in the context ofmultiple diseases and interventions. The analysis is based on
their type and abundance (detected bymetabolomic profiling, and 16S rRNA and 16S rDNA sequencing), applying the BinaryMethod distance (presence or absence). IBS:
irritable bowel syndrome; AB: antibiotic treatment during C. difficile infection; CRC: colorectal cancer; DI: dietary intervention; PDD: pervasive developmental disorder;

NAFLD: non-alcoholic fatty liver disease.

bile acids and amino acids were associated with the different
factors listed in Fig. 6. These examples again reveal that simi-
lar types of metabolites are associated with diseases or factors
differing in nature and aetiology, as also suggested when exam-
ining associations with microbial genera (active and/or inactive)
(Figs 1–3), as well as genes and proteins.

Correlation between metabolically active bacteria and
metabolomics data

It is becoming increasingly important to find correlations
between active bacteria and metabolites, making it possible
to determine which bacteria are able to actively participate in
the metabolism of these molecules. This requires integrating
taxonomic data, mostly from the set of active microbes, and
metabolomics data (Lepage et al. 2013). A careful examination
of the data reported reveals interactions between at least 33
bacterial groups and 52 major metabolites, including amino
acids, sugars, amino sugars, bile acids, cholesterol deriva-
tives, xenobiotics, volatile organic compounds, fatty acids
derivatives, eicosanoids, lipids, indoles, peptides, nucleotides,
glucosinolates and other organic molecules (Fig. 7). Differ-
ences at the level of sequence coverage and length within the
different studies make it possible to establish the taxonomic
affiliations of the bacteria, mostly at the phylum and family
level, and in some cases at the genus level. As shown in
Fig. 7, most associations occur within members of the phyla

Firmicutes (∼59% of the metabolites) and to a lesser extent
within Bacteroidetes (∼16%), Proteobacteria (∼9%), Actinobacte-
ria (∼6%) and Cyanobacteria (∼3%). At the family level, themajor
contributors are members of Clostridiaceae, Lachnospiraceae, Aci-
daminococcaceae, Rickenellaceae, Ruminococcaceae and to a lower
extent Acidaminococcaceae, Lachnospiraceae, Prevotellaceae, Bac-
teroidaceae, Enterobacteriaceae, Erysipelotrichaceae, Oscillospiraceae,
Porphyromonadaceae, Sutterellaceae and Veillonellaceae. These
comprise bacterial groups well known to inhabit the gut
ecosystem.

Further examination of the data presented in Fig. 7 demon-
strates that the same metabolites are associated with different
bacterial groups depending on perturbations such as diseases.
For example, while Acidiminobacter, Bacteroides, Dialister, Phas-
colarctobacterium, Pseudobutyrivibrio and Ruminococcus members
are associated with the presence of the amino acid phenylala-
nine in patients with colorectal cancer compared with healthy
controls (Monleón et al. 2009; Ou et al. 2013; Weir et al. 2013;
Goedert et al. 2014; Bjerrum et al. 2015; Wang et al. 2015; Sinha
et al. 2016), members of Bacteroides, Escherichia and Faecalibac-
terium are associated with their differential production in pa-
tients with Crohn’s disease (Bjerrum et al. 2015). Also, bacte-
ria from the genera Bacteroides, Escherichia and Faecalibacterium
are associated with altered abundance of the amino acid tryp-
tophan in patients with Crohn’s disease (Jansson et al. 2009;
Bjerrum et al. 2015), whereas those belonging to the family
Lactobacillaceae were observed in patients receiving antibiotic



Rojo et al. 467

treatment in C. difficile-infected patients (Rojo et al. 2015b). Other
examples can be seen in Fig. 7.

Also, an association has been found between the level of dif-
ferent metabolites and the same bacterial groups in the con-
text of multiple diseases. For example, Faecalibacterium is as-
sociated with 4-hydroxyphenylacetylglycine, the amino acids
phenylalanine and tryptophan, and the bile acid taurocholic
acid in patients with Crohn’s disease (Rojo et al. 2015b), as
well as with short-chain fatty acids in individuals with perva-
sive developmental disorder (De Angelis et al. 2013). This sug-
gests that the association between bacteria and metabolites
may be factor (i.e. disease) dependent. This could be due to the
fact that each perturbation may drastically and differentially
changes the microbial community (Figs 1–3), and the species
responsible for the absorption, production or transformation of
metabolites.

Additionally, a number of specific associations have been
identified. For example, a positive correlation between the level
of Clostridium species and the amount of methyl esters (bu-
tanoic acid methyl ester, acetic acid methyl ester and pen-
tanoic acid methyl ester) and indoles, between Faecalibacterium,
Ruminococcus and Bifidobacterium genera and total short-chain
fatty acids, and between Bacteroides genus and total free amino
acids and propionic acid are found in children with pervasive
developmental disorder not otherwise specified and autism in
comparison to healthy children (De Angelis et al. 2013). An as-
sociation of Oscillospira, Dorea, Rickenellaceae, Parabacteroides, Bac-
teroides fragilis, Sutterella and Lachnospiraceae with volatile or-
ganic compounds such as 4-methyl-2-pentanone, 1-pentanol,
1-butanol and 2-butanone are characteristic of patients with
paediatric non-alcoholic fatty liver disease and obesity (Del
Chierico et al. 2017). An association between Faecalibacterium,
Bacteroides and Escherichia genera abundances and levels of
4-hydroxyphenylacetylglycine, the amino acids tryptophan and
phenylalanine and the bile acid taurocholic acid has been sug-
gested in patient with Crohn’s disease (Jansson et al. 2009). Cor-
relation analyses of the microbiome and metabolome data re-
veal strong associations between Bacteroides,Dialister, Ruminococ-
cus, Pseudobutyrivibrio, Phascolarctobacterium and Acidiminobacter
spp., and metabolites that included free fatty acids, glycerol,
cholesterol derivatives, amino acids phenylalanine, glutamate,
serine and threonine, and the bile acid ursodeoxycholic acid
in patients with colorectal cancer (Weir et al. 2013). Also, Bac-
teroidetes, Bifidobacteria and Lactobacillus have been associated
with the level of alanine, pyroglutamic acid, peptides, hydrox-
yphenyl acetate, hydroxyphenyl propionate and aminobutyric
acid in the context of patients with irritable bowel syndrome
(Ponnusamy et al. 2011).

The analysis of dietary interventions with milk or for-
mula would suggest an association between the presence of
bacteria of the genera Oscillibacter, Sporacetigenium, Clostridium,
Prevotella, Anaerovibrio, Roseburia, Acidaminococcus, Bacteroides,
Parabacteroides and Alistipes and the concentration of sugars,
aminosugars, fatty acids, especially unsaturated fatty acids
and sterols (Poroyko et al. 2011). Dietary intervention with the
probiotic Lactobacillus acidophilus NCFM has demonstrated that
its presence is strongly correlated with the abundance level
of oligosaccharides (penta- and tetrasaccharides), vitamin E
and intestinal bile acids (Roager et al. 2014). Finally, correla-
tion is reported between Tenericutes (Erysipelotrichaceae family),
Firmicutes (i.e. Clostridiaceae family and Clostridiales Family XIII
Incertae Sedis) and Cyanobacteria and indolelactic acid, daidz-
ein, phenylpyruvic acid, indole-3-carbinol, glycocholic acid, and
dihydrodaidzein during arsenic exposure (Lu et al. 2014).

Extensive descriptions of microbes–metabolite associations
in the context of multiple perturbations are shown in detail in
Fig. 7.

TECHNICAL CHALLENGES AND ADVANCES IN
THE FIELD OF METABOLOMICS

The information presented above reflects a broad picture of
the factors reported to alter the human microbiota in terms of
composition and function. We were able to suggest microbial
groups (dead, quiescent or active) and functions (predicted and
confirmed experimentally) most likely susceptible to alterations
when our microbiota is faced with local or external perturba-
tions humans commonly face. By comparing associations be-
tween alterations in microbial taxa and metabolite content in
the context of perturbations that differ in nature and aetiology,
we confirmed thatmajor alterations in the community structure
are associated with major metabolic changes, as well as sug-
gested associations between active bacteria and metabolites. A
careful examination of metabolomics research also reveals that
bacteria from a genus may produce different metabolic outputs
under different perturbations, and that similarmetabolic contri-
butions are associated with different bacterial groups depend-
ing on the perturbation. This information, and that provided
above, demonstrates the importance of the metaomics tools,
particularly, metabolomics research, in the context of exploring
the associations between perturbations and our microbiota and
microbiome.

Omics techniques confront a number of technical chal-
lenges that are more evident in the case of metabolomics re-
search (Smirnov et al. 2016); the main ones are summarised in
Table 2. While metagenomics and metatranscriptomics stan-
dardmethods exist and the data can be directly compared, those
for metaproteomics and, more importantly, metametabolomics
research are far from being developed. Indeed, well-established
methods and commercially available kits are available to isolate
DNA and cDNA from our microbiota (for recent examples, see
Hampton-Marcell et al. 2013; Pérez-Cobas et al. 2013b; Reck et al.
2015; Bashiardes, Zilberman-Schapira and Elinav 2016; Moen
et al. 2016). The analysis of microbiota composition is therefore
not limited by technical difficulties (Jovel et al. 2016), but is rather
problematic in terms of sequence coverage and length, which
precludes the acquisition of homogeneous information at the
deepest taxonomic levels (genera and species). This will require
the development of advanced computational methods to iden-
tify low-abundance and rare microbial components using 16S
ribosomal RNA gene sequences and shotgun sequence datasets
(Keller et al. 2014).

In the case of metaproteomic studies of the microbiota, re-
cently a gold standard method was suggested (Tanca et al. 2015).
It involves a pretreatment step to enrich for microbial cells that
can be then disrupted using standard protocols to recover the
proteins, which can then be analysed by mass spectrometry
(MS). Authors have demonstrated that this sample processing
step is critical in allowing a proper representation of microbial
proteins and for extracting proteins involved in some important
microbial functional categories, including cell-surface enzymes,
membrane-associated proteins, extracellular proteins and
flagella.

However, we are unable to suggest any particular method as
the gold standard for metametabolomics analyses, and the di-
rect comparison ofmetabolite abundances across different stud-
ies is actually difficult to achieve. To exemplify this, imagine our
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Figure 8. Schematic representation of the complexity of the faecal fluids at the biological and chemical levels. Colour codes are used to distinguish microbial (i.e.
bacterial) (A), human cells (B) and dietary (C) components.

gastrointestinal tract and how variable its contents can be. In-
deed, our gastrointestinal tract not only contains trillions of mi-
crobial and epithelial cells but also receives a continuous influx
of nutrient molecules during food intake, and those released by
epithelial cells on the inner surface of the mucosa and by its mi-
crobial inhabitants (Fig. 8). Therefore, relevant technical issues
exist related to sample pretreatment methods if one wants to
investigatemetabolites directly associatedwith the action of po-
tentially active microbes rather than to the diet or to the host,
which are also important components. Such problems are not
anticipated to occur when using other omics tools. In addition,
the analytical methods, MS and nuclear magnetic resonance
(NMR) tools and data processing are also important issues for
consideration. Below, we provide technical challenges, problems
and methods for metabolomics research.

The metabolomics experiment: some considerations

From an analytical chemistry point of view, the art of
metabolomics mainly requires two types of tools: NMR and MS.
Deda et al. (2015) recently published a comprehensive and rele-
vant review of NMRmethods for faecal analysis, including prac-
tices for processing faecal samples for global metabolic profil-
ing. The different methods used for faeces processing prior to
metabolite analysis are summarised and illustrated using se-
lected examples to highlight the effects of sample preparation
on the metabolic profile. Vernocchi, Del Chierico and Putignani
(2016) recently revised gas chromatography (GC)-MS and liquid
chromatography (LC)-MS methods for faeces analysis. However,

they did not include the increased amount of data showing the
superior capabilities of the separation techniques coupled with
MS in terms of sensitivity andmetabolite coverage and themost
selective methods devoted to prepare metabolomes, including
the pre-enrichment of bacterial cells, nor the biological rele-
vance of the identified metabolites in a broad ecological and
medical sense when combining with other omic datasets.

In metabolomics, the two main approaches below can be
distinguished: (i) targeted and (ii) non-targeted analysis. The
former corresponds with the heritage of classical analytical
chemistry, for which the objective was to identify a target
compound (analyte) and its subsequent quantification. Under
the new paradigm, this approach has become more flexible,
and the measurement of several compounds present in a spe-
cific pathway or the determinations of several reaction prod-
ucts could also be considered as the target, for which abso-
lute quantification is no longer implicit. Specific metabolites
that are linked to health status, such as the immunomodulatory
derivatives tryptophan/kynurenine, short-chain and branched-
chain fatty acids that enhance gut barrier function and impact
systemic metabolism and immunity, bile acids (primary, sec-
ondary, conjugated and sulphated bile acids) and polyamines,
have been identified and quantified in faeces primarily using
a target metabolomics approach. A complete list of metabo-
lites commonly quantified by target approaches is provided
in Table S1. Their quantification has laid the foundation for
studying associations with diet interventions (Kibe et al. 2014,
Chen et al. 2015, De Leoz et al. 2015; Sheflin et al. 2015), an-
tibiotic treatments (Ng et al. 2013), surgical and dietary weight
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loss (Damms-Machado et al. 2015), and diseases such as
inflammatory bowel disease (Duboc et al. 2013), diarrhoea-
predominant irritable bowel syndrome (Duboc et al. 2012), cir-
rhosis (Kakiyama et al. 2013), ulcerative colitis (Machiels et al.
2014), colon cancer (Ou et al. 2013) and HIV infection (Vujkovic-
Cvijin et al. 2013).

On the other hand, the non-targeted methodology (also
known as global profiling or fingerprinting) addresses biologi-
cal questions without any previous hypotheses and therefore is
ideal for opening up new research avenues. Note that, of all of
the literature records reviewed herein, approximately 62% of the
articles are devoted to fingerprinting alone (55%) or in combina-
tion with a target analysis (Couch et al. 2013; Weir et al. 2013;
Weingarden et al. 2014; Ordiz et al. 2015; Sheflin et al. 2015). One
of the most promising opportunities offered by this approach is
related to the possibility to analyse the impact of human health
disorders and diseases on the intestinal microbiota as a whole,
as reviewed above (Vernocchi, Del Chierico and Putignani 2016).
Such disorders and diseases include cirrhosis (Cao et al. 2011;
Huang et al. 2013), autism and pervasive developmental disor-
der (De Angelis et al. 2013), colorectal cancer (Weir et al. 2013;
Goedert et al. 2014), Crohn’s disease (Jansson et al. 2009), irrita-
ble bowel syndrome (Le Gall et al. 2011; Ponnusamy et al. 2011),
SLE autoimmune disease (Rojo et al. 2015b), obesity (Rojo et al.
2015b), alcoholic fatty liver disease (Shi et al. 2015), type 2 dia-
betes mellitus (Zhu et al. 2014) and Clostridium difficile infection
(Rojo et al. 2015b), to cite some. This approach has also been used
to investigate the effects of diet (Poroyko et al. 2011; Chow et al.
2014; Jiménez-Girón et al. 2015; Sheflin et al. 2015;Wei et al. 2015),
intestinal transplants (Girlanda et al. 2012), treatment with an-
tibiotic (Pérez-Cobas et al. 2013b), exposure to metals (Lu et al.
2014) and supplementation with probiotics (Matsumoto et al.
2014; Roager et al. 2014), to cite some.

It is important to describe several points in which one can
cause biases, the most important being the collection, trans-
port and conservation of the sample, the method used to ex-
tract the metabolites and the methods to process and analyse
the metabolites. In this context, the general metabolomics fin-
gerprinting workflow has recently been discussed in detail by
Godzien et al. (2013) and mainly encompasses five steps: (i) ex-
perimental design, (ii) sample treatment, (iii) analytical platform
and data acquisition, (iv) data treatment and (v) biological in-
terpretation and validation. Following the logical path of the
fingerprinting workflow, we focus on some of its critical points
in the following sections. Note that approximately 10% of the
metabolomics studies related to human microbiota are focused
on method development and optimisation (see Table S1), which
certainly reflects the importance of this step for both target anal-
ysis (De Leoz et al. 2013; Xu et al. 2015; Garcı́a-Villalba, Espı́n and
Tomás-Barberán 2016) and global profiling (Jacobs et al. 2008; De
Preter et al. 2009; Gao et al. 2009; Gao, Pujos-Guillot and Sébédio
2010; Ng et al. 2012; Phua et al. 2013; Lamichhane et al. 2015;
Vanden Bussche et al. 2015; Su et al. 2016).

Collection, transport and conservation

It is important to know that the microbiota is a dynamic ecosys-
tem influenced by manipulation and storage conditions, and
that storage under strict anaerobic conditions is recommended
to ensure the viability and representation of microbes and mi-
crobial products (Cardona et al. 2012). Hardly any studies have
addressed the evaluation and development of techniques and
conditions to evaluate and preserve the metabolome obtained
fromour body, including faecalmaterial, in order to ensure its vi-

ability after long incubation times. However, immediate freezing
of the microbiota samples at −80◦C is highly recommended, al-
though lower temperatures (4◦C or −20◦C) are also acceptable. In
this way, one can prevent changes in the microbial metabolism
until metabolite extraction (Gorzelak et al. 2015). Following these
recommendations, the same sample can be frozen and unfrozen
up to four cycles without significant changes in the micro-
biota composition, and thus no expected changes in metabolite
profiles.

Quality controls

Unlike metagenomics, metatranscriptomics and metapro-
teomics, it is crucial to standardise the analytical variability in
metabolomic experiments by using quality control (QC) samples
(Rojo et al. 2015a,b). These QC samples should be as similar
as possible to the samples under investigation and for that
reason they are commonly prepared by pooling equal volumes
of all of the samples in the experiment. Approximately 31% of
the bibliographic records (Table S1) report QCs, among which
18% use a pool of samples as the QC sample. Nevertheless, the
main purpose of QCs is their use in data processing, as will be
discussed later.

Faecal sample treatment: direct metabolite extraction
vs pretreatment

Faeces constitute the most common sample, as sample collec-
tion is non-invasive and traditional for microbiological diagno-
sis. The disadvantage is that they do not totally represent themi-
crobiota attached to the intestinal epithelium and the bacteria
from the uppermost intestinal sectionsmay be totally degraded.
The use of other types of samples from the gastrointestinal tract,
such as biopsied tissues (Moreno-Navarrete et al. 2016), and from
other body sites is acceptable, although the representation of the
total microbiota and thus themicrobial metabolome is not guar-
antee using existing methods. Other matrices that can be used
in metabolomics research, such as urine (Rodrigues et al. 2016)
or plasma (Fan et al. 2016), are listed in Supplementary Table S1.

As described above, faecal material is a complex matrix
(Fig. 8) and, therefore, the outcomes of metabolomic studies are
easily influenced by factors that may not be directly related to
microbial activity. In this context, we asked ourselves whether
there is any standard protocol to extract faecal metabolites, and
more importantly, metabolites from bacteria in faeces repre-
senting the gut microbiota. To answer this question, two main
approaches can be used regarding sample preparation and pro-
cessing, which are described below.

The first corresponds to direct extraction ofmetabolites from
the whole faecal sample, reviewed in detail by Deda et al. (2015).
They offer a comprehensive revision studying different aspects
and methodologies to deal with total faeces, paying attention
to their storage and their preparation for NMR, LC-MS and
GC-MS, mainly focusing on the former. Briefly, faecal material is
resuspended in an appropriate solvent and directly subjected to
metabolite extractions (for a full list of examples see Table S1).
Following this approach, it is also interesting to point out that
a study has recently been published devoted to optimising the
extraction procedure in order to achievemaximum stability dur-
ing sample extraction (Gratton et al. 2016). With this approach, a
number of differentially abundant metabolites have been iden-
tified (Table S1); however, specific associations between a pertur-
bation andmetabolite contents have rarely been foundwhen ex-
aminingmetabolites extracted from total faeces in large cohorts.
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It was believed most likely due to large interindividual variation
due to age, body mass index (BMI), disease duration, dietary in-
take, lifestyle-related factors or medical history, to cite a few.
However, such interindividual variation was recently proven to
be caused by the heterogeneity of themetabolic profiles ofwhole
stool samples, which contain a complex mixture of metabo-
lites originating from the diet, the host and intestinal bacte-
ria, which masks the real contribution of the gut microbiota to
the metabolism in the gastrointestinal tract (Rojo et al. 2015a,b).
Clearly, metabolites that are not directly absorbed or produced
by the action of intestinal microbiota (e.g. imagine food intake
and how variable this can be) seem to produce a bias in the
metabolic profile.

Thus, a recent series of investigations (Pérez-Cobas et al.
2013b; Rojo et al. 2015a,b; Serrano-Villar et al. 2016a,b) showed
that the analysis of metabolites accumulated inside gut mi-
crobial cells, previously separated from stool samples, rather
than those from total faecal material, is more effective to find
how a perturbation induces gutmicrobiota alterations. This pre-
enrichment step was also found critical to allow for the proper
representation of microbial proteins (Tanca et al. 2015). Metabo-
lites that are directly produced or adsorbed (from environmen-
tal inputs or the host) by gut microbes are better indicators
of changes in gut bacterial activity. Note that the analysis of
metabolite levels inside gut bacterial cells may have a differ-
ent interpretation to those found in plasma and, to some ex-
tent, in faecal fluids. However, this approach may provide infor-
mation that can be directly linked to complementary microbial
data, i.e. 16S rRNA gene profiles of active bacteria, which is dif-
ficult to achieve otherwise if the analysis incudes non-microbial
metabolites (from the environment or host) commonly consid-
ered when working with whole faecal material. This approach
has shown that several disorders and diseases, including obe-
sity, autoimmune diseases such as SLE and infection diseases
such as diarrhoea caused by C. difficile or other pathogens het-
erogeneously impact on the intestinal community architecture,
while driving stable metabolome responses in the intestinal mi-
crobiota (Rojo et al. 2015a,b; Serrano-Villar et al. 2016b).

The protocol described above is based on prokaryotic cell
separation using a preprocessing step which includes different
centrifugation phases, followed by intracellular metabolite ex-
traction using a two-step method optimised for both polar and
hydrophobic metabolites. This bacterial enrichment separation
protocol is also reported as efficient to eliminate eukaryotic cell
contamination in the metabolome (Rojo et al. 2015a). Briefly, mi-
crobial cells are separated from the faecal matrix bymixing 0.4 g
of faecal sample with 1.2 mL of phosphate-buffered saline (PBS)
(1:3 w/v faeces to PBS ratio). Following resuspension (by 1 min
of vigorous mixing), the samples are then centrifuged at 1000 g
at 4◦C for 1 min to remove faecal debris. The supernatant (1.2
mL) is transferred and centrifuged at 13 000 g at 4◦C for 5 min
to pellet the cells. This protocol is repeated three times. The cell
counts in the bacterial pellets are then analysed by standard pro-
tocols (Bargiela et al. 2015), so the same amount of bacterial cells
are further used in each extraction experiment. A total of 108

gut bacterial cells per sample are adequate for cold methanol
(−80◦C) extractions, in which 1.2 mL are added. The samples are
then vortex-mixed (for 10 s) and sonicated for 30 s at 15 W in
an ice cooler (−20◦C). This protocol is repeated twice with a 5-
min storage period at −20◦C between each cycle. The final pel-
let is removed following centrifugation at 12 000 g for 10 min
at 4◦C. After the methanol extracts are obtained, the remaining
cell pellets are resuspended in 1.2 mL of cold (4◦C) H2O and sub-
jected to three cycles of sonication for 20 s at 15 W in ice water.

The samples are incubated on ice for 2 min between cycles. The
final pellet is removed following centrifugation at 12 000 g for 10
min at 4◦C. Finally, the H2O andmethanol extracts are obtained,
and a mixture is prepared by combining equal amounts (1 mL)
of each extract.

This approach was used to show that several diseases are
closely associated with specific metabolite profiles, which dif-
fer to that of healthy individuals (Rojo et al. 2015a,b; Serrano-
Villar et al. 2016b). Interestingly, in healthy subjects for whom
BMI is the only variable, BMI becomes a driving factor in deter-
mining microbial metabolic activity (Rojo et al. 2015b). By con-
trast, the absence of high body weight and lean subgroups in pa-
tients demonstrates that the presence of a disease seems to bear
a greater pressure than BMI on bacterial metabolism. This novel
result has not been highlighted before on examining whole fae-
calmetabolomes forwhich discriminatingmetabolites could not
be found within healthy controls.

It should be mentioned that a recent study (Vandeputte et al.
2016) found faeces consistency to be strongly associated with
differences in gut microbiota richness and composition. Exam-
ination for metabolites in total faeces with different consisten-
cies may be a problem due to differences in water content and
solid material. In the literature under revision, several studies
tackle this problem by lyophilising the samples, thus partially
solving the issue related to different consistency and water con-
tent in the faecal material (Jacobs et al. 2008; Duboc et al. 2012,
2013; Phua et al. 2013; Weir et al. 2013; Sheflin et al. 2015; Van-
den Bussche et al. 2015; Abdulkadir et al. 2016; Dior et al. 2016;
Sinha et al. 2016). However, for biodiversity studies, that strategy
may be problematic due to contamination and, if the aim of the
research is to analyse only the bacterial metabolome, lyophilisa-
tion is not an option as it breaks some prokaryotic cells, thus re-
leasing intracellular material than can be eliminated during the
pre-enrichment steps described above. In that sense, the turn-
ing point is to standardise the number of bacteria previously
separated from faeces prior to their metabolome extraction in
order to be able to perform further comparative analysis inde-
pendently of faeces consistency.

Another crucial point for further consideration is the extrac-
tion with solvent(s). Of the reviewed papers (Table S1), around
47% of the authors use a single solvent, the preferential option
being PBS andmethanol, about 20% employ amixed solvent, the
most popular beingmethanol/water and 15% prefer amethodol-
ogy in which several solvents are used sequentially. By contrast,
only 11% choose solid phase extraction (SPE). From the reported
data, we cannot suggest any particular one as a gold standard
for gutmicrobiotametabolomics; nevertheless, we point out two
facts: (i) it is always better to extract using several solvents rather
than a mixture due to the wider metabolic polarity coverage ob-
tained and (ii) in target analysis the solvent selection is crucial
and it should be optimised based on the analyte, e.g. short-chain
fatty acids are extracted with water (Machiels et al. 2014;Windey
et al. 2014) or acetonitrile (Ou et al. 2013), while bile acids with
ethanol/PBS (Damms-Machado et al. 2015), SPE (Duboc et al. 2012,
2013; Dior et al. 2016), methanol combined with SPE (Kakiyama
et al. 2013) or acetonitrile (Ou et al. 2013). In the words of Jules
Griffin (Heather et al. 2013), different extraction procedures rou-
tinely have a greater effect on the metabolome than most ge-
netic modifications do. This can be seen from the results of two
studies comparing the effect of colorectal cancer on the faecal
metabolome. Thus, Goedert et al. (2014), who used methanol,
reported peptides, amino acids, heme-related metabolites,
cofactors, vitamins, xenobiotics and lipids as discriminat-
ing metabolites in patients with colorectal cancer compared
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Figure 9. Percentage of each type of metabolite found to be biologically relevant in gut microbiota fingerprinting per analytical platform, represented as concentric
circles (NMR, GC-MS, LC-MS and CE-MS respectively sorted from the outside to the inside). For full details, see Table S1.

to healthy controls, whereas Weir et al. (2013), who used a
mixture of isopropanol, acetonitrile and water, detected mostly
fatty acids, amino acids, sugar alcohols, vitamins and steroids.
Note that in this case, the utilisation of distinct analytic plat-
forms, LC-MS and GC-MS, and GC-MS alone, respectively, may
also be responsible for the observed differences (Table S1). By
contrast, when the effect of liver cirrhosis was evaluated in two
different cohorts using the same extraction solvent (methanol)
and the same analytical platform (LC-MS), similar metabolites
(i.e. lipids, bile acids and heme-related metabolites; Table S1)
were found to discriminate liver cirrhosis patients from healthy
controls (Cao et al. 2011; Huang et al. 2013). This demonstrates
that the solvent used for metabolite extraction is a crucial point
for consideration in any metabolomics project.

Analytical platform

The majority of the reviewed investigations are based on NMR
(22%) or one separation technique coupled to MS (62%), whereas
16% of them use two (Table S1). These data should be considered
taking into account also the aim of the study and, particularly,
whether it is a fingerprinting approach. If the goal of fingerprint-
ing is to produce the highest possible coverage, it is highly rec-
ommendable to use amultiplatform approach in order to avoid a
potential bias in metabolite coverage. Of the reviewed literature
focusing on fingerprinting, 70% use a single technique (Table S1).
Among the platforms, the most common is LC-MS plus GC-MS
(Kakiyama et al. 2013; Ou et al. 2013; Chow et al. 2014; Goedert
et al. 2014; Damms-Machado et al. 2015; Sinha et al. 2016), fol-
lowed by LC-MS plus CE-MS (Rojo et al. 2015a,b; Serrano-Villar
et al. 2016a,b) and by LC-MS plus matrix-assisted laser desorp-
tion/ionisation Fourier transform ion cyclotron resonance-MS
(De Leoz et al. 2013, 2015; Underwood et al. 2015).

A crucial point to be considered regarding the analytical plat-
forms is the most suitable type of compound. For example,
GC-MS is suited to volatile thermally stable compounds,
whereas CE-MS is ideal for small ionisable molecules. The capa-
bilities of LC-MS are greater in relation to the nature of the sta-
tionary phase of the column (e.g. a C18 column is ideal for non-

polar compounds whereas a HILIC column can be devoted to po-
lar analytes). An extensive review of the different types of HILIC
stationary phases is provided by Rojo, Barbas andRupérez (2012).

Focusing on the state of the art under revision, with respect
to a fingerprinting approach, LC-MS is mainly used for different
kinds of bile acids and lipids; CE-MS for amino acids, amines and
carboxylic acids; and GC-MS andNMR for short-chain fatty acids
and amino acids. Details of the type of compounds per analytical
platform are presented in Fig. 9. The review by Xie et al. (2013)
discusses the different analytical options to measure some key
compounds of the gut ecosystem such as bile acids, short-chain
fatty acids and choline metabolites.

Data treatment and validation

The result of the measurement of each sample is a profile with
thousands of signals representing the broader possible set of
metabolites. The profiles are then overlaid and a matrix is built.
For all the individuals, all the signals are identified by theirmass,
retention time and the corresponding abundance. This is called
a ‘metabolic feature’.

Inmetabolomics, it is quite normal to deal with amatrixwith
thousands of signals, although many of them are background
noise. An experimental-based methodology has recently been
proposed by Godzien et al. (2014) suggesting a double filter in
order to keep the variables that are simultaneously present in
(i) at least 50% of the samples of each group and (ii,a) present
in at least 80% of the QCs that has a coefficient of variation be-
low 30%, or (ii,b) present in <20% of the QCs. The idea behind
this filtering criteria is to keep the group of variables with a re-
producible signal across the whole profile (i and ii,a) and those
present in only one group and, therefore, their reproducibility
cannot be assessed with the QCs (i and ii,b). Notice that an in-
tragroup presence of 50% is a flexible cut-off, which should be
adapted to each experimental design (e.g. if the samples are
technical replicates it should be increased). Another potential
use of the QCs is their role when a large set of samples is anal-
ysed, and therefore normalisation procedures must be done in
order to compare the signals recorded from all the samples.
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Here, QCs are crucial as a constant measurement inserted in be-
tween blocks of samples across the whole analytical run. An ex-
ample of their use in this respect has been proposed by Dunn
et al. (2011) and is called locally estimated scatterplot smooth-
ing.

Amissing value is the situation that occurs when no data are
stored for a metabolite (variable) in a sample (observation). The
metabolomics data are reported to comprise around 10%–40%
of the missing values (Godzien et al. 2014). The origin of miss-
ing values can be caused by (i) a real absence of the value, (ii)
the variable is present in the sample but it was missed in the
data reprocessing or (iii) the variable is present in the sample
below the limit of detection. Regarding missing values in data
processing, the literature under evaluation reports (i) their re-
placement by mean (when <1/3 are missing) or by half of the
minimum value of the variable (when between 1/3 and 2/3 are
missing), maintaining zeros in the rest of the cases (Rojo et al.
2015a,b; Serrano-Villar et al. 2016a,b), (ii) consider them as zero
under the limit of detection (Couch et al. 2013; Chow et al. 2014),
(iii) input with the lower limit of detection for a given metabo-
lite (Ahmed et al. 2016), (iv) substitute by half of the minimum of
the intensity detected for the corresponding variable (Peng et al.
2015) or (v) using a zero-fill program to find the missing peak
pairs from the raw MS data and fill in the missing values (Xu
et al. 2015; Su et al. 2016). Taking into account the importance
of this step for subsequent statistical tests, we favour the more
thorough methodologies such as the recent study by Armitage
et al. (2015), explaining that missing values affect the normality
and homogeneity data variance and k-nearest neighbour impu-
tation, or that by Huan and Li (2015), reporting a robust method
for completing the missing values by a zero-fill program that
finds the peak pair and inputs the calculated intensity ratio.

Statistical analysis to select potential markers can be done
either by multivariate or univariate analysis, which is not spe-
cific of these types of experiments and falls outside the scope of
this review. There are comprehensive reviews elsewhere (Steuer
et al. 2007; Korman et al. 2012). The easiest and themost common
way to identify a metabolic feature is to link its accurate mass
with a certain structure using a public or inhouse database. For a
review about public databases in MS Metabolomics, see the arti-
cle by Vinaixa et al. (2015). In this respect, it is useful to mention
that there are four levels of confidence in metabolite annota-
tion (Salek et al. 2013): level 1, truly confirmed identifications;
level 2, putatively annotated compounds; level 3, putatively
characterised classed; and level 4, unknown compounds.

Once the potential markers have been selected, their qual-
ity can be measured by their sensitivity and specificity, which
can be easily evaluated by receiver operator characteristic (ROC)
curves as discussed by Xia et al. (2013), who suggest using ROC
curves to select the ideal sample size by a retrospective pro-
cedure in which sensitivity, specificity and confidence interval
are previously fixed. That opens a door to ‘samples saving’ or,
in other words, to a more sensible use of the resources in clin-
ics and research. With respect to validation, first it should be
pointed out that this term mainly encompasses four different
aspects: (i) analytical chemistry parameters (e.g. accuracy, pre-
cision, linearity, limit of detection, limit of quantification, etc.);
(ii) mathematical model suitability (e.g. cross-validation, per-
mutation test, etc.); (iii) confirmation of the identity/biological
role of the metabolites (e.g. MS/MS analysis, multi-omics exper-
iment, etc.); and (iv) biomarkers discovery, which requires con-
firmed identifications, ROC curves and to corroborate the same
finding in a second cohort that ideally avoid any kind of in-
terindividual variability which would require hundreds of sam-

ples. In this respect, in the literature under revision, what is
usually considered as validation is (i) to test the mathematical
model suitability or (ii) to confirm the biologically interesting
compounds, which is manly done by MS/MS analysis, standard
speaking or multiple reaction monitoring analysis (details in
Table S1).

CONCLUSIONS AND FUTURE OUTLOOK

The densest and most complex bacterial community in the hu-
man body inhabits the large intestine and forms an ecosys-
tem with interdependence and mutualism among the species
that constitute it. This community is known as the gut micro-
biota and it is essential for homeostasis and health of the host.
The gut microbiota performs functions of nutrition, metabolism
(the result of biochemical activity) and protection (preventing
the invasion of infectious agents or the overgrowth of resident
species with pathogenic potential). It has also trophic functions
for the proliferation and differentiation of the intestinal epithe-
lium, and plays a role in the development and modulation of
the immune system. However, our skin, respiratory system, oral
cavity and vaginal/urinary cavity are also populated by a micro-
bial community that is as diverse and important as that of the
gastrointestinal tract. In total, our body is occupied by at least
5000 bacterial genera, which together comprise the adult micro-
biota. They are continuously exposed to factors that influence
them dynamically, and their alteration can be seen as an indi-
cator of human health status. Observations show that our mi-
crobiota experiences different compositional shifts due to the
changes elicited by multiple factors, and efforts have been in-
vested in their understanding. However, although there is no
doubt that certain diseases, factors and covariates are linked to
changes in the microbiota, it is unclear whether such changes
are a cause or consequence. It still remains unclear how many
multiple factors influence the composition, diversity, dynamics
and metabolic performance of the microbiota with respect to
its impact on host health, nor which microorganisms are ac-
tive contributors under a given perturbation, and whether dif-
ferent covariates or diseases differentially or similarly impact
our microbial ecosystems. Our lack of understanding of this is-
sue lies in the fact that we still lack the definition of a ‘healthy
microbiota’.

When faced with any disturbance, the microbiota can re-
main unaltered (showing resistance), return to the initial state
after the disruptive effect disappears (displaying resilience) or
even change in composition but not in function when this ef-
fect disappears (functional redundancy). Finally, disruptive, and
in some occasions irreversible, effects both in composition and
function can occurs (dysbiosis). These four concepts and their
consequences highlight the importance of performing holistic
studies inwhich all components of themicrobiota, includingmi-
crobes, genes, proteins andmetabolic products, are examined in
the context of systemic variables that are descriptive of diseases
and disorders, or other health status. Understanding the associ-
ations using combined approaches of metagenomics, metatran-
scriptomics, metaproteomics and metametabolomics is one of
the main challenges towards a system-level understanding of
the human microbiome (Bikel et al. 2015; Aguilar-Pulido et al.
2016; Mondot and Lepage 2016).

For this reason, in this article, we critically review the
factors linked to changes in the composition of our multiple
microbial ecosystems (dead, quiescent and active microbes)
and in their molecular agents (genes, proteins and metabolites).
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The results of a multivariate analysis based on multi-omics data
associated multiple factors to changes in gut microbiota
community composition, gene composition (metagenome),
gene expression (metatranscriptome), protein expres-
sion (metaproteome) and metabolite production (meta-
metabolome). Although many specific changes were found,
a number of microbial groups (Figs 1–4) and functions have
been reviewed and identified as being the most susceptible
to alterations, as their abundances were consistently altered
independently of the type, strength and duration of the
perturbations. The revision of the published metabolomics
data demonstrates that major alterations in the community
structure imply major metabolic changes, so metabolites accu-
mulated by gut microbes are the best indicators of functional
changes in themicrobiota. Metabolomics research also suggests
that the association between bacteria and metabolites may be
factor (i.e. disease) dependent, so that a bacterium can differ
metabolically under different circumstances. These novel out-
comes demonstrate the importance of metabolomics research
in the context of human health, together with the fact that
metabolites used or produced by our microbiota represent the
most reliable snapshot of changes in the metabolic activity of
our microbiota, some of which play a crucial role in health.

The information provided in this review stresses the fact
that, particularly in metabolomics, standardisation of meth-
ods is required, ranging from sample storage and processing to
metabolite extraction and analysis. This is also the case for other
–omics such as genomics, to compare different datasets and to
identify metabolite biomarkers in large cohorts of individuals
affected by different perturbations. This, together with future
efforts to analyse the active fraction of the microbiota in terms
of active genes (metatranscriptomes) and proteins (metapro-
teomes) will help to identify strong associations between the
active fraction of the gut microbiota that changes with dif-
ferent diseases, disorders, interventions or any external fac-
tors and the microbiome metabolic output (exemplified by the
meta-metabolome). This will help researchers to clearly iden-
tify whichmetabolic and bacterial changes are partially random
consequences of a given perturbation, and which are potential
causes, as well as their associations.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSRE online.
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Pérez-Cobas AE, Gosalbes MJ, Friedrichs A et al. Gut micro-
biota disturbance during antibiotic therapy: amulti-omic ap-
proach. Gut 2013b;62:1591–601.
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