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Abstract

This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia

(FRDA) affects the sub-second dynamics of resting-state brain networks, (ii) the main

determinants of their dynamic alterations, and (iii) how these alterations are linked

with FRDA-related changes in resting-state functional brain connectivity (rsFC) over

long timescales. For that purpose, 5 min of resting-state MEG activity were recorded

in 16 FRDA patients (mean age: 27 years, range: 12–51 years; 10 females) and mat-

ched healthy subjects. Transient brain network dynamics was assessed using hidden

Markov modeling (HMM). Post hoc median-split, nonparametric permutations and

Spearman rank correlations were used for statistics. In FRDA patients, a positive cor-

relation was found between the age of symptoms onset (ASO) and the temporal

dynamics of two HMM states involving the posterior default mode network (DMN)

and the temporo-parietal junctions (TPJ). FRDA patients with an ASO <11 years pres-

ented altered temporal dynamics of those two HMM states compared with FRDA

patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the

DMN state also correlated with minute-long DMN rsFC. This study demonstrates

that ASO is the main determinant of alterations in the sub-second dynamics of poste-

rior associative neocortices in FRDA patients and substantiates a direct link between

sub-second network activity and functional brain integration over long timescales.
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1 | INTRODUCTION

Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia

(Anheim et al., 2010). Most patients are homozygous for the hyper-

expansion of an intronic GAA triplet repeat in the frataxin (FXN) gene

(Campuzano et al., 1996), which represses FXN expression via an epigenetic

mechanism (Gottesfeld, 2019). In these patients, most residual FXN expres-

sion comes from the shorter GAA repeat expansion (GAA1), whose length

explains 30–50% of the variability in age of symptoms onset and is a deter-

minant of disease severity (Durr et al., 1996; Montermini et al., 1997).

FRDA is characterized by early atrophy of the posterior columns

of the spinal cord, followed by progressive degeneration of theGilles Naeije and Nicolas Coquelet contributed equally to this work.
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cerebellar dentate nuclei and their efferent fibers in the superior cere-

bellar pedunculi (Koeppen & Mazurkiewicz, 2013). Clinically, patients

become overtly symptomatic only when cerebellar signs appear. Then,

variable alterations in pyramidal, visual, auditory and cognitive sys-

tems appear over time and contribute to the progression of neurologi-

cal impairment (Naeije, Rovai, De Tiège, & Pandolfo, 2020;

Pandolfo, 2020; Reetz et al., 2018).

The study of resting state (i.e., in the absence of any explicit

task) functional connectivity (rsFC) allows to noninvasively charac-

terize the alterations in functional brain architecture in FRDA

patients using an experimental paradigm that is free of performance

bias. Previous neuroimaging investigations suggested that the level

of rsFC is linked with FRDA patients' neurological status. A resting-

state functional magnetic resonance imaging (rfMRI) study described

that a higher level of rsFC between superior and medial frontal gyri,

and angular and cingulate-paracingulate gyri might be associated

with better cognitive performances in FRDA patients (Cocozza

et al., 2018). Furthermore, a previous magnetoencephalography

(MEG) study from our group showed that FRDA patients with symp-

toms onset after age 12 had significantly higher levels of brain rsFC

compared with matched healthy individuals and FRDA patients with

symptoms onset before age 12 (Naeije et al., 2020b). These findings

suggest that compensatory/adaptive brain mechanisms might slow

down FRDA progression, as frequently observed in other degenera-

tive brain disorders such as Alzheimer's disease (AD) (Bobkova &

Vorobyov, 2015), Parkinson's disease (PD) (Simioni, Dagher, &

Fellows, 2016), and amyotrophic lateral sclerosis (ALS) (Proudfoot

et al., 2018), or in acquired brain disorders such as stroke (Park

et al., 2011).

The purview of rsFC is however mostly limited to neural integra-

tion established over long timescales (i.e., a few minutes), often

referred to as “static” rsFC. Thanks to its exquisite, millisecond-scale

temporal resolution, MEG offers a unique opportunity to uncover the

fleeting dynamics of human brain networks at much finer timescales.

Functional couplings among brain networks have been shown to

spontaneously fluctuate over a few seconds around a stable backbone

of resting-state networks (RSNs) (de Pasquale, Della Penna, Sporns,

Romani, & Corbetta, 2016; O'Neill et al., 2015; Wens et al., 2019).

Furthermore, the distributed modulations of resting brain network

activity emerges as even shorter, sub-second lived “bursts” of electro-
physiological activity (Baker et al., 2014; van Ede, Quinn, Woolrich, &

Nobre, 2018). The study of this fine network dynamics is efficiently

captured by hidden Markov modeling (HMM) of MEG power enve-

lope (i.e., the amplitude variations of ongoing neural oscillatory

dynamics) (Brookes et al., 2018). The power envelope HMM identifies

transient brain network configurations (referred to as “states” in the

HMM terminology) by classifying distinct patterns of power envelope

(co)variance consistently repeating in time (O'Neill et al., 2018). From

rest MEG data, about 6–8 (or more) (Stevner et al., 2019) transient

recurring states lasting 100–200 ms are typically disclosed and show

a spatial network topography quite similar to some RSNs (Hawkins

et al., 2020; Sitnikova, Hughes, Ahlfors, Woolrich, & Salat, 2018). This

approach was already used to demonstrate a link between the

temporal stability of RSN activations and the level of ZDHHC9 gene

expression in subjects with ZDHHC9 mutations causing X-linked intel-

lectual disability (Hawkins et al., 2020). It was also able to discriminate

healthy elders from AD patients, whose spontaneous synchronization

in the default mode network (DMN) was less likely and less stable,

probably due to a reduction in “static” (i.e., over longer timescales)

DMN functional integration that is a core feature of AD (Puttaert

et al., 2020; Sitnikova et al., 2018). Although FRDA-related alterations

of brain rsFC over long timescales (i.e., minute long) have been previ-

ously characterized (Naeije et al., 2020c), data on potential alterations

of fast RSNs dynamics are, to the best of our knowledge, not

available.

This MEG study, therefore, aims at using HMM to characterize

FRDA-related changes in brain network sub-second dynamics, their

main determinants, and their relationship with changes in static

(i.e., minute-long rsFC) functional brain integration to enhance our

understanding of the impact of this multi-system (i.e., spinal, cerebel-

lar and cerebral) disorder on the hierarchy of timescales pertaining to

human brain functional architecture. To do so, we used MEG power

envelope HMM to compare the fast RSN dynamics between patients

with FRDA and matched healthy subjects. Then, we searched for cor-

relations between HMM state temporal parameters (estimating their

stability and recurrence) and genetic/clinical parameters (i.e., the size

of GAA1 triplet expansion, age of symptoms onset, and the severity

of clinical symptoms). Finally, we assessed the link between alter-

ations in HMM state dynamics and static rsFC in patients with FRDA.

1.1 | Participants

Fifteen right-handed and one left-handed patients with FRDA, and

sixteen healthy individuals matched for age, sex and handedness with-

out any history of neurologic or psychiatric disease were included

(Table 1). Of note, two patients with FRDA (and their corresponding

healthy subjects) were excluded from the initial cohort of eighteen

patients used in previous studies (Marty et al., 2019; Naeije, Wens,

et al., 2020b) due to specific methodological issues related to HMM

analyses (see Section 2).

All participants contributed to the study after written informed

consent and prior approval of the study by the CUB Hôpital Erasme

Ethics Committee (Reference EudraCT/CCB: B406201317212).

TABLE 1 Characteristics of the included patients with FRDA

Age (median, [range], years) 27 [12–51]

SARA (median, [range]/40) 21 [4.5–32]

Age of symptoms onset (median, [range]) 11 [4–20]

Disease duration (median, [range], years) 13 [4–38]

GAA1 (median, [range]) 638 [280–1,000]

Abbreviations: GAA1, number of GAA1 triplet expansion on the shortest

allele; SARA, score on the Scale for the Assessment and Rating of Ataxia.
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2 | METHODS

2.1 | Data acquisition

Neuromagnetic activity was recorded at rest (5 min, eyes opened, fix-

ation cross, online band-pass filter: 0.1–330 Hz, sampling frequency:

1 kHz) with a 306-channel whole-scalp-covering MEG system

(Vectorview system, 10 FRDA patients, seven healthy subjects; Triux

system, six FRDA patients, eleven healthy subjects; MEGIN, Helsinki,

Finland) installed in a lightweight magnetically shielded room

(Maxshield, MEGIN, Helsinki, Finland; see (De Tiège et al., 2008) for

details). Of note, Vectorview and Triux MEG systems have identical

sensor layout (i.e., 102 magnetometers and 102 pairs of orthogonal

planar gradiometers) but differ in sensor dynamic range. Previous

works from our group mixing recordings from these two systems did

not reveal any significant difference related to MEG system in data

quality (Marty et al., 2019; Naeije et al., 2019), including rsFC studies

(Coquelet et al., 2020; Costers et al., 2020; Naeije, Wens,

et al., 2020b).

Four head-tracking coils continuously monitored subjects' head

position inside the MEG helmet. The location of the coils and at least

200 head-surface points were determined with respect to anatomical

fiducials with an electromagnetic tracker (Fastrak, Polhemus,

Colchester, VT).

Participants' high-resolution 3D-T1 weighted cerebral MRI were

acquired on a 1.5T MRI scanner (Intera, Philips, The Netherlands).

2.2 | Data preprocessing

The signal space separation method was first applied offline to contin-

uous MEG data to reduce external magnetic interferences and correct

for head movements (Maxfilter; MEGIN, Helsinki, Finland) (Taulu,

Simola, & Kajola, 2005). Then, ocular, cardiac, and system artifacts

were visually identified and regressed out from raw MEG signals using

an independent component analysis (FastICA algorithm on band-

passed [0.1–45 Hz] data, dimension reduction to 30 components,

hyperbolic tangent nonlinearity).

2.3 | Source reconstruction

Participants' structural brain MRI were anatomically segmented using

FreeSurfer (Martinos Center for Biomedical Imaging, MA; Freesurfer,

https://surfer.nmr.mgh.harvard.edu). MEG and MRI coordinate sys-

tems were manually co-registered using anatomical fiducial points for

initial estimation and head-surface points to refine the surface co-reg-

istration. Then, a 5-mm regular grid of three-dimensional dipole loca-

tions was built in the Montreal Neurological Institute (MNI) MRI

template and nonlinearly deformed onto each participant's MRI with

Statistical Parametric Mapping (SPM12, Wellcome Centre for Neuro-

imaging, London, UK; https://www.fil.ion.ucl.ac.uk/spm). The MEG

forward model associated with this source space was finally computed

using the one-layer Boundary Element Method implemented in the

MNE-C suite (MNE-C v2.7.3, Martinos Center for Biomedical Imaging,

MA; https://mne.tools/stable/index.html).

2.4 | Hidden Markov modeling of MEG power
envelopes

The HMM of MEG source power envelopes was used to investigate

FRDA-related alterations in fast brain network dynamics on the whole

5 min of resting state recording of each participant. The methodology

was adapted from Coquelet et al. (2020) and Puttaert et al. (2020).

Briefly, cleaned MEG data were wideband filtered (4–30 Hz), then

MNE was applied for sources reconstruction using planar gradiome-

ters only (Dale & Sereno, 1993). Of note, we used MNE rather than

beamforming for source reconstruction as it has been shown to be a

suitable method to image posterior midlines cortices (i.e., precuneus

and posterior cingulate cortex) with MEG (Sjøgård et al., 2019); these

cortices showing significant FRDA-related changes in static functional

integration (Naeije, Wens, et al., 2020b). The noise covariance matrix

was estimated from 5 min of empty-room data filtered in the same

frequency range, and the regularization parameter was fixed according

to the consistency condition derived in (Wens et al., 2015). The esti-

mated three-dimensional dipole time series were projected on their

direction of maximum variance, and the analytic power envelope of

these source signals were then extracted using the Hilbert transform

(Wens et al., 2015). The number of transient states (K) was set to

6 for consistency with previous MEG envelope HMM studies

(Hawkins et al., 2020; Sitnikova et al., 2018; Stevner et al., 2019). The

6-state HMM was inferred from the wide-band (4–30 Hz) source

envelope signals, down-sampled at 10 Hz using a moving-window

average with 75% overlap (100 ms wide windows, sliding every

25 ms), leading to an effective down-sampling at 40 Hz. Datasets of

source envelope signals were demeaned and normalized by the global

variance across all sources for each participant, and then temporally

concatenated. Group-concatenated envelopes were pre-whitened

and reduced to their 40 principal components. The HMM algorithm

(Rezek & Roberts, 2005; Woolrich et al., 2013) was then run 10 times

(to account for different initial parameters and retain the model with

lowest free energy) with a Gaussian observation model using the same

model parameters and model selection criteria than in Baker

et al. (2014). The Viterbi algorithm (Rezek & Roberts, 2005) was then

applied to compute a binary time series of most probable state activa-

tion/deactivation. Note that running the group HMM on all patients

indicated that two states were driven by only one patient (two differ-

ent patients for the two states). To ensure that the final HMM was

representative of the brain dynamics of all patients with no state

driven by one single patient, we thus excluded those two patients

(and their corresponding healthy subjects), as previously done in

Hunyadi, Woolrich, Quinn, Vidaurre, and De Vos (2019). Importantly,

state visits are mutually exclusive, which means that two states can-

not be visited simultaneously (Rezek & Roberts, 2005). State power

maps, which identify the topography of state-specific power envelope
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changes during state activation/inactivation, were computed as the

partial correlation between states binary time series and group-

concatenated power envelopes (Baker et al., 2014). Those maps were

statistically thresholded using a two-tailed parametric correlation tests

at p < .05. The null hypothesis tested was that Fisher-transformed

partial correlations follow a Gaussian distribution with mean zero and

SD sqrt(1/Ntdof–K–2). The number Ntdof of temporal degrees of free-

dom was estimated as one-quarter of the total number of time sam-

ples in group-concatenated envelope signals at 40 Hz sampling

frequency, to take into account the 75% overlap in the envelope

down-sampling. The critical p-value was Bonferroni corrected with

the number of independent HMM states (K–1 = 5, due to the con-

straint that one state is active at any given time) multiplied by the

number of spatial degrees of freedom (⍴ = 55, estimated as the rank

for the MEG forward model; see (Wens et al., 2015)). Positive values

greater than the significance level were considered as significant and

disclosed regions with power increase/decrease upon state activa-

tion/inactivation. Negative values below the opposite of the signifi-

cance level were considered as significant and identified regions with

power decrease/increase upon state activation/inactivation. From

those topographical maps, we further defined the state power as the

partial correlation value averaged over all brain voxels (Brookes

et al., 2018). Time series of most probable state activation/inactiva-

tion also allowed to extract three temporal parameters that character-

ized transient brain state dynamics: (i) the mean lifetime (MLT, that is,

the mean time spent in each state on a single visit) providing a mea-

sure of activation stability, (ii) the fractional occupancy (FO, that is,

the fraction of total recording time that the brain spent in each state)

that mixes stability and probability of state visit, and (iii) the mean

interval length (MIL, that is, mean duration of time intervals of inactive

state) providing an inverse measure of state recurrence (Baker

et al., 2014; Brookes et al., 2011; Coquelet, Wens et al., 2020;

Puttaert et al., 2020).

2.5 | Group differences and correlation analyses
with HMM state power and temporal parameters

Group-level (i.e., FRDA patients vs. healthy subjects) differences in

temporal parameters (i.e., MLT, FO and MIL) and state power were

assessed by computing F-values and derived p-values using standard

nonparametric permutation tests (100,000 random permutations of

the group conditions). When performing statistics for the median-split

analysis, this aforementioned analysis was completed with post-hoc

Tukey's range test. In both cases, significance was set at p < .05

Bonferroni corrected accordingly (see Section 3).

In FRDA patients, HMM states temporal parameters and state

power were independently correlated with clinical characteristics

(age of symptoms onset, size of GAA1 triplet expansion and SARA

score) using Spearman rank correlation. The multiple comparison

problem was controlled by Bonferroni correction for the number of

clinical scores (i.e., 3) times the number of independent states

(i.e., 5). As it has been previously shown that age of symptoms onset

strongly modulates static neuromagnetic rsFC patterns within the

FRDA population (Naeije, Wens, et al., 2020b), a post hoc median-

split analysis based on age of symptoms onset was further used to

contrast dynamic functional brain integration in three groups: FRDA

patients with an early age of symptoms onset (i.e., below the median

age of symptoms onset), FRDA patients with a late age of symptoms

onset (i.e., above the median age of symptoms onset) and healthy

subjects. Group-level (i.e., “early” FRDA patients vs. “late” FRDA

patients vs. healthy subjects) differences in the temporal parameters

and state power of the HMM states that correlated with clinical

characteristics were assessed using the same methods as for

patients vs. healthy subjects analyses. Significance was set at p < .05

Bonferroni corrected for the number of independent states. A two-

tailed Student t-test was used to compare clinical characteristics of

early and late FRDA patients.

2.6 | Link between network temporal stability and
functional integration

To get further insights into the relationship between the different

timescales of resting-state functional network dynamics, the temporal

parameters and state power of the HMM state(s) significantly modu-

lated by FRDA were independently correlated, in patients and healthy

subjects, with static rsFC averaged (i.e., mean network rsFC, see below)

within the network(s) whose state was significantly modulated by

FRDA, using Spearman rank correlation. This was done after

regressing out power levels of the data to discard possible confounds

attributable to power. Significance level was set to p < .05, Bonferroni

corrected for the number of RSNs (i.e., 9) times the number state-

related considered (i.e., 2: states 4 and 5) and the number of state

parameters (i.e., 4).

Network-level rsFC was computed as in Coquelet, Wens,

et al. (2020) and Sjøgård et al. (2020) with the noticeable difference

that static power envelope correlation was measured among

155 nodes distributed among 9 well-known RSNs in a developed

extension (Naeije, Wens, et al., 2020c) of the connectome used in our

previous study to have better brain coverage. This denser

connectome was chosen to increase the accuracy of eventual links

between HMM derived measures and rsFC (Della Penna, Corbetta,

Wens, & de Pasquale, 2019). The RSN were studied in their preferen-

tial frequency bands: dorsal attention (DAN), ventral attention (VAN),

Somatosensory-motor (SMN), auditory (AUD), control (CON), fronto-

parietal (FPN), and language (LAN) networks in the beta band (β, 13–

30Hz); visual (VIS) and default-mode (DMN) networks in the alpha

band (α, 8–12Hz) (Della Penna et al., 2019). Envelope correlation was

computed after pairwise signal orthogonalization (Brookes

et al., 2011) and 1 Hz low-pass filtering of power envelopes. Finally,

mean network rsFC was estimated as the average rsFC value across

all connections within each RSN as in, for example (Sjøgård

et al., 2021).
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3 | RESULTS

3.1 | HMM states topographical maps

Fast resting-state brain network dynamics was inferred from MNE-

reconstructed MEG signals across all participants using HMM, which

allowed to reduce whole-brain wideband (4–30 Hz) source power

envelopes to 6 transient recurrent brain states.

Figure 1 shows the state power maps of the 6 HMM states iden-

tified in the participants. Changes in local state power in a brain area

parallel changes in power envelopes in the same area when the brain

transiently visits that state.

Topographically, states 1 and 3 showed an inverse modulation of

power between visual (increased power, state 1; decreased power,

state 3) and sensorimotor (decreased power, state 1; increased

power, state 3) networks. States 2 and 6 combined an increased

power in lateral temporal cortex (left temporal, state 2; right temporal,

state 6) and a decreased power at contralateral parietal lobe (right

parietal, state 2; left parietal, state 6). State 4 showed decreased

power in posterior nodes of the DMN including left and right angular

gyri and posterior midline cortices (i.e., precuneus and posterior cingu-

late cortex). State 5 show increased power at the bilateral temporo-

parietal junction (TPJ).

3.2 | Group differences and correlation analyses
with HMM state temporal parameters

Figure 2 displays the temporal parameters assessing the transience

and stability of each state for each group of participants.

No significant difference between FRDA patients and healthy

subjects was found for MLT, FO, MIL and state power of the 6 identi-

fied states. MIL of state 4/posterior DMN state tended to be longer

in FRDA patients than in healthy subjects, but the difference was not

significant after correction for multiple comparisons.

Figure 3 illustrates the results of correlation analyses

between state temporal and genetic/clinical parameters in FRDA

patients.

Significant positive correlations were found in FRDA patients

between the age of symptoms onset and MLT of states

F IGURE 1 Spatial topographies of the 6 HMM transient states. Red scale refers to the degree of power increase during state visit and blue
scale is related to power decrease. These scales are measured in terms of a partial correlation, and as such, have no units. The correlation values
have been thresholded between 60% and 100% of the maximum correlation for each state and networks labeled according to the local maxima.
Topographically, states 1 and 3 showed an inverse modulation of power between visual (increased power, state 1; decreased power, state 3) and
sensorimotor (decreased power, state 1; increased power, state 3) networks. States 2 and 6 combined an increased power in lateral temporal
cortex (left temporal, state 2; right temporal, state 6) and a decreased power at contralateral parietal lobe (right parietal, state 2; left parietal, state
6). State 4 showed decreased power in posterior nodes of the DMN including left and right angular gyri and posterior midline cortices
(i.e., precuneus and posterior cingulate cortex). State 5 show increased power at the bilateral temporo-parietal junction (TPJ) maximal at the right
angular gyrus
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4/posterior DMN state and 5/right angular gyrus state (state

4, R = 0.74, p = .0007; state 5, R = 0.76, p = .0004), with FO of

state 4 (R = 0.69, p = .0019), and with state 5 state power

(R = 0.85, p = .00017). No other correlation was significant with

other genetic/clinical parameters (i.e., size of GAA1 triplet expan-

sion, SARA Score).

F IGURE 2 Top: Mean and standard error of mean lifetime (left), fractional occupancy (center) and mean interval length (right) associated to
each transient state and subjects Bottom: Mean and standard error of state power levels (orange, healthy; dark blue, FRDA). Of notice, power
levels values correspond to partial correlation and, as such, have no units. Statistical differences between groups are represented by bars along
with p-value. State numbers and corresponding networks names refer to Figure 1 (state 1 = sensorimotor and visual state; state 2 = left auditory
state; state 3 = sensorimotor and visual state; state 4 = posterior DMN state; state 5 = right angular gyrus state; state 6 = right auditory state)

F IGURE 3 Correlations between age of symptoms onset in years (y) and HMM temporal parameters in FRDA patients. State 4 = posterior
DMN state; state 5 = right angular gyrus state

NAEIJE ET AL. 5339



3.3 | Median split analysis

Figures 4 and 5 illustrate results of the median split analyses based on

the age of symptoms onset for HMM states temporal parameters

(Figure 4) and power (Figure 5).

To further characterize the above correlation results revealing a

link between posterior DMN dynamics (states 4/posterior DMN state

and 5/right angular gyrus) and the age of symptoms onset, we used a

post hoc median split on age of symptoms onset by splitting FRDA

patients into 2 subgroups based on their age of symptoms onset,

F IGURE 4 Differences in HMM temporal parameters between healthy participants (orange), FRDA patients with age of symptoms onset
<11 years (dark blue) and FRDA patients with age of symptoms onset >11 years (light blue). Statistical differences between groups are
represented by bars along with p-value. State 4 = posterior DMN state; state 5 = right angular gyrus state

F IGURE 5 Differences in HMM state powers between healthy individuals (orange), FRDA patients with age of symptoms onset <11 years
(dark blue) and FRDA patients with age of symptoms onset >11 years (light blue). Statistical differences between groups are represented by bars
along with p-value. State 4 = posterior DMN state; state 5 = right angular gyrus state

F IGURE 6 Correlations between mean within DMN static resting state functional connectivity and the temporal parameters of the HMM
encompassing the DMN in FRDA patients and healthy individuals. Dark blue dots correspond to FRDA patients with age of symptoms onset
<11 years, light blue dots correspond to FRDA patients age of symptoms onset >11 years and orange dots to healthy individuals. Bold text
highlights significant correlations. State 4 = posterior DMN state; state 5 = right angular gyrus state

5340 NAEIJE ET AL.



<11 years and > 11 years, similarly to (Harding et al., 2017; Naeije,

Wens, et al., 2020b). This median split analysis was used to determine

if the transient posterior DMN dynamics of FRDA patients with early/

late symptoms onset was different than that of healthy subjects by

seeking significant differences in HMM states temporal parameters

between these two subgroups and healthy subjects. The median split

analysis showed that patients with an age of symptoms onset

<11 years old had significantly lower MLT and FO for state 4/poste-

rior DMN state compared to FRDA patients with an onset >11 years

(MLT: 181.1 ± 66.7 ms vs. 484.8 ± 273.3 ms, p = .048; FO: 14.6 ± 8.1

vs. 33.4 ± 15.5, p = .02) and healthy subjects (MLT: 181.1 ± 66.7

vs. 399.9 ± 287.6 ms, p = .04; FO: 14.6 ± 8.1 vs. 32.3 ± 14.8,

p = .01). Congruently, the magnitude of power decrease (state 4/pos-

terior DMN state) and increase (state 5/right angular gyrus state)

upon state visit was lower in patients with an age of symptoms onset

<11 years old compared with FRDA patients with an onset >11 years

(State 4 power: �0.121 ± 0.045 vs. �0.174 ± 0.044, p = .04; State

5 power: 0.171 ± 0.02 vs. 0.241 ± 0.028, p = .009) and healthy sub-

jects (State 4 power: �0.121 ± 0.045 vs. �0.166 ± 0.035, p = .04;

State 5 power: 0.171 ± 0.02 vs. 0.248 ± 0.058, p = .001). No other

significant difference was observed.

3.4 | Link between static and dynamic functional
brain integration

To get further insights in patients with FRDA into the relationship

between the fast temporal dynamics of the posterior DMN in states

4(posterior DMN state)/5(right angular gyrus state) and the

corresponding static rsFC of the DMN, we computed the correlation

between mean within-DMN static rsFC and the temporal parameters

of HMM states 4/5 in patients and healthy subjects. Results are illus-

trated in Figure 6.

In FRDA patients, significant correlations were found between

HMM state 4 MLT and the mean within-DMN rsFC (MLT, R = 0.79,

p = .00023), a strong trend for correlation between HMM state 4 FO

and the mean within-DMN rsFC (FO, R = 0.75, p = .00079) as well as

a trend between HMM state 4 and 5 power levels and the mean

within-DMN rsFC (State 4 power level, R = �0.58, p = .016; State

5 power level, R = 0.56, p = .021). In Healthy subjects, significant cor-

relations were found between HMM state 4 FO, MLT and the mean

within-DMN rsFC (FO, R = 0.84, p = .00027; MLT, R = 0.86,

p = .000034) as well as a trend for correlation between HMM state

5 power levels and the mean within-DMN rsFC (R = 0.8, p = .001)

and between HMM state 4 power levels and the mean within-DMN

rsFC (R = �0.74, p = .004).

4 | DISCUSSION

This study shows that the age of symptoms onset in FRDA is related

to the fast dynamics of the posterior DMN and the TPJs (henceforth

referred to as “posterior associative neocortices”) at rest. Patients with

an early age of symptoms onset (<11 years) visit less often, for shorter

duration and with weaker power modulations than patients with a late

onset (>11 years), a state of deactivated posterior DMN and spend

less time in a state of activated bilateral TPJ. These findings indicate

that spontaneous bursts of electrophysiological activity in these pos-

terior associative neocortices is less likely and less stable in FRDA

patients with an early onset. This study also demonstrates a direct link

in FRDA patients and healthy individuals between static and dynamic

functional brain integration within the brain networks comprising

these posterior associative neocortices.

The six transient recurrent HMM states occurring in our partici-

pants replicated the spatial and temporal patterns of those previously

described in healthy individuals and in patients with neu-

rodevelopmental or neurodegenerative disorders (Coquelet, Wens,

et al., 2020; Hawkins et al., 2020; Puttaert et al., 2020; Sitnikova

et al., 2018; Stevner et al., 2019). Temporal parameters assessing the

transience and stability of the six states were strictly in line with pre-

vious MEG HMM studies that found MLT varying between 100 and

300 ms, MIL between 2 and 6 s, and an inverse relation between

MLT/FO and MIL. Similarly, the FO in our study was within the range

usually reported in HMM datasets (Baker et al., 2014; Hawkins

et al., 2020; Quinn et al., 2018; Sitnikova et al., 2018). Furthermore,

we also identified one particular state (i.e., state 4/posterior DMN

state) of deactivated bilateral angular gyri and posterior midline corti-

ces corresponding to a deactivated posterior DMN state. The involve-

ment of posterior midline cortices such as the precuneus and posterior

cingulate cortex had not been detected in previous MEG HMM studies

performed by other groups (Baker et al., 2014; Brookes et al., 2011;

Brookes et al., 2018; Hawkins et al., 2020; Hipp, Hawellek, Corbetta,

Siegel, & Engel, 2012; Sitnikova et al., 2018; Stevner et al., 2019), even

though they identified similar DMN states. This is presumably related to

their use of beamforming for source reconstruction rather than the use

of MNE as in this study. Indeed, MNE is better suited to image midline

posterior cortices in functional integration studies (Sjøgård et al., 2019),

explaining the implication of posterior midline cortices in this HMM

states, as previously found by our group both in healthy (Coquelet,

Wens, et al., 2020) and pathological (Puttaert et al., 2020) cohorts of

participants.

The short-lived states identified by this HMM approach display

spatial patterns of neural dynamics that bear some similarity with

fMRI- and MEG-derived RSNs (Baker et al., 2014; Biswal, Yetkin,

Haughton, & Hyde, 1995; Brookes et al., 2018; de Pasquale

et al., 2010). Fast brain dynamics could therefore reflect synchronized

neural firing sustained by slower time-scale functional brain connec-

tivity. This potential relationship between functional brain integration

occurring over long (i.e., several minutes) and very short (i.e., hundreds

of ms) timescales is supported by the correlation between mean DMN

rsFC and the fast temporal dynamics parameters and power levels of

the HMM states encompassing the posterior DMN. These data are in

agreement with studies supporting higher static functional connectiv-

ity in the sensorimotor network in relation with increased occupancy

of the sensorimotor state (Baker et al., 2014), or increased static rsFC

between brain regions as visits to the related state become more
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stable during brain development (Brookes et al., 2018; Coquelet,

Wens, et al., 2020).

Age of symptoms onset tightly correlated with the temporal prop-

erties of posterior DMN in FRDA. Splitting FRDA patients into two

subgroups based on their age of symptoms onset, one with an early

(<11 years) and the other with a late (>11 years) age of symptoms

onset, disclosed significant differences in the temporal properties and

the power levels of the two states involving posterior associative

neocortices. Particularly, the state encompassing regions overlapping

the posterior DMN showed weaker power modulations and was vis-

ited less often and for shorter time intervals in FRDA patients with an

early age of symptoms onset compared to FRDA patients with a late

onset or healthy subjects. Importantly, FRDA patients with early and

late ASO had similar disease duration and SARA score at the time of

MEG investigation, but different size of GAA1 triplet expansion (see

Table 2). Those two groups of patients therefore mainly differed by

the time when they became overtly symptomatic and by their size of

GAA1 triplet expansion. In FRDA, the age of symptoms onset relates

to the degree of FXN loss, that itself inversely correlates with the size

of GAA1 triplet expansion (Campuzano et al., 1997). Pat-

hophysiologically, a decreased expression of FXN involves at the cel-

lular level increased oxidative stress, defective energy production,

calcium dyshomeostasis, and impaired mitochondrial biogenesis, lead-

ing to mitochondrial dysfunction (Rodríguez-Pascau et al., 2021). Con-

sidering that the posterior associative cortices showing altered

dynamics in FRDA patients with early age of symptoms onset are

parts of the brain regions showing the highest energy consumption at

rest (Buckner, Andrews-Hanna, & Schacter, 2008), low FXN levels

might particularly impact the neural dynamics of those brain areas

during a critical period for brain development leading to sustained

impairment in their neural dynamics stability. In patients with a late

age of symptoms onset, higher levels of neural FXN expression could

still allow the setting of neural dynamics similar to healthy subjects.

Still, we failed to find a significant relationship between HMM states

temporal parameters/power and the size of GAA1 triplet expansion in

our cohort of FRDA patients. The correlation between the size of

GAA1 triplet expansion and FXN levels is only partial (Saccà

et al., 2011), GAA1 in peripheral blood cells being only an indirect pre-

dictor of FXN expression in the brain (Naeije, Wens, et al., 2020b). So,

further longitudinal studies performed in larger cohorts of FRDA

patients should investigate the potential link between FXN levels and

alterations in brain dynamics at rest.

This study is, limited by the relatively small patient sample. FRDA is

a rare disease and MEG is not yet easily accessible for clinical purposes.

However, our results are likely to be generally valid as the included

patients share the same average characteristics in terms of age, disease

duration, SARA score and size of GAA1 triplet expansion as those

included in large clinical cross-sectional cohorts of FRDA patients

(Pandolfo, 2020; Reetz et al., 2015). But, caution is warranted until

these findings are validated in a different and larger cohort of patients.

In summary, this MEG study demonstrates that age of symptoms

onset is the main determinant of dynamic functional brain integration

involving posterior associate neocortices in patients with FRDA. At a

more general level, this study provides novel empirical evidence in

a pathological human model substantiating a direct link between sub-

second and long timescales of human functional brain integration.
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