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Abstract: Gliflozins (sodium-glucose transporter-2 inhibitors) exhibited renoprotective effects not
only in diabetic but also in non-diabetic patients with chronic kidney disease (CKD). Controversial
results were reported in experimental non-diabetic models of CKD. Therefore, we examined em-
pagliflozin effects in three CKD models, namely, in fawn-hooded hypertensive (FHH) rats, uninephrec-
tomized salt-loaded (UNX + HS) rats, and in rats with Goldblatt hypertension (two-kidney, one-clip
2K1C) that were either untreated or treated with empagliflozin (10 mg/kg/day) for eight weeks.
Plethysmography blood pressure (BP) was recorded weekly, and renal parameters (proteinuria,
plasma urea, creatinine clearance, and sodium excretion) were analyzed three times during the
experiment. At the end of the study, blood pressure was also measured directly. Markers of oxidative
stress (TBARS) and inflammation (MCP-1) were analyzed in kidney and plasma, respectively. Body
weight and visceral adiposity were reduced by empagliflozin in FHH rats, without a significant effect
on BP. Experimentally induced CKD (UNX + HS and 2K1C) was associated with a substantial increase
in BP and relative heart and kidney weights. Empagliflozin influenced neither visceral adiposity nor
BP in these two models. Although empagliflozin increased sodium excretion, suggesting effective
SGLT-2 inhibition, it did not affect diuresis in any experimental model. Unexpectedly, empagliflozin
did not provide renoprotection because proteinuria, plasma urea, and plasma creatinine were not
lowered by empagliflozin treatment in all three CKD models. In line with these results, empagliflozin
treatment did not decrease TBARS or MCP-1 levels in either model. In conclusion, empagliflozin did
not provide the expected beneficial effects on kidney function in experimental models of CKD.

Keywords: SGLT-2 inhibition; proteinuria; uninephrectomized salt-loaded; two-kidney; one-clip
hypertension; fawn-hooded hypertensive rat

1. Introduction

The inhibition of the sodium-glucose transporter-2 (SGLT-2) by gliflozins promotes
glucose and sodium excretion. Positive renoprotective effects were demonstrated not only
in diabetic patients who were treated with gliflozins in addition to a standard antidiabetic
therapy [1,2] but also in non-diabetic patients [3]. The CREDENCE trial [4] demonstrated
the renoprotective effects of canagliflozin in diabetic patients, while the DAPA-CKD trial [5]
also showed the efficacy of dapagliflozin in non-diabetic patients with chronic kidney
disease. Moreover, the DAPA-HF and EMPEROR-reduced trials also showed improved
cardiovascular outcomes in heart failure patients [6]. Several mechanisms were suggested
for their beneficial effects, from hemodynamic and natriuretic effects (the reduction in
BP; to the modulation of tubulo-glomerular feedback, and the reduction in sympathetic
hyperactivity); to the metabolic factors due to their glycosuric effects (the improvement
of insulin sensitivity and the lowering of plasma triglycerides and uric acid); and to the

Biomedicines 2022, 10, 2509. https://doi.org/10.3390/biomedicines10102509 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10102509
https://doi.org/10.3390/biomedicines10102509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-1852-924X
https://doi.org/10.3390/biomedicines10102509
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10102509?type=check_update&version=2


Biomedicines 2022, 10, 2509 2 of 14

attenuation of oxidative stress, inflammation, and fibrosis. The beneficial renoprotective
effects of different gliflozins were demonstrated in various diabetic and prediabetic rat
and mice models [7–11]. However, only limited and sometimes contradictory information
is available in non-diabetic animals with chronic kidney disease. While Zhang et al. [12],
Rajasekaran et al. [13], and Li et al. [14] found no renoprotective effects of gliflozins in rats
after 5/6 nephrectomy, Kim et al. [15] and Wan et al. [16] reported on partial benefits in
uninephrectomized rats, and Zeng et al. [17] demonstrated renoprotective effects due to
reduced fibrosis in the same model. The anti-fibrotic effects of gliflozins in kidneys were
also found in the ureteral obstruction model [18] and the angiotensin II-induced model [19].
In the latter model, the additive renoprotective effects of empagliflozin treatment combined
with losartan were shown by Reyes-Pardo [20]. Moreover, Ali et al. [18] reported on
the amelioration of adenine-induced CKD with canagliflozin due to a reduction in renal
inflammation and oxidative stress.

Our previous studies in three non-diabetic hypertensive models (hypertensive Ren-2
transgenic rats, hereditary hypertriglyceridemic rats, and spontaneously hypertensive rats
expressing the human CRP gene) [21–23] demonstrated the beneficial effects of SGLT-2
inhibition without a glucose-lowering effect. In all these models, empagliflozin treatment
led to a reduction in body weight and visceral adiposity, while the additional effects
depended on the model used—an improvement of metabolic parameters and hepatic
metabolism (hHTG), a reduction in blood pressure (TGR), and the attenuation of oxidative
stress and inflammation in kidneys (SHR-CRP).

Three different models of chronic kidney disease with different pathophysiologi-
cal backgrounds were selected for the present study—a genetic model of hypertension-
associated renal failure, namely, a fawn-hooded hypertensive (FHH) rat, in which hy-
pertension, proteinuria, and focal glomerulosclerosis already develops at young age [24].
Moreover, two models of kidney deterioration induced by experimental procedures were
used in this study: either a uninephrectomy combined with increased sodium intake (UNX
+ HS) or a stenosis of renal artery–two-kidney, one-clip (2K1C) Goldblatt hypertension [25].

We hypothesized that empagliflozin would have renoprotective effects in these three
models of chronic kidney disease with different pathological backgrounds, i.e., in rats
genetically predisposed to renal impairment (FHH) and in two experimentally induced
CKD models (UNX + HS or 2K1C).

2. Materials and Methods
2.1. Animals

Animals were housed at 23o C under a 12 h light/dark cycle, fed maintenance diet for
rats and mice (Altromin-1320, Lage, Germany, 11% fat, 24% protein, 65% carbohydrates,
0.45 % NaCl), and given tap water ad libitum. Empagliflozin (Jardiance, Boehringer,
Ingelheim, Germany), at a dose of 10 mg/kg/day, was mixed into the Altromin diet (so
that the composition of both diets was the same) and given for 8 weeks. The amount of
empagliflozin added to the diet was calculated according to our previous studies [21–23].
All procedures and experimental protocols were approved by the Ethical Committee of the
Institute of Physiology, Czech Academy of Sciences (Protocol Nr. 47/2019), and conformed
to the European Convention on Animal Protection and Guidelines on Research Animal
Use (Directive 2010/63/EU). Three different models of chronic kidney disease were used
within the study.

2.1.1. Fawn-Hooded Hypertensive Rats

Male fawn-hooded hypertensive rats were treated with empagliflozin from the age of
12 weeks, for eight weeks.
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2.1.2. Two-Kidney One-Clip (2K1C) Goldblatt Hypertension

Male Wistar rats underwent a sham operation or clipping of the right renal artery
(2K1C) at the age of 10 weeks [25]. Eight weeks later, empagliflozin treatment was started
and administered for eight weeks.

2.1.3. Uninephrectomized Rats on High-Salt Intake

Male normotensive Hannover Sprague Dawley rats underwent uninephrectomy
(UNX) at the age of 7 weeks [25], and control rats were sham operated. One week later,
high-salt diet feeding (2% NaCl) and empagliflozin treatment were started. This regimen
was applied for eight weeks (Figure 1).
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Figure 1. Scheme of the experiment in Fawn-hooded hypertensive rats (FHH), 2-kidney-one-clip 
(2K1C), and uninephrectomized high salt-fed (UNX-HS) rats. 
Figure 1. Scheme of the experiment in Fawn-hooded hypertensive rats (FHH), 2-kidney-one-clip
(2K1C), and uninephrectomized high salt-fed (UNX-HS) rats.

Body weight was monitored throughout the whole experiment and measured once
a week. Systolic blood pressure was measured weekly during the experiment using
tail plethysmography (HatterasInstruments, Cary, NC, USA). Food consumption was
monitored throughout the experiment.
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2.2. Biochemical Analysis

Three times during the experiment (at weeks 0, 4, and 7), the animals were placed in
individual metabolic cages for the evaluation of kidney function using 24-h urine collection.
Urinary proteinuria, sodium, and glucose were determined. Urinary protein was measured
using the Folin method, with bovine serum albumin as a standard [26]. Plasma creatinine
was measured by the FUJI DRI-CHEM analyzer using appropriate slides for creatinine
CRE-P III (Fujifilm Corp, Tokyo, Japan). Plasma urea were determined using kit (Erba
Lachema, Brno, Czech Republic). Lipoperoxidation products were assessed based on
levels of thiobarbituric acid-reactive substances (TBARS) by assaying the reaction with
thiobarbituric acid. MCP-1 levels were determined in urine using ELISA kit (Invitrogen,
Carlsbad, CA, USA). At the end of the study, direct BP measurement was performed under
light isoflurane anesthesia [27]. Then, the animals were sacrificed and plasma and tissue
samples were collected and stored at −80 ◦C for further biochemical analysis.

2.3. Statistical Analysis

All data are expressed as means ± SEM. Statistical analysis was done by one-way
analysis of variance (ANOVA) with Bonferoni test, using the Graph-Pad Prism software
(Graph Pad Software, San Diego, CA, USA). The differences were considered significant at
the p < 0.05.

3. Results
3.1. Effects of Empagliflozin on Body Weight, Weights of Fat Depots, and Blood Pressure

All three rat models gained weight during the study. However, there was decrease in
body weight in uninephrectomized Hannover Sprague Dawley (HanSD) rats on high-salt
diet (UNX + HS + empa), while renal artery stenosis (2K1C + empa) in Wistar rats had
no effect on body weight. Empagliflozin (empa) decreased body weight in hypertensive
fawn-hooded rats (FHH), while it had no effect on body weight in uninephrectomized rats
on a high-salt diet or in rats with renal artery stenosis (Figure 2A,C,E and Tables 1–3). The
relative food consumption was not different between untreated and empagliflozin-treated
animals (14.3 ± 1.4 vs. 13.8 ± 1.2 in FHH rats; 15.2 ± 1.6 vs. 16.8 ± 2.1 in UNX+HS rats,
and 12.8 ± 1.6 vs. 14.3 ± 1.4 in 2K1C rats, NS; g/100 g BW).

Table 1. Body and organ weights, as well as blood pressure and TBARS levels, in fawn-hooded
hypertensive (FHH) rats treated with empagliflozin (empa).

FHH Untreated FHH + empa

Body weight (g) 351 ± 5 322 ± 7 #

Relative heart weight (g/100 g BW) 0.287 ± 0.007 0.286 ± 0.007

Relative kidneys weight (g/100 g BW) 0.767 ± 0.028 0.900 ± 0.036 #

Relative weight of epididymal fat (g/100 g BW) 0.724 ± 0.016 0.603 ± 0.025 #

Relative weight of perirenal fat (g/100 g BW) 0.289 ± 0.018 0.176 ± 0.018 #

Systolic BP (mm Hg) 180 ± 7 173 ± 5

TBARS in kidneys 36.8 ± 1.4 39.3 ± 1.3
* denotes p < 0.05 vs. control group; # denotes p < 0.05 vs. untreated group; data are means ± SEM; and n = 7–10
for each group.
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Figure 2. The effect of empagliflozin treatment on body weight (A,C,E) and systolic blood pressure
(B,D,F) in fawn-hooded hypertensive (FHH) rats (A,B), uninephrectomized (UNX) Hannover Sprague
Dawley (HanSD) rats on a high-salt (HS) diet (C,D), and Wistar rats subjected to renal artery stenosis
(Goldblatt 2K1C hypertension) (E,F). * p < 0.05 vs. control group, # p < 0.05 vs. untreated group.
* denotes p < 0.05; ** and ## denotes p < 0.01; *** denotes p < 0.001; data are means ± SEM. Horizontal
line in (F) depicts time points with significantly different BP levels.
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Table 2. Body and organ weights as well as blood pressure and TBARS levels in uninephrectomized
salt-loaded (UNX + HS) Hannover Sprague Dawley (HanSD) rats treated with empagliflozin (empa).

HanSD Control UNX + HS UNX + HS + empa

Body weight (g) 472 ± 10 461 ± 6 447 ± 7

Relative heart weight (g/100 g BW) 0.27 ± 0.02 0.33 ± 0.02 * 0.32 ± 0.02 *

Relative left ventricle (g/100g) 0.212 ± 0.005 0.264 ± 0.007 * 0.261 ± 0.009 *

Relative left kidney weight (g/100 g BW) 0.37 ± 0.01 0.74 ± 0.94 * 0.94 ± 0.04 *,#

Relative epididymal fat (g/100 g BW) 1.356 ± 0.081 0.891 ± 0.056 * 0.812 ± 0.028 *

Relative retroperitoneal fat (g/100 g BW) 1.349 ± 0.076 0.795 ± 0.077 * 0.678 ± 0.051 *

Systolic BP (mm Hg) 127 ± 57 166 ± 8 * 179 ± 8 *

TBARS in kidney 33 ± 3 44 ± 4 * 45 ± 2 *

* denotes p < 0.05 vs. control group; # denotes p < 0.05 vs. untreated group; data are means ± SEM; and n = 7–10
for each group.

Table 3. Body and organ weights, as well as blood pressure and TBARS levels, in Wistar rats subjected
to renal artery stenosis (Goldblatt 2K1C hypertension) treated with empagliflozin (empa).

Wistar Control 2K1C 2K1C + empa

Body weight (g) 595 ± 12 565 ± 26 562 ± 13

Relative heart weight (g/100 g BW) 0.212 ± 0.004 0.269 ± 0.017 * 0.269 ± 0.011 *

Relative left ventricle weight (g/100 g BW) 0.173 ± 0.003 0.226 ± 0.017 * 0.223 ± 0.010 *

Relative left kidney weight (g/100 g BW) 0.303 ± 0.006 0.180 ± 0.032 * 0.220 ± 0.030 *

Relative right kidney weight (g/100 g BW) 0.307 ± 0.007 0.419 ± 0.022 * 0.491 ± 0.028 *

Relative epididymal fat (g/100 g BW) 1.47 ± 0.06 1.33 ± 0.17 1.33 ± 0.13

Relative perirenal fat (g/100 g BW) 1.29 ± 0.10 1.15 ± 0.24 1.20 ± 0.17

Systolic BP (mm Hg) 120 ± 4 163 ± 9 * 157 ± 10 *

TBARS in kidney 31 ± 3 20 ± 2 24 ± 3

* denotes p < 0.05 vs. control group; # denotes p < 0.05 vs. untreated group; data are means ± SEM; and n = 7–10
for each group.

There was no change in blood pressure (measured by tail-cuff plethysmography) in
FHH rats during the experiment (Tables 1–3). Moreover, empagliflozin treatment did not
modify blood pressure and relative heart weight in this strain. In contrast, blood pres-
sure substantially increased (by about 60 mm Hg in HanSD-UNX+HS and 40 mm Hg in
Wistar-2K1C) following surgical procedures in both experimentally induced CKD models
(Figure 2B,D,F). This was followed by an increase in their relative heart weights. Em-
pagliflozin had no effect on tail-cuff BP in either experimental group. This was also
confirmed by a direct BP measurement at the end of the study. Visceral adiposity was
decreased by empagliflozin treatment only in FHH rats. Relative kidney weight was in-
creased in empagliflozin-treated FHH and in uninephrectomized salt-loaded rats, while it
was unchanged in 2-kidney-1-clip rats.

3.2. Effects of Empagliflozin on Renal Parameters

Urine production was not changed in FHH during the experiment, but as expected
it was substantially decreased following nephrectomy, while renal artery stenosis had no
effect on this parameter (Figure 3A,C,E). Empagliflozin treatment did not affect diuresis
in either of three examined models of CKD, although sodium excretion was increased
in FHH and in uninephrectomized HanSD rats, suggesting an effective SGLT-2 blockade
(Figure 3B,D). In Wistar-2K1C, increased sodium excretion was observed with no further
effect on empagliflozin administration.
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Figure 3. The effect of empagliflozin treatment on diuresis (A,C,E) and sodium excretion (B,D,F) in
fawn-hooded hypertensive (FHH) rats (A,B), uninephrectomized (UNX) Hannover Sprague Dawley
(HanSD) rats on high-salt (HS) diet (C,D), and Wistar rats subjected to renal artery stenosis (Goldblatt
2K1C hypertension) (E,F). * p < 0.05 vs. control group, # p < 0.05 vs. untreated group. * denotes p <
0.05; ## denotes p < 0.01; and ### and *** denotes p < 0.001; data are means ± SEM.

Proteinuria increased in all three CKD models during the study (Figure 4). Unexpect-
edly, empagliflozin treatment not only did not prevent the increase in proteinuria in CKD
models but even enhanced it, with this effect being statistically significant in FHH rats. In
line with this finding, the plasma urea level was increased in this particular rat strain at the
end of the study. In contrast, similar values of plasma urea were found in HanSD-UNX
+ HS, with a profound increase in this particular rat strain at week 4 and lower values in
empagliflozin-treated 2K1C Wistar rats.
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Figure 4. The effect of empagliflozin treatment on proteinuria (A,C,E) and plasma urea (B,D,F) in
fawn-hooded hypertensive (FHH) rats (A,B), uninephrectomized (UNX) Hannover Sprague Dawley
(HanSD) rats on high-salt (HS) diet (C,D), and Wistar rats subjected to renal artery stenosis (Goldblatt
2K1C hypertension) (E,F). * p < 0.05 vs. control group, # p < 0.05 vs. untreated group. * denotes p <
0.05; ** denotes p < 0.01; and *** denotes p < 0.001; data are means ± SEM.

At the end of the study, plasma creatinine was decreased in HanSD-UNX rats, while it
was not changed in Wistar-2K1C and in FHH following empagliflozin treatment
(Figure 5A,C,E).
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Figure 5. The effect of empagliflozin treatment on plasma creatinine (A,C,E) and on plasma monocyte
attractant protein-1 (MCP-1) (B,D,F) in fawn-hooded hypertensive rats (A,B), uninephrectomized
(UNX) Hannover Sprague Dawley (HanSD rats on high-salt (HS) diet (C,D), and Wistar rats subjected
to renal artery stenosis (Goldblatt 2K1C hypertension) (E,F). * p < 0.05 vs. control group, # p < 0.05 vs.
untreated group. * denotes p < 0.05 and *** denotes p < 0.001; data are means ± SEM.

3.3. Effects of Empagliflozin on Oxidative Stress and ROS Production

At the end of the study, elevated plasma MCP-1 levels (a marker of advanced CKD)
were found in uninephrectomized empagliflozin-treated HanSD, while empagliflozin had
no effect in other groups (Figure 5B,D,F). In the kidneys, lipoperoxidation products TBARS
were increased only due to uninephrectomy, with no effect of empagliflozin treatment on
this parameter in either of the three experimental models (Tables 1–3).
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4. Discussion

In the present study, empagliflozin did not provide any evidence for renoprotection in
three non-diabetic models of chronic kidney disease with a different pathophysiological
background. In fact, empagliflozin did not improve proteinuria, plasma urea or plasma
creatinine, and it did not decrease oxidative stress or inflammation in either model. This
lack of kidney protection in our experimental models of CKD is in sharp contrast to the
renoprotective effects of SGLT-2 inhibition demonstrated in several big clinical trials (EMPA-
REG, DAPA-CKD) [1,5] in non-diabetic patients. The question arises whether these negative
results could be ascribed to the relatively short duration of our studies, the gliflozin type
and dose administered, the rat strain used, or a relatively early stage of kidney disease in
our models. However, experimental studies of other investigators provide rather conflicting
results ranging from beneficial effects [17–19,28], through disputable findings [15,16], to
completely negative results [12–14].

Nevertheless, the pleiotropic effects of gliflozins were shown under non-diabetic
conditions in many human and experimental studies, including ours. Our previous studies
in several hypertensive non-diabetic models demonstrated that their benefits were mainly
due to their effects on metabolic and hemodynamic parameters, with less effect on renal or
cardiac parameters. Thus, a substantial blood-pressure lowering effect of empagliflozin
treatment, together with decreasing body weight and adiposity, was achieved in Ren-2
transgenic rats, a model of angiotensin II-dependent hypertension, but there was little
effect on renal parameters [22] and no effect on cardiac function (unpublished results).
Similarly, we did not demonstrate the improvement of cardiac function in hereditary
hypertriglyceridemic rats, in which beneficial effects were mediated mainly through the
improvement of hepatic lipid metabolism [21]. In contrast, in SHR-CRP rats, empagliflozin
benefit was based on reduced renal inflammation and oxidative stress [23], which is
in line with the findings of Ali et al. [18], who also demonstrated a reduction in renal
inflammation and ROS production in adenine-induced CKD. In addition, several studies
ascribed renoprotection to the anti-fibrotic effects of gliflozins [17,19,28].

Based on the existing experimental studies, no general conclusion could be reached,
suggesting that better results could be expected if the treatment would be prolonged.
The problem is that there are no experimental studies evaluating gliflozin effects in the
long-term setting, i.e., for months instead of weeks. Thus, the longest study, adminis-
tering dapagliflozin for 12 weeks [12] or TA-1887 for 10 weeks [14], did not produce
positive results, while 10-week treatment with a very low dose of empagliflozin [17] was
renoprotective. In humans or in experimental animals with focal segmental glomeruloscle-
rosis [13], eight-week dapagliflozin treatment did not modify renal hemodynamics or did
not attenuate proteinuria. In contrast, one- or two-week treatments with empagliflozin or
luseogliflozin demonstrated both beneficial and unfavorable effects [16,19,28].

It is also difficult to evaluate the sensitivity of the rat strain to gliflozin treatment.
However, it seems that studies with Sprague Dawley (SD) rats demonstrated more negative
results than those performed on Wistar rats. In fact, there is only one study demonstrating
the beneficial effect of gliflozin in SD rats [19] compared to four negative studies [12–15],
while the opposite is true for Wistar rats [16–18,20,28]. This might be due to the higher sen-
sitivity of SD rats to the development of proteinuric kidney disease following nephrectomy
(Kala et al., unpublished results), which could be further aggravated by a high-salt diet.

Gliflozin type and dose used should also be taken into consideration. Empagliflozin
seems to be used more frequently than dapagliflozin or canagliflozin, or a newly syn-
thetized luseogliflozin. The dose of empagliflozin used in experimental studies is usually
10 mg/kg/day (similar to humans), which, however, yielded inconsistent results. Even
a very low dose of empagliflozin (0.6 mg/kg/day) reduced renal and cardiac fibrosis in
5/6NX Wistar rats on a high-salt diet, with these effects being comparable to those of an-
giotensin receptor blocker telmisartan [17]. In addition, Ali et al. [18] demonstrated the ben-
eficial dose-dependent effects of canagliflozin (10 and 25 mg/kg/day) on adenine-induced
CKD, demonstrating the improvement of renal parameters (albuminuria, creatinine clear-
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ance, and plasma urea) together with the attenuation of inflammation and oxidative stress.
We cannot offer a plausible explanation for a lack of any positive effects of the generally
accepted dose of empagliflozin in our experimental CKD models, although positive effects
were obtained in our previous studies with hypertensive rat strains [22,23]. However,
we cannot exclude the possibility that eight weeks following nephrectomy or 2K1C were
insufficient for appropriate CKD development, although both of the other researchers
and our previous experiments demonstrated a significant increase in proteinuria and a
maximal decrease in creatinine clearance after the procedure [29–32]. Moreover, according
to our studies in non-diabetic animals, it seems that the rat models with signs of metabolic
disturbances respond to gliflozin therapy more effectively than those without them. This
question remains to be analyzed in future studies.

Apart from the antiproteinuric effects of gliflozins in clinical trials in non-diabetic
patients, blood pressure lowering was reported to be only 4-6 mm Hg [5]. Unexpectedly, we
did not demonstrate any effect on blood pressure (monitored either by tail plethysmography
or by direct BP measurement at the end of the study) in either of the examined models.
In contrast, BP was reduced by about 25 mm Hg in Ren-2 transgenic rats [22]. Similar BP
reduction was shown by Kim et al. [15] or Rajasekeran et al. [13] in uninephrectomized SD
rats, while Zhang et al. [12] or Li et al. [14] did not find any blood pressure effect in the
same model. Wan et al. [16] reported the blood-pressure-lowering effects of luseogliflozin
measured by telemetry in uninephrectomized Wistar rats kept on high-salt intake. In this
context, a comparative study evaluating the same treatment and dose in different rat strains
would be rational.

Similar to our [21–23] and other investigations [13,19], we have found that relative
kidney weight was increased in FHH and UNX-HS rats. Whether this increase is associated
with the dilatation of tubular lumen due to SGLT-2-induced diuresis or due to tubular cell
hypertrophy remains to be determined. In any case, it is not restricted only to empagliflozin
treatment [19,21–23], as was also demonstrated with dapagliflozin administration [13].

5. Limitations of the Study

There are several limitations of our study concerning the translation of negative results
into clinical practice. First of all, our study, similar to other investigators [13,17,20], evalu-
ated the effects of empagliflozin treatment for a relatively short time (8 weeks), which is a
substantially shorter duration than that applied in big clinical trials. Thus, our study could
be negatively affected by the known effect of SGLT-2 inhibitors on the decreasing glomerular
filtration rate and other renal functional parameters in the first weeks of gliflozin treatment.
However, other studies performed by our group for the same time of empagliflozin admin-
istration [21–23] demonstrated the beneficial effects of empagliflozin, relying on different
mechanisms of gliflozins in different non-diabetic hypertensive rat strains—metabolic
mechanisms in hereditary hypertriglyceridemic rats [21], antihypertensive mechanisms in
Ren-2 transgenic [22], or renoprotective mechanisms in spontaneously hypertensive rats
expressing C-reactive protein [23]. Second, empagliflozin was the only SGLT-2 inhibitor
used, so that the results cannot be simply generalized to all gliflozins. Moreover, it seems
that newer gliflozins, such as luseogliflozin, ipragliflozin or ertugliflozin, could have bet-
ter outcomes than the older ones (dapagliflozin, empagliflozin, and canagliflozin) or the
combined SGLT1/2 inhibitors.

On the other hand, the analysis of Certikova Chabova and Cervenka [33] dealt with
the opposite situation—the positive experimental results of dual RAS therapy (combined
ACEi and ARB blockade) could not be translated into clinical studies using this drug
combination in the treatment of cardiovascular diseases. They discussed not only the
role of the variability of disease features in humans versus its relative stability in animals
(including the genetic uniformity of animals) but also the selection of animal species for
experimental studies. There is no doubt that rats and mice are very different from humans,
and therefore pigs or primates would be more appropriate for translational research.
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However, there are strong limitations concerning animal welfare that almost exclude the
performance of such studies.

6. Conclusions

In our experimental models of chronic kidney disease, empagliflozin did not provide
the expected beneficial effects on kidney function. Whether this lack of kidney protection
is due to the short duration of the study, the models used, or the gliflozin administered
remains to be determined. However, this finding provides further evidence about the
cautious usage of this class of drugs in humans suffering from renal impairment.
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