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Triptolide, the main active ingredient in Tripterygium wilfordii Hook. f. (Celastraceae), 
has shown promising effects against a variety of tumors. However, the molecular 
pharmacological mechanisms explaining the action of triptolide remain unknown. In this 
study, the CT26 colon tumor cell line was inoculated subcutaneously into BALB/c mice, 
and plasma samples were subjected to 1H NMR metabolomics analysis. The metabolic 
signature identified five metabolites whose levels were lower and 15 whose levels were 
higher in CT26 tumor-bearing mice than in normal control mice. Triptolide treatment 
significantly reversed the levels of nine of these metabolites, including isoleucine, glutamine, 
methionine, proline, 3-hydroxybutyric acid, 2-hydroxyisovalerate, 2-hydroxyisobutyrate, 
and low-density lipoprotein/very low-density lipoprotein. Based on the identities of these 
potential biomarkers, we conclude that the antitumor mechanism of triptolide might rely 
on correcting perturbations in branched-chain amino acid metabolism, serine/glycine/
methionine biosynthesis, and ketone bodies metabolism.
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INTRODUCTION

Colorectal cancer is a malignant tumor, characterized by high incidence and high recurrence. 
Despite significant improvements in colon carcinoma screening, diagnosis, and therapy, the 5-year 
survival rate of patients with advanced colorectal cancer remains poor (Siegel et al., 2018). While 
surgery, chemotherapy, and radiotherapy are still the predominant treatments for colorectal cancer, 
their side effects are considerable. Therefore, the development of more natural products for the 
treatment of colorectal cancer has become a priority.

Triptolide, a small diterpenoid epoxide extracted from Tripterygium wilfordii Hook. f. 
(Celastraceae), has been found to be highly effective against a variety of cancer types including 
colorectal cancer (Johnson et al., 2011; Liu et al., 2012; Oliveira et al., 2015) pancreatic cancer 
(Phillips et al., 2007), neuroblastoma (Yan et al., 2015; Jiang et al., 2018), and prostate cancer (Zhao 
et al., 2016; Tamgue and Lei, 2017). Trials with minnelide, a synthetic water-soluble prodrug of 
triptolide, have shown some promising results on pancreatic cancer, anaplastic thyroid cancers, 
and prostate cancer (Banerjee and Saluja, 2015; Jacobson et al., 2015; Kumar et al., 2016; Isharwal 
et al., 2017). Considering the excellent anticancer activity of triptolide, it has become imperative to 
understand its molecular pharmacological activity.
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In the last 10 years, the idea of cancer as a metabolic disorder has 
attracted increasing attention. This change in thinking was largely 
due to the increased accessibility of oncometabolites (Collins 
et al., 2017). So far, an increasing number of oncometabolites 
and cancer-associated metabolic pathways have been identified 
in colon cancer; they include isoleucine, tyrosine, pyruvate, 
histidine, threonine, phenylalanine, glutamate, taurine, lactate, 
phosphocholine, choline, glycerol, and mannose (Mishra and 
Ambs, 2015; Wishart et al., 2016). Furthermore, metabolomics 
provides an important tool for tracing general metabolic changes 
in biological processes and is particularly apt for biofluids. In 
particular, metabolomics approaches based on nuclear magnetic 
resonance (NMR), liquid chromatography mass spectrometry, 
or gas chromatography mass spectroscopy might provide a more 
detailed picture of various tumors, their possible biomarkers, and 
therapeutic targets.

As well known, liquid chromatography–mass spectrometry 
technology (LC-MS) has the advantages of rapid separation 
and high sensitivity compared with NMR-based technology 
and has become the preferred method for cell metabolomics 
research. 1H NMR spectroscopy is a well-established, reliable, 
and reproducible tool in metabolomics, which allows the 
detection and quantification of multiple metabolites within a 
single experiment (Smolinska et al., 2012; Zhang et al., 2013). As 
a noninvasive, nondestructive, highly discriminatory, and much 
more robust technique when compared to MS, it could analyze 
many of the core metabolites needed to construct metabolic 
maps (i.e., amino acids, sugars, and tricarboxylic acid cycle 
intermediates). Furthermore, it can be quantified directly instead 
of the quantification spanning six orders of magnitude specific 
internal standards.

In the present study, the CT26 tumor cell line was inoculated 
subcutaneously into BALB/c mice. Plasma samples of normal 
control, CT26 tumor-bearing mice, and triptolide-treated mice 
were collected. The metabolites were analyzed by 1H NMR. The 
plasma markers of CT26 tumor-bearing mice were identified by 
multivariate statistical analysis, pattern recognition technology, 
and metabolic pathway analysis. Finally, triptolide was given to 
model mice with the aim of gaining a mechanistic insight into its 
antitumor effects.

MATERIALS AND METHODS

Chemicals and Materials
Triptolide (purity 99%, molecular weight 360.4) was purchased 
from Ze-Lang Co. Ltd. (Nanjing, China) and dissolved in sterile 
saline to make a stock solution. Murine CT26 cells were purchased 
from the tumor cell library of the Chinese Academy of Medicine 
(ATCC CRL-2638). Cell culture materials were purchased from 
Thermo Fisher Scientific (Grand Island, NY, USA).

Animal Handling and Experimental Design
A total of 55 BALB/c mice (female, body weight 25 ± 3 g) were 
purchased from Beijing Vital River Company (Beijing, China; 
Rodent license SCXK-2012-0001). The animals were housed 
under controlled light (12-h light/12-h dark cycle) with the 

temperature of 22 ± 2°C and humidity of 50 ± 10%. All mice 
were allowed to adapt to their environment over a period of 
one week before grouping. Mice were randomly allocated into 
three groups as follows: 1) normal control mice (15 mice, 200 
μl saline solution intraperitoneally once a day); 2) CT26 tumor-
bearing mice (20 mice, 200 μl saline solution intraperitoneally 
once a day); and 3) triptolide-treated CT26 tumor-bearing mice 
(20 mice, 0.4 mg/kg triptolide intraperitoneally once a day). 
All intervention treatments began 12 h after the implantation 
of CT26 cells and lasted for weeks. After that, animals were 
sacrificed, and the tumor masses were removed, weighted, and 
measured. All animal experiments were performed in accordance 
with institutional guidelines and following approval by the Ethics 
Review Committee of Beijing University of Chinese Medicine.

CT26 Cell Challenge and Assessment
CT26 cells were routinely cultured in RPMI-1640 medium 
containing 10% fetal bovine serum, 2 mM L-glutamine, and 1% 
penicillin/streptomycin solution. The cells were cultured under 
standardized conditions (5% CO2, 100% humidity, 37 °C) and 
used at 75–80% confluence.

Phosphate-buffered saline (200 μl) with CT26 cells (2 × 
106, viability ≥95%) were injected hypodermicly into the right 
forelimb of mice using an insulin syringe. The tumors were 
measured with callipers at 2-day intervals after tumor nodules 
initiation. Tumor volume was calculated as (length × width2)/2 
(Hu et al., 2015). Percent survival was determined based on the 
survival curve for the primary subcutaneous tumor model.

NMR Analysis and Data Processing
The assay was performed as described previously (Psychogios 
et al., 2011; Nagana Gowda et al., 2015). In brief, mouse blood 
samples were withdrawn into a heparinized tube and centrifuged, 
the plasma samples were prepared as usual, and the supernatant 
was used for NMR analysis. All samples were analyzed by 
Varian VNMRS 600 MHz NMR spectrometer, 1H NMR spectra 
were acquired by water-suppressed one-dimensional (1D) 
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence [RD-90°- 
(τ-180°-τ) n- ACQ], and free induction decays (FIDs) were 
collected. At the same time, standard correlation spectroscopy 
(COSY), total correlation spectroscopy (TOCSY), heteronuclear 
multiple-bond correlation spectroscopy (HMBC), and J-resolved 
spectra of the plasma samples were obtained.

All 1H NMR spectra were aligned by MestReNova 7.1.0 
and analyzed using SIMCA-P 12.0 with the method described 
previously (Psychogios et al., 2011; Nagana Gowda et al., 2015). 
Principal component analysis (PCA), partial least squares 
discriminant analysis (PLS-DA), and orthogonal PLS-DA 
(OPLS-DA) were used to analyze the NMR data of the samples. 
The coefficient plots were generated with MATLAB scripts and 
color-coded based on the absolute value of coefficients (r).

Statistical Analysis
Data are expressed as the mean ± standard deviation. An 
independent sample t-test was performed between the two groups 
by SPSS 20.0. p-value <0.05 was considered to be statistically 
significant. An additional diagnostic model was constructed 
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using the marker metabolites alone and a linear discrimination 
analysis method.

RESULTS

Tumor Inhibitory Effect of Triptolide
To estimate the effect of triptolide, tumor volume and weight were 
measured. Results showed that triptolide significantly inhibited 
CT26 mass growth compared with the model control group 
(Figures 1A, C). Moreover, subcutaneous CT26 tumor-bearing 
mice from the triptolide treatment group survived much longer 
than mice from the model group (CT26 alone) (Figure 1B). 
An in vitro evaluation of triptolide’s antitumor effect revealed 
that 25 and 50 nM triptolide significantly inhibited CT26 cell 
proliferation and migration while inducing apoptosis (data not 
shown, Supplementary Figure 1).

1H NMR Spectroscopy of Plasma
As shown in Figure 2, plasma from normal control mice, 
CT26 tumor-bearing mice, and triptolide-treated mice were 
analyzed by 1H NMR spectra. Resonance assignments were 
performed according to existing literature (Psychogios et al., 
2011; Nagana Gowda et al., 2015) and confirmed by COSY, 
TOCSY, HMBC, and J-resolved spectra. Detailed metabolite 
assignments were displayed in Supplementary Tables 1 
and 2 (or data not shown). A total of 24 metabolites’ levels 
were found to be perturbed (16 increased, 5 decreased, 2 
nonremarkably, and 1 was unknown) in the plasma of CT26 
tumor-bearing mice compared to normal control mice.

Multivariate Analysis of NMR Data
PCA was used to analyze the NMR data of the samples to identify 
the overall metabolic trend and discover possible outliers. 
The PCA score plots of plasma 1H NMR spectra displayed a 
significant separation between normal control, model, and 
triptolide-treated groups. With PC1 and PC2 values of 44.9% 
and 34.6%, respectively, the model could adequately discriminate 
between the three experimental groups (Figure 3A). Most of 
the samples were within the 95% confidence interval, and the 
following analysis was applied to ensure maximum information 
could be retrieved. The PLS-DA score plots of plasma revealed a 
separation between normal control, model, and triptolide-treated 
groups. The classification parameters of the three groups were 
R2X = 30.9% and R2Y = 77.5%, indicating acceptable goodness 
of fit and high goodness of predication (Figure 3B). Response 
permutation tests with 200 permutations showed no overfitting 
in the models. According to PLS-DA and validation results, the 
Y-intercepts of the regression lines were negative (−0.2), which 
indicated that the PLS-DA model was reliable for explaining and 
predicting the changes in the X- and Y-matrix (data not shown, 
Supplementary Figure 3).

Identification of Metabolites
As shown by the loading plots in Figure 4, more metabolites 
were increased (peaks in the positive direction) in the model 
group than in the normal control group (Figures 4A, B). This, 

however, was reversed by triptolide treatment, with more 
metabolites seen to decrease (peaks in the negative direction) 
in the triptolide-treated group compared with the model group 
(Figures 4C,  D). According to the absolute cut-off value 
of the correlation coefficient (|r|) and VIP value (listed in 
Supplementary Tables 1 and 2), the metabolites with significant 
change (P < 0.05) were identified as potential biomarkers. Based 
on VIP > 1 and the degree of perturbation of the evaluated 
metabolites, the fold change of these metabolites was computed 
and is listed in Table  1. Five metabolites in the model group 
[glucose, pyruvate, 3-hydroxybutyric acid (3-HB), glutamine, 
and betaine] exhibited an obvious decrease, whereas 15 [serine, 

FIGURE 1 | Tumor inhibitory effect of triptolide in a mouse CT26 tumor 
model. (A) tumor volumes were determined from the histograms at 5-day 
intervals after CT26 subcutaneous injection. (B) Percentage survival curves 
of tumor model and triptolide-treated groups. (C) Tumor weights (**P < 0.01, 
Triptolide vs. control group).
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creatine phosphate, methionine, threonine, valine, allantoin, 
dimethylglycine, proline, isoleucine, lysine, isobutyrate, leucine, 
2-hydroxyisobutyrate (2-HIB), low-density lipoprotein/very 
low-density lipoprotein (LDL/VLDL), and 2-hydroxyisovalerate 

(2-HIV)] exhibited a significant increase compared with 
the normal control group (P  < 0.05 or P < 0.01). Following 
triptolide treatment, the pattern of 9 out of the 20 metabolites 
was significantly reversed. As Figure 5 showed, the level of 

FIGURE 2 | Representative 600 MHz 1H NMR spectra of plasma from normal control, model, and triptolide-treated groups. The following metabolites could 
be distinguished: (1) low-density lipoprotein (LDL); (2) isoleucine; (3) leucine; (4) valine; (5) isobutyrate; (6) 3-hydroxybutyrate; (7) lactate; (8) alanine; (9) acetate; 
(10) proline; (11) 2-hydroxyisobutyrate; (12) NAC1; (13) NAC2; (14) acetone; (15) acetoacetate; (16) pyruvate; (17) glutamine; (18) citrate; (19) methionine; (20) 
N,N-dimethylglycine; (21) creatine; (22) betaine; (23) glucose; (24) glycerophosphoylcholine; (25) glycine; (26) glycerol; (27) choline; (28) serine; (29) threonine; (30) 
methylhistidine; (31) tyrosine; (32) formate; (33) lysine; (34) taurine; (35) phosphate; and (36) allantoin.

FIGURE 3 | (A) PCA and (B) PLS-DA score plots of mouse plasma samples.
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isoleucine, methionine, proline, 2-HIV, LDL/VLDL, and 2-HIB 
was significantly decreased, but the level of pyruvate, glutamine, 
and 3-HB was significantly increased compared with the model 
control group (P < 0.05 or P < 0.01). The above results suggest 
that triptolide treatment could effectively regulate the metabolic 
networks associated with some of these metabolites in CT26 
tumor-bearing mice.

Metabolic Pathway and Function Analysis
Based on the identification of biomarkers, MetaboAnalyst (http://
www.metaboanalyst.ca/) was used to analyze metabolic pathways 
to determine the involved related pathways under the present 
conditions. According to previous studies, pathways with an 
impact value >0.2 were screened out as potential targets. This 
yielded seven pathways related to 18 metabolites; they include 1) 
phenylalanine/tyrosine/tryptophan biosynthesis, 2) phenylalanine 
metabolism, 3) glycine/serine/threonine metabolism, 4) synthesis 
and degradation of ketone bodies, 5) beta-alanine metabolism, 
6) methane metabolism, and 7) valine/leucine/isoleucine 

biosynthesis (Figure 6). Accordingly, these pathways might define 
the diagnostic perturbations characterizing CT26 tumor-bearing 
mice and might be the targets for triptolide treatment.

DISCUSSION

Growing evidence indicates that triptolide has a definite 
anticancer effect (Chang et al., 2007; Antonoff et al., 2009; 
Chen et al., 2009; Lu et al., 2011; Cheng et al., 2016; Hu et al., 
2016; Reno et al., 2016; Ziaei and Halaby, 2016; Li et  al., 
2017). However, the compound’s molecular mechanism has 
not been investigated by metabolomics studies. Here, we 
used NMR-based metabolomics to study the in vitro and 
in vivo metabolic responses and the metabolic pathways 
of CT26 tumor-bearing mice following treatment with 
triptolide. Using conventional pharmacological approaches, 
we and others have demonstrated that triptolide indeed exerts 
antitumor activity (Tang et al., 2007; Liu et al., 2012; Liu et al., 
2014). Furthermore, we investigated metabolic profiling of 

FIGURE 4 | (A, C) OPLS-DA score plots and (B, D) efficient loading plots derived from the 1H NMR spectra of plasma from normal control, model, and triptolide-
treated groups. Color-coding corresponds to the correlation coefficients of the metabolic variables. 
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TABLE 1 | Quantitative comparison of metabolites found in the plasma of normal control, model, and triptolide-treated groups.

Metabolites Model vs. Control Triptolide vs. Model

log2(FC) p-Value log2(FC) p-Value

1 Glucose –1.00 0.001 / /
2 Pyruvate –0.81 0.001 0.46 0.002
3 3-Hydroxybutyrate –0.63 0.002 1.00 0.009
4 Glutamine –0.51 0.001 0.58 0.004
5 Beatine –0.24 0.001 / /
6 Serine 0.42 0.006 0.61 0.001
7 Creatine phosphate 0.62 0.002 0.44 0.001
8 Methionine 0.83 0.001 −0.17 0.036
9 Threonine 1.10 0.001 / /
10 Valine 1.15 0.004 0.75 0.038
11 Allantoin 1.29 0.001 0.37 0.011
12 Dimethylglycine 1.43 0.001 / /
13 Proline 1.46 0.001 −0.32 0.025
14 Isoleucine 1.48 0.001 −0.25 0.029
15 Lysine 1.53 0.001 / /
16 Isobutyrate 1.71 0.001 / /
17 Leucine 1.73 0.001 / /
18 2-Hydroxyisobutyrate 2.03 0.001 −1.85 0.001
19 LDL/VLDL 2.55 0.001 −1.84 0.001
20 2-Hydroxyisovalerate 3.51 0.001 −1.78 0.001

Color-coded according to log2 (fold change), red mean the increased and blue mean the decreased in each group. The symbol ‘/’ showed metabolites without significant 
difference between the model control group and Triptolide treatment group. The color bar: .

FIGURE 5 | Relative integral levels of metabolites in normal control, model, and triptolide-treated groups. (A) Isoleucine; (B) Pyruvate; (C) Glutamine; (D) Methionine; 
(E) Proline; (F) 3-HB; (G) 2-HIV; (H) LDL/VLDL; (I) 2-HIB (**P < 0.01, model vs. control group; #P < 0.05, Triptolide vs. model; ##P < 0.01, Triptolide vs. model).
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plasma and potential biomarkers of CT26 tumor-bearing 
mice and ways in which these changed as a result of the 
antitumor mechanisms of triptolide. It is worth noting that 
the profiling of nine metabolites could be markedly reversed, 
following triptolide treatment, which indicated that triptolide 
might help restore the normal level of metabolites in these 
pathways. Based on the relevant biomarkers and metabolic 
networks involved, we have outlined the antitumor molecular 
mechanisms of triptolide in Figure 7.

Metabolism of Certain Amino Acids
In our study, we detected four amino acids associated with the 
presence of CT26 tumors and triptolide treatment: isoleucine, 
glutamine, methionine, and proline. These amino acids might 
contribute to the valine/leucine/isoleucine biosynthesis 
or degradation pathways and serine/glycine/methionine 
biosynthesis pathway in CT26 tumor-bearing mice.

Isoleucine, synthesized from threonine, is a nonpolar 
amino acid. The risk of colorectal adenoma has been shown to 
be inversely proportional to plasma levels of branched-chain 
amino acids; hence, their supplementation may have a beneficial 
effect on colorectal cancer (Budhathoki et al., 2017). However, 
our results differ from previously published findings. From an 
experimental standpoint, because of mandatory fasting during 
the experiment, the intake of isoleucine in the diet was likely to 

FIGURE 6 | Summary of pathway analysis using Metaboanalyst. The 
map was gained through online analysis (http://www.metaboanalyst.
ca/): (1) phenylalanine-tyrosine-tryptophan biosynthesis; (2) phenylalanine 
metabolism; (3) glycine-serine-threonine metabolism; (4) synthesis and 
degradation of ketone bodies; (5) beta-Alanine metabolism; (6) methane 
metabolism; and (7) valine-leucine-isoleucine biosynthesis.

FIGURE 7 | Overall profile of the metabolic network in CT26 tumor-bearing mice. The map was constructed by analyzing known metabolic pathways based on nine 
differentially expressed metabolites (labeled with red or green diamonds).
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be zero; thus, the increase of isoleucine in plasma may be due to 
protein decomposition and is indicative of a negative nitrogen 
balance. The concentrations of amino acid in plasma could 
not reflect their requirements accurately, but it is nevertheless 
possible that branched-chain amino acid metabolism could be 
perturbed following triptolide treatment.

Glutamine, an inessential amino acid, plays a key role in 
mammalian cells and especially in cancer cells, where it is 
involved in cell growth, protein synthesis, and regulation of 
the acid balance. Under physiological conditions, glutamine is 
endogenously synthesized from α-ketoglutarate, via glutamate 
dehydrogenase and glutamine synthetase. In addition, glutamine 
and glutamate can be interconverted enzymatically and are both 
precursors of glutathione. Moreover, cancer cells need a large 
number of glutamine to grow and survive continually, which 
lead to extraction of cyclic glutamine acting as a “glutamine 
trap” (Wu et al., 2018). In the present study, a decreased level 
of glutamine in plasma was detected in CT26 tumor-bearing 
mice, whereas triptolide treatment significantly up-regulated 
the level of glutamine. These results suggest that triptolide 
might inhibit glutamine consumption in tumor cells. Several 
studies have reported that tumor cells are glutamine addicted. 
Increased glutamine consumption would manifest as a reduction 
of circulating glutamine (Li et al., 2017; Wang et al., 2018). 
Our study seems to confirm these findings and points to a 
valuable hypothesis for future investigation into the antitumor 
mechanisms of triptolide.

Methionine, an essential amino acid, is an important substrate 
of cysteine and taurine. Its derivative S-adenosylmethionine is 
a cofactor that serves mainly as a methyl donor. Methionine’s 
metabolic cycle, also called folate cycle, links several functional 
compounds, such as betaine, glycine, homocysteine, and 
glutathione (Kawaguchi et al., 2018). In general, compared with 
normal cells, cancer cells have a higher demand for methionine. 
Accordingly, methionine restriction could exert an antitumor 
effect in animal models. However, methionine is an essential 
amino acid that cannot be entirely removed from the diet. For 
example, mice fed methionine and choline deficient (MCD) 
diet can induce nonalcoholic steatohepatitis (Wang et al., 2014). 
In  our study, increased methionine in the plasma of CT26 
tumor-bearing mice confirms the methionine dependence of 
CT26 tumors. Importantly, this is the first report suggesting that 
triptolide might target a methionine-related metabolic pathway. 
As any exploration of the molecular mechanisms responsible 
for this interaction was beyond the scope of the present study, 
we believe that future work should look into the link between 
methionine and triptolide.

Proline, the only proteinogenic amino acid, plays a 
crucial part in molecular recognition, primary carbon and 
nitrogen metabolism, and oxidative stress and osmotic stress 
protection (Phang and Liu, 2012; Phang et al., 2015). Proline 
and glutamine are interconvertible and their metabolism is 
linked. Usually, proline content is relatively low. An increased 
proline level has been heralded as a vital variation in certain 
tumors (Liu et al., 2015). Our results seem to confirm these 
findings and further show that the increased proline level can 
be down-regulated by triptolide.

Ketone Bodies Metabolism
Ketone bodies consist of, among others, 3-HB, acetone, and 
acetoacetate. They are produced by the liver from fatty acids 
during fasting or prolonged intense exercise. 3-HB is synthesized 
by acetyl coenzyme A in liver and serves as a source of energy 
by cells in the event of blood glucose is insufficient (Bonuccelli 
et al., 2010). Our experimental results show that the 3-HB 
concentration decreased significantly in the plasma of CT26 
tumor-bearing mice, indicating that ketones have been used as 
fuel by the mitochondria of tumor cells. Based on our findings, 
triptolide might also inhibit the uptake of 3-HB into tumor cells.

Other Metabolism-Related Biomarkers
Due to limitations of the MetaboAnalyst tool, biomarkers 
such as 2-HIV, 2-HIB, and LDL/VLDL could not be matched 
directly in metabolic pathway analysis. We retrieved in literature 
and biochemical databases to discover their relationship with 
colon cancer. It showed that 2-HIV was linked to branched-
chain amino acid metabolism, 2-HIB and lactate were linked 
to pyruvate metabolism, and LDL/VLDL was involved in 
cholesterol metabolism. Currently, there are no reports on the 
correlation between these metabolites and tumors.

Overall, we report a noteworthy alteration in plasma metabolic 
profiling of CT26 tumor-bearing mice, and triptolide treatment 
reverses it significantly. The changes in metabolic profiling 
were characterized by an increase in plasma proline, isoleucine, 
methionine, 2-HIB, 2-HIV, and LDL/VLDL, as well as by a 
decrease in plasma pyruvate, 3-HB, and glutamine. On the basis 
of metabolic pathway analysis, we considered that the antitumor 
mechanism of triptolide relies on regulating the disorder of 
branched-chain amino metabolism, serine/glycine/methionine 
biosynthesis, and ketone bodies metabolism. In conclusion, 
this study can serve for potential targets of tumor drug therapy. 
Moreover, our research emphasizes the role of these biomarkers 
in cancer development and growth.
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