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Abstract

Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells

enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and

Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere

fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-break-

age cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing

the pool of available histones. This protection associates neither with changes in bulk telo-

mere length nor with major changes in the structure of subtelomeric chromatin. We show

that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by

non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs

in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by

inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone deple-

tion protects telomeres from fusions by homologous recombination (HR), even though HR is

proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. There-

fore, HR during pre-senescence not only helps stalled replication forks but also prevents T-

TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the

histone pool and can occur in the absence of Rad51. Our results further suggest that the

Mec1-dependent depletion of histones that occurs during pre-senescence in cells without

telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by

Rad51-independent HR.

Author summary

Telomere shortening upon telomerase inactivation leads to an irreversible cell division

arrest known as replicative senescence, which is considered as a tumor suppressor mecha-

nism. Since pre-senescence is critical for tissue homeostasis, cells are endowed with

recombination mechanisms that facilitate the replication of short telomeres and prevent

premature entry into senescence. Consequently, pre-senescent cells divide with critically

short telomeres, which have lost most of their shelterin proteins. The tumor suppressor

genes ATR and ATM, as well as their yeast homologs Mec1 and Tel1, prevent telomere

fusions during pre-senescence by unknown mechanisms. Here we show that the absence
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of Mec1 and Tel1 strongly augments DSB repair by non-homologous end joining, which

might explain the high rate of telomere fusions in mec1Δ tel1Δ cells. Moreover, we show

that a reduction in the pool of available histones prevents telomere fusions in mec1Δ tel1Δ
cells by stimulating Rad51-independent homologous recombination. Our results suggest

that the Mec1-dependent process of histone depletion that accompanies pre-senescence

in cells lacking telomerase activity is required to prevent telomere fusions by promoting

the processing of unprotected telomeres by recombination instead of non-homologous

end joining.

Introduction

Telomeres are highly specialized nucleoprotein structures that hide the ends of chromosomes

from double-strand break (DSB) repair and DNA damage checkpoint activities. In this way,

telomeres protect the chromosome ends from fusions and degradations and from eliciting an

erroneous DNA damage response. Accordingly, defects in telomere maintenance are linked to

cancer and aging [1]. Telomere DNA consists of repeated DNA sequences that end in a 30 sin-

gle-stranded G-rich tail. To compensate for the natural shortening that telomeres undergo

every cell cycle during DNA replication, many cells express a reverse transcriptase, the telome-

rase, which adds telomere repeats. However, telomerase expression is repressed in many tis-

sues of multicellular organisms, leading to continuous telomere erosion that eventually

activates replicative senescence [2]. Premature senescence entry can affect tissue homeostasis

[3] and accordingly, cells are endowed with mechanisms to maintain the proliferative state of

cells with short telomeres. As a major risk for genome integrity during this time is the instabil-

ity of critically short telomeres, an essential task during pre-senescence is to protect these telo-

meres. In sharp contrast to dysfunctional telomeres caused by mutations in the telomeric

shelterin proteins, eroded telomeres by physiological shortening are able to repress non-

homologous end joining (NHEJ), thus preventing telomere-telomere fusions (T-TFs) and the

subsequent genetic instability associated with fusion-bridge-breakage cycles [4,5].

In yeast, telomeres consist of ~300 bp of TG1-3 repeats that are covered by 15–20 molecules

of Rap1 (repressor activator protein 1) and its partners Rif1 and Rif2, and ~12–15 bases of a G

tail that are covered by the Cdc13/Stn1/Ten1 complex. Similar to most organisms, yeast also

contains two classes of subtelomeric elements: X elements, which are present at virtually all

telomeres, and Y0-elements, which are present in zero to four tandem copies immediately

internal to the telomere repeats [6]. In yeast cells that lack telomerase, telomeres progressively

shorten with each cell cycle until cells enter replicative senescence with critically short but pro-

tected telomeres [7–10].

Mec1 and Tel1 (yeast homologs of the tumor suppressor genes ATR and ATM, respec-

tively) are master checkpoint kinases with specific and redundant roles in many processes

related to genome integrity, such as DSB signaling [11,12]. Specifically, Mec1 transduces the

signal that activates senescence in cells lacking telomerase when telomeres reach a critical

length [13,14]. Telomeres regulate the binding and activity of many DNA repair and check-

point factors that are essential for telomere maintenance but prevent that these factors process

the chromosome ends as DSBs. Thus, Mec1/ATR and Tel1/ATM binding to telomeres is regu-

lated in order to facilitate their role in promoting the recruitment of the telomerase to short

telomeres [15–19] without leading to an inadvertent activation of the DNA damage checkpoint

signaling [20–22]. The telomerase recruitment function is carried out mainly by Tel1 in wild-

type cells, although Mec1 can partially complement this function in the absence of Tel1 [17].
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Consistently, telomeres are barely affected in mec1Δ cells, are very short but stable in tel1Δ
cells, and only the lack of both Mec1 and Tel1 leads to short and unstable telomeres and to the

activation of replicative senescence [7,8]. However, and in contrast to cells lacking telomerase,

mec1Δ tel1Δ cells accumulate T-TFs, indicating that Mec1 and Tel1 have additional functions

in protecting telomeres [9,23,24]. These functions seem to be conserved as inferred from the

accumulation of telomere fusions observed in yeast, fly and mammalian cells lacking ATM

and ATR [25–28].

Yeast and mammalian cells also share a reduction in the synthesis of histones during pre-

senescence [29,30]. The mechanism of histone reduction has been elucidated in yeast cells

lacking the telomerase RNA coding gene (TLC1) [30]. In particular, it has been reported that

telomere shortening is accompanied by a relocalization of Rap1 from eroded telomeres to the

promoter of hundreds of new genes. A subset of these genes includes the core histone–encod-

ing genes, which are repressed by Rap1 leading to a reduction in the pool of available histones

and a loss of histones at Rap1-targeted promoters. Importantly, Rap1 relocalization and his-

tone depletion require Mec1 [30].

In this study, we asked what defects in mec1Δ tel1Δ cells are due to their inability to reduce

the level of histones as compared to tlc1Δ cells. We show that an induced reduction in the pool

of available histones in mec1Δ tel1Δ does not affect the length of telomeres or the entry into

senescence, but prevents T-TFs. This histone depletion–induced protection require a HR

mechanism that, in contrast to the one that maintains the proliferative state of mec1Δ tel1Δ
cells during pre-senescence, can occur in the absence of Rad51. Likewise, cells lacking Tlc1

requires Rad51-independent HR to prevent telomere fusions, opening the possibility that the

Mec1-dependent depletion of histones that occurs during pre-senescence protects telomeres

from fusions by favoring the repair of unprotected ends by HR rather than NHEJ.

Results

Histone depletion induction prevents T-TFs in mec1Δ tel1Δ pre-senescent

cells

To address the genetic consequences of the inability to reduce the amount of histones during

pre-senescence of cells lacking Mec1 and Tel1, we induced a partial depletion of histones in

mec1Δ tel1Δ cells using a previously reported genetic system, in which the sole source of his-

tone H4 is under the control of the doxycycline-inducible tet promoter (t::HHF2) [31]. For

this, MEC1/mec1ΔTEL1/tel1ΔHHF1/hhf1ΔHHF2/hhf2Δ diploids transformed with the plas-

mid p413TARtetH4 were dissected on plates containing rich medium with 5 μg/mL doxycy-

cline and the colonies were streaked on the same medium; a smear of cells from this streak was

then restreaked after 3 days, and this step was repeated for several times (each streak involved

~20 generations). Mec1 is essential to maintain the levels of dNTPs during replication and

DNA damage, but can be eliminated without affecting viability in cells lacking Sml1, a

Mec1-regulated inhibitor of the dNTPs synthesis [32]. Since the intracellular pool of dNTPs

has a direct impact on telomere biology [33–35], all analyses were performed in sml1Δ strains

except for tlc1Δ, which was compared with its isogenic wild-type strain. Wild-type and mec1Δ
tel1Δ cells from streak 1 displayed similar levels of histone H4, which dropped two-fold in

mec1Δ tel1Δ t::HHF2 cells (Fig 1A). However, histone levels in mec1Δ tel1Δ t::HHF2 cells were

still higher than those displayed by cells lacking telomerase. This difference was confirmed by

chromatin fractionation and western blot (Fig 1B and S1A Fig).

To follow senescence, we analyzed cell growth during several streaks from different spores

of each genotype. As previously reported, cells lacking Mec1 and Tel1 senesced after 3 to 5

streaks but a small fraction of them survived senescence (S1B and S1C Fig) [7]. This loss of cell
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viability was less clear in some clones, likely due to the high cell-to-cell heterogeneity in the

entry into senescence [36]. Moreover, viability was much lower in mec1Δ tel1Δ cells than in

tlc1Δ cells (S1C Fig), consistent with the major functions of Mec1 and Tel1 in genome integ-

rity. Parallel cultures from mec1Δ tel1Δ t::HHF2 spores from the same diploids also displayed

high growth clonal variation with a similar pattern of senescence (S1B Fig) and viability (S1C

Fig). However, a more detailed analysis showed that histone depletion slightly rescued the

growth defects of mec1Δ tel1Δ pre-senescent cells (S1D Fig), and this suppression was not asso-

ciated with an increase in cell viability but with a slight reduction in the doubling time (S1E

and S1F Fig).

To address whether histone depletion prevents T-TFs in cells lacking Mec1 and Tel1, DNA

from liquid cultures from streak 1 was isolated and amplified by semiquantitative PCR to spe-

cifically detect T-TFs between chromosomes V and XV as previously reported [9]. Histone

depletion largely suppressed T-TFs in mec1Δ tel1Δ t::HHF2 pre-senescent cells (Fig 1C). To

calculate more precisely this effect, the frequency of T-TFs was determined by quantitative

PCR (Fig 1D). The frequency of telomere fusions between the right arm of chromosome V

and the left arm of chromosome XV was 3.2 × 10−3/genome in mec1Δ tel1Δ cells. Histone

depletion suppressed T-TFs in mec1Δ tel1Δ t::HHF2 an average of ~73 times. Finally, a detailed

analysis in pre-senescent (streak S1), senescent (streak S4) and surviving cells (streaks S7 and

S10) showed that T-TFs accumulated in mec1Δ tel1Δ during pre-senescence but disappeared

in the surviving cells, and that histone depletion prevented T-TFs during the whole process

(Fig 1E). Indeed, T-TF accumulation in mec1Δ tel1Δ and protection by histone depletion was

observed as early as in cultures inoculated directly from the spore (~25–30 generations) (S2A

Fig).

Many of the phenotypes associated with partial depletion of histone H4 can be mimicked in

cac1Δ rtt106Δ replication-coupled chromatin assembly mutants: loss of chromatin integrity

and negative supercoiling, replication fork instability, hyper-recombination and chromosome

missegregation [37–41]. Thus, we analyzed T-TFs in mec1Δ tel1Δ cac1Δ rtt106Δ cells from

streak S1 to test whether telomere protection in mec1Δ tel1Δ t::HHF2 was due to global defects

in chromatin assembly. Notably, the absence of Cac1 and Rtt106 did not reduce the amount of

T-TFs induced by mec1Δ tel1Δ (Fig 1D and 1F), suggesting that the effects of histone depletion

in preventing T-TFs are not due to global defects in replication-coupled chromatin assembly.

In Drosophila melanogaster, the accumulation of T-TFs in the absence of ATR and ATM

can be suppressed by depleting the histone variant H2A.Z, which restores the loading of the

HOAP capping protein [42]. Given that histone depletion is likely to reduce the amount of

H2A.Z (Htz1 in yeast)-containing nucleosomes, we addressed the effect of the lack of Htz1 in

the formation of T-TFs in mec1Δ tel1Δ cells. The absence of Htz1 did not prevent the forma-

tion of T-TFs in mec1Δ tel1Δ htz1Δ (Fig 1D and S2B Fig). Interestingly, both mec1Δ tel1Δ
cac1Δ rtt106Δ and mec1Δ tel1Δ htz1Δ cells senesced much earlier (streaks S2-S3) than mec1Δ

Fig 1. Histone depletion prevents T-TFs in mec1Δ tel1Δ pre-senescent cells. (A) Histone H4 levels in mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells (sml1Δ
background), and wild type and tlc1Δ cells from streak 1-derived cultures as determined by western blot. The amount of histone H4 was normalized to the total

amount of protein. The average and SEM of the indicated number of independent strains are shown. (B) Histone H4 and Pgk1 levels at chromatin and soluble

fractions of the indicated strains from S1-derived cultures. (C) T-TFs in wild type, t::HHF2, mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 (sml1Δ background) from liquid

cultures from streak 1 as determined by semiquantitative PCR. A PCR control without DNA was included (-). A DNA fragment from HIS4 was PCR-amplified as

input control. A scheme of the PCR assay to follow the accumulation of T-TFs is shown. (D) T-TF frequency of the indicated strains as determined by quantitative

PCR from S1 streaks. The average and SEM are shown, except for mec1Δ tel1Δ t::HHF2 GAL1::HA-RAD52 in which the range is indicated, as n = 2. The number of

DNA samples from independent strains, which include those used for semiquantitative PCR and telomere length analyses, is shown in parenthesis for each genotype.

One (P-values<0.01) and three (P-values<0.0001) asterisks indicate statistically significant difference according to a Student’s t-test (Mann-Whitney). (E)

Accumulation of T-TFs during pre-senescence (streak S1), senescence (S4), and post-senescence (S7 and S10). (F) T-TFs in mec1Δ tel1Δ, cac1Δ rtt106Δ and mec1Δ
tel1Δ, cac1Δ rtt106Δ (sml1Δ background) from streak 1 biomass as determined by semiquantitative PCR. All analyses were performed with haploid strains (indicated

below each genotype) obtained from heterozygous diploids and streaked for several times on rich medium plates.

https://doi.org/10.1371/journal.pgen.1007407.g001
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tel1Δ cells, and surviving cells took longer to appear (S2C and S2D Fig), suggesting that Cac1

and Rtt106, as well as Htz1, are required to delay the entry into senescence.

Telomere protection against fusions by histone depletion in mec1Δ tel1Δ t::
HHF2 is not associated with bulk telomere elongation

T-TFs in mec1Δ tel1Δ cells can be suppressed if telomeres are artificially elongated by express-

ing a Cdc13-Est2 fusion protein [9]. This might explain the disappearance of T-TFs in post-

senescent cells (Fig 1E), in which survival is associated with telomere lengthening [7]. Thus,

we asked whether histone depletion increases telomere length in mec1Δ tel1Δ cells. For a direct

comparison, telomere length was analyzed with the same DNA samples used for T-TF analy-

ses. Total DNA was digested with XhoI, run into a gel and hybridized to a Y0-specific probe.

This assay generates a broad band (~1.25 kb in wild-type cells) encompassing the telomere

fragments from Y0-containing telomeres, and two upper bands (~6.7 and ~5.2 kb) that repre-

sent the two sizes of tandemly arranged Y0 subtelomeric repeats (Fig 2A) [7,43,44]. Telomere

length in t::HHF2 cells was not apparently affected (Fig 2B, top, and S3A Fig), although the

analysis of individual chromosomes showed shorter telomeres than those in wild-type cells in

some cases (e.g., Fig 3A). As reported, tel1Δ but not mec1Δ cells displayed short telomeres,

whereas mec1Δ tel1Δ cells rapidly shortened their telomeres; the mec1Δ tel1Δmutant displayed

short telomeres as early as ~25–30 generations after dissection of heterozygous diploids (S3B

Fig) [7], which showed wild-type telomeres (S3B Fig) and did not accumulate T-TFs (S2A

Fig). Telomere length analysis during pre-senescence, senescence and post-senescence showed

a subpopulation of cells in some clones with longer Y0-containing telomeres, which were

reduced and disappeared as cells entered into senescence; we do not have an explanation for

these events, although they do not seem to be related to the accumulation of T-TFs as they

appeared both in mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells (see asterisks in Fig 2B, and S3A

and S3B Fig). Indeed, this subpopulation was also detected in tel1Δ (S3B Fig). Importantly, his-

tone depletion did not affect bulk telomere length in mec1Δ tel1Δ t::HHF2 cells as compared to

mec1Δ tel1Δ cells, which were similar from S1 to S10 (Fig 2B, top gel, and S3A and S3B Fig). A

similar result was obtained using a TG1–3 telomere-specific probe, which also detected telo-

meres that only contain X subtelomeric elements (Fig 2A and 2B, bottom gel, and S3C Fig).

These results suggest that telomere protection against fusions by histone depletion in mec1Δ
tel1Δ t::HHF2 cells is not due to bulk telomere elongation. The telomere-specific probe also

showed that the amount of X-only telomeres is reduced in mec1Δ tel1Δ cells (see arrows in Fig

2B, bottom gel, and S3C Fig). This is a characteristic of type I survivors, which extend telo-

meres by Y0-element acquisition through Rad51-dependent HR mechanisms [45], although

Rad51-independent, Rad59-dependent Y0-acquisition events can also be detected during pre-

senescence in cells lacking telomerase [44]. Accordingly, surviving mec1Δ tel1Δ cells amplified

the Y0 elements (5.2 and 6.7 kb bands), whereas telomere length remained as short as in S1

(Fig 2B, top gel) [7]. The acquisition of Y0 subtelomeric elements might explain the reduction

in T-TFs observed in mec1Δ tel1Δ survivors (Fig 1E) because the T-TF assay is based on a X-

only telomere.

Histone depletion alters telomeric chromatin in mec1Δ tel1Δ t::HHF2 but

not in tlc1Δ pre-senescent cells

Next, we wondered whether the accumulation of T-TFs in mec1Δ tel1Δ cells, and its suppres-

sion by histone depletion are associated with specific changes in the structure of the subtelo-

meric chromatin. To address this, we analyzed nucleosome positioning at the subtelomeric X

element of the left telomere of chromosome III (TEL03L) by indirect–end labeling of MNaseI–

Telomere protection by histone depletion
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Fig 2. Histone depletion does not affect bulk telomere length in mec1Δ tel1Δ cells. (A) Schematic structure of yeast

telomeres. The position of the Y0 and TG1-3 probes used in (B) is shown. (B) Telomere length of the strains analyzed in

Fig 1E (S1, pre-senescent cells; S4, senescent cells; S7 and S10, surviving cells) as determined by Southern blot of the

Telomere protection by histone depletion
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treated cells from streak 2–derived cultures (Fig 3A). We also analyzed the chromatin structure

of the subtelomeric Y0 elements because X elements are characterized by low nucleosome den-

sity [46]. For this, and due to the lack of specific DNA sequences to follow nucleosome posi-

tioning at a single Y0 element, global chromatin accessibility was followed with a probe that

hybridizes with the long Y0 subtelomeric repeats (Fig 3B). Signal profiles from lanes displaying

similar MNase digestion were plotted to compare the patterns of MNaseI accessibility. The

DNA samples used for T-TFs with either a telomere-proximal Y0 (top gel) or a TG1-3 (bottom gel) probe.

Subpopulations of long telomeres and X-only telomeres are indicated with asterisks and arrows, respectively.

https://doi.org/10.1371/journal.pgen.1007407.g002

Fig 3. Chromatin analyses of subtelomeric elements in mec1Δ tel1Δ and tlc1Δ pre-senescent cells. Nucleosome positioning at the left telomere of chromosome III

(TEL03L) (A) and global nucleosome pattern at the long subtelomeric Y0 elements (B) from streak 2-derived cultures of the indicated strains. The profiles of MNaseI

accessibility of the indicated lanes (vertical arrow), which display similar MNase digestion, are shown on the right. Subtle (asterisks) and major (arrows) changes in

chromatin structure are marked in the profiles. Schemes with the position of nucleosomes from the BamHI site at the Ty5-1 element to the end of TEL03L (A), and the

bulk nucleosome pattern of the ~2.3 Kb ClaI-ClaI fragment from the long Y0 elements (B) are shown on the left. Note that the analysis in (A) shows nucleosome

positioning from a specific site at a single telomere, whereas the analysis in (B) shows the pattern of nucleosomes at and around the probe from all long Y0 elements.

Ovals indicate the putative nucleosomes inferred from the MNaseI digestion analysis.

https://doi.org/10.1371/journal.pgen.1007407.g003
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absence of Mec1 and Tel1 did not lead to major changes in the structure of either the subtelo-

meric elements or the Ty5-1 proximal transposon (Fig 3A and 3B; compare mec1Δ tel1Δ with

the wild type). Remarkably, chromatin structure was also basically unaltered in tlc1Δ cells as

compared to the wild type (Fig 3A and 3B; only a subtle modification in the Y0 element that

was shared by all mutants, and therefore was not associated with T-TFs), despite having

reduced histone levels [30]. In line with this result, histone loss seems to be specific for Rap1-

targeted promoters in tlc1Δ cells [30], suggesting that chromatin assembly is properly regulated

under conditions of programmed histone depletion during pre-senescence.

In contrast to mec1Δ tel1Δ and tlc1Δ cells, histone depletion caused major changes in the

chromatin structure of the Ty5-1 transposon (gain or loss of DNA accessibility sites; marked

with arrows) and subtle changes in the Y0 and X elements (high background signal and small

changes in DNA accessibility sites; marked with asterisks) in both t::HHF2 and mec1Δ tel1Δ t::
HHF2 cells (Fig 3A and 3B; compare t::HHF2 and mec1Δ tel1Δ t::HHF2 with the wild type).

Finally, we analyzed the same regions in cac1Δ rtt106Δ and mec1Δ tel1Δ cac1Δ rtt106Δ cells.

These mutants displayed similar chromatin changes at the Ty5-1 transposon as t::HHF2 and

mec1Δ tel1Δ t::HHF2 cells (Fig 3A; compare the changes marked with arrows in cac1Δ rtt106Δ
and mec1Δ tel1Δ cac1Δ rtt106Δwith those in t::HHF2 and mec1Δ tel1Δ t::HHF2), as expected

for mutants affected in replication-coupled chromatin assembly. However, subtelomeric Y0

chromatin was much less affected in cac1Δ rtt106Δ cells than in t::HHF2 cells (Fig 3B; compare

the Y0 element MNaseI profiles in t::HHF2 and mec1Δ tel1Δ t::HHF2 with those in cac1Δ
rtt106Δ and mec1Δ tel1Δ cac1Δ rtt106Δ). Therefore, subtelomeric chromatin changes seem to

occur specifically in response to induced histone depletion.

Histone depletion and mec1Δ tel1Δ increase NHEJ

T-TFs in mec1Δ tel1Δ cells are NHEJ events [9]. To explore the possibility that histone deple-

tion impairs NHEJ, we used an in vivo plasmid-recircularization assay in which the repair of

an induced DSB can only occur by NHEJ [47]. For this, S2 pre-senescent cells were trans-

formed with a plasmid linearized at a region with no homology in the yeast genome. Accord-

ingly, cells lacking the NHEJ protein Ku70, but not the recombination protein Rad52 were

defective in plasmid recircularization (Fig 4A). Interestingly, whereas the absence of telome-

rase activity in tlc1Δ cells did not affect NHEJ efficiency as compared to wild-type cells, the

lack of Mec1 and Tel1 –but not of Mec1 or Tel1 –increased the efficiency of NHEJ repair

~7-fold (Fig 4A), which might explain the high levels of T-TFs in mec1Δ tel1Δ cells. Remark-

ably, histone depletion also increased NHEJ efficiency in t::HHF2 (~9-fold), suggesting that

not only the absence of Mec1 and Tel1 but also histone depletion inhibit DNA resection, thus

increasing NHEJ frequency. The triple mutant mec1Δ tel1Δ t::HHF2 led to an additive increase

(~20-fold) (Fig 4A), suggesting that mec1Δ tel1Δ and histone-depleted cells affect DNA resec-

tion by different mechanisms. Importantly, the fact that mec1Δ tel1Δ t::HHF2 cells, which have

protected telomeres, displayed even higher NHEJ levels than mec1Δ tel1Δ cells rules out the

possibility that histone depletion prevents T-TFs in mec1Δ tel1Δ t::HHF2 cells by impairing

NHEJ.

Protection against mec1Δ tel1Δ-induced telomere fusions by histone

depletion requires homologous recombination

A putative protection mechanism against T-TFs might be HR, which competes with NHEJ for

DSB processing [48]. In yeast, HR is required to delay senescence early after telomerase inacti-

vation, likely through template switching mechanisms that seem to facilitate the restart of

stalled replication forks with the sister chromatid [43–45,49–55]. Thus, a regulated activity of

Telomere protection by histone depletion

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007407 June 7, 2018 9 / 22

https://doi.org/10.1371/journal.pgen.1007407


HR at eroded telomeres might be a protective mechanism against telomere fusions. To address

this, we first tested the effect of HR on the accumulation of T-TFs in mec1Δ tel1Δ by deleting

Rad52, which is essential for all types of recombination events in yeast [56]. We detected a sig-

nificant increase (~5-fold) in T-TFs in mec1Δ tel1Δ rad52Δ cells as compared to mec1Δ tel1Δ
cells (Fig 1D and S4A Fig). We then dissected diploids heterozygous for mec1Δ, tel1Δ, hhf1Δ,

hhf2Δ and rad52Δ, but we failed to obtain mec1Δ tel1Δ t::HHF2 rad52Δ cells, likely due to a

Fig 4. Histone depletion prevents T-TFs in mec1Δ tel1Δ t::HHF2 by stimulating Rad51-independent homologous recombination. (A) NHEJ efficiency of the

indicated strains as determined by in vivo recircularization of a plasmid linearized with a restriction enzyme at a DNA region without homology in the yeast genome.

The number of transformants obtained with the linear plasmid was normalized to that obtained by transforming with the same amount of circular plasmid. The

average and SEM of 3–4 independent experiments are shown, which include three independent S2 pre-senescent strains. ku70Δ and its isogenic wild type were

included as a negative control. One (P-values<0.05) and two (P-values<0.005) asterisks indicate statistically significant difference according to an unpaired Student’s

t-test (B) Cell growth analysis of mec1Δ tel1Δ, mec1Δ tel1Δ t::HHF2, mec1Δ tel1ΔGAL1::HA-RAD52, and mec1Δ tel1Δ t::HHF2GAL1::HA-RAD52 cells (sml1Δ
background). Strains are indicated in parenthesis. (C) T-TF accumulation of the indicated strains from streak 1 biomass as determined by semiquantitative PCR. (D)

Cell growth analysis of mec1Δ tel1Δ, mec1Δ tel1Δ t::HHF2, mec1Δ tel1ΔGAL1::RAD51, and mec1Δ tel1Δ t::HHF2 GAL1::RAD51 (sml1Δ background). Strains are

indicated in parenthesis. (E) T-TF accumulation of the indicated strains from streak 1 biomass as determined by semiquantitative PCR.

https://doi.org/10.1371/journal.pgen.1007407.g004
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combination of mutations affecting genome integrity. To overcome this problem, diploids

containing HA-RAD52 under control of the GAL1 promoter were dissected in galactose-con-

taining plates and streaked in glucose-containing plates. Although this tagged form of Rad52

was hardly functional (S4B Fig), it allowed us to obtain some mec1Δ tel1Δ t::HHF2 GAL1::

HA-RAD52 spores that, similar to mec1Δ tel1Δ GAL1::HA-RAD52 cells, senesced in the first

streak (Fig 4B), in line with HR playing a major role in the replication of telomeres during pre-

senescence [55]. This residual activity of HA-Rad52 might explain why the frequency of T-TFs

was lower in mec1Δ tel1Δ GAL1::HA-RAD52 cells than in mec1Δ tel1Δ rad52Δ cells (Fig 1D).

Importantly, the amount of T-TFs in mec1Δ tel1Δ cells was not reduced by inducing histone

depletion in the absence of Rad52 activity (Figs 1D and 4C), indicating that suppression of

T-TFs in mec1Δ tel1Δ t::HHF2 cells completely depends on HR. Again, T-TF accumulation in

the absence of Rad52 was not associated with changes in bulk telomere length, which was simi-

lar in S1 pre-senescent mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells regardless of the presence or

absence of Rad52 (S4C Fig). Therefore, HR is necessary during pre-senescence not only to

help stalled replication forks but also to prevent T-TFs by a mechanism that further requires a

reduction in the pool of available histones.

In order to gain a deeper insight into the mechanism of HR that protects telomeres from

fusions in mec1Δ tel1Δ t::HHF2 cells, we analyzed the role of the strand exchange protein

Rad51. As for rad52Δ strains, we failed to obtain mec1Δ tel1Δ t::HHF2 rad51Δ spores and thus

decided to dissect diploids heterozygous for RAD51/GAL1::RAD51; in this case, some mec1Δ
tel1Δ t::HHF2 GAL1::RAD51 spores germinated even in glucose-containing medium. The

absence of Rad51 accelerated the entry into senescence of mec1Δ tel1Δ cells (Fig 4D) [53,57],

although the effect was less pronounced than the one observed in the absence of Rad52 (com-

pare Fig 4B and 4D), as previously reported for telomerase defective cells [53]. In addition, the

absence of Rad51 prevented the appearance of mec1Δ tel1Δ survivors after streak S2 (Fig 4D),

as expected for type I survivors [45]. Importantly, the absence of Rad51 did not increase the

levels of T-TFs in mec1Δ tel1Δ t::HHF2 cells (Figs 1D and 4E), indicating that Rad51 is dispens-

able for protecting telomeres by histone depletion.

HR-dependent and -independent mechanisms prevent T-TFs in

telomerase-deficient cells

Our results suggest that the inability of mec1Δ tel1Δ cells to induce histone depletion during

pre-senescence leads to the formation of telomere fusions. This raises the possibility that the

Mec1-mediated histone depletion that occurs in cells lacking telomerase during pre-senes-

cence prevents T-TFs. Indeed, the absence of Mec1 increases the frequency of T-TFs in tlc1Δ
cells [9]. To investigate this possibility, tlc1Δ cells were transformed with a multicopy plasmid

expressing the four core histones. However, this genetic strategy hardly increased the levels of

histones and did not lead to T-TFs in tlc1Δ background (S5 Fig). This is not unexpected, con-

sidering the number of mechanisms that prevent histone overexpression [58].

Since the mechanism by which histone depletion prevents T-TFs in mec1Δ tel1Δ t::HHF2
cells depends on HR, we asked if Rad52 is required to prevent T-TFs in tlc1Δ cells. The absence

of Rad52 shortened dramatically the pre-senescent state of tlc1Δ (Fig 5A) [57], as observed for

mec1Δ tel1Δ cells (Fig 4B). We thus analyzed T-TFs from the streak S1 biomass and found that

the absence of Rad52 in tlc1Δ rad52Δ cells increased ~10-fold the frequency of T-TFs as com-

pared to tlc1Δ cells (Fig 5B and 5C). This indicates that HR also prevents T-TFs in the absence

of telomerase activity. However, this increase in T-TFs was variable and in most cases small as

compared to that observed by the lack of Rad52 activity in mec1Δ tel1Δ t::HHF2 GAL1::HA-
RAD52 cells (Fig 1D; compare Figs 4C and 5B), suggesting that additional HR-independent
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mechanisms that protect the telomeres in tlc1Δ cells are lost in mec1Δ tel1Δ cells. To further

compare the protective role of HR in tlc1Δ and mec1Δ tel1Δ cells, we analyzed the effects of

rad51Δ. As reported, Rad51 was also essential to maintain the pre-senescence state of cells

lacking telomerase (Fig 5D) [57]. Moreover, most tlc1Δ rad51Δ clones did no accumulate

T-TFs (Fig 5C and 5E), except for 2 out of 16 strains in which the absence of Rad51 led to an

accumulation of telomere fusions (2 × 10−4/genome). Indeed, we cannot discard that these

events also occurred in a low number of mec1Δ tel1Δ t::HHF2 clones lacking Rad51 activity, as

only three clones could be analyzed (Fig 4E). To address whether the variability in T-TFs was

associated with telomere length, DNA samples from the streak S1 biomass were used to ana-

lyze T-TFs and telomere length (S6A and S6B Fig). In general, telomeres were slightly longer

in tlc1Δ rad52Δ and tlc1Δ rad51Δ cells than in tlc1Δ cells. However, there was no apparent cor-

relation between bulk telomere length and T-TFs in tlc1Δ cells lacking HR activity.

Discussion

One of the means by which ATR/Mec1 and ATM/Tel1 preserve genome integrity is preventing

T-TFs. Despite the importance of understanding how genetic instability accumulates in the

absence of these tumor suppressor genes, the mechanisms by which they carry out this protec-

tive role remain unknown. We show that T-TFs in mec1Δ tel1Δ cells can be suppressed by

inducing a partial reduction in the pool of available histones. This suppression, together with

the fact that Mec1 is required for histone depletion in pre-senescent tlc1Δ cells [30], which

have protected telomeres [9], suggest that T-TFs accumulate in mec1Δ tel1Δ cells due in part to

their inability to induce histone depletion. We show that the absence of Mec1 and Tel1

strongly augments DSB repair by NHEJ, which might also contribute to the high frequency of

T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by

Fig 5. Rad52 partially prevents T-TFs in tlc1Δ cells. (A, D) Cell growth comparative analyses of tlc1Δwith tlc1Δ rad52Δ (A) and tlc1Δ rad51Δ (D) cells. Strains are

indicated in parenthesis. Haploid strains obtained from diploids heterozygous for those markers were dissected on plates containing rich medium and restreaked on the

same medium. (B, E) Effect of rad52Δ (B) and rad51Δ (E) on the accumulation of T-TFs in tlc1Δ cells as determined by semiquantitative PCR from streak 1 biomass of

the indicated strains (shown below each genotype) (C) T-TF frequency of the indicated strains as determined by quantitative PCR from S1 streaks. The average and

SEM are shown. The number of DNA samples from independent strains, which include those used for semiquantitative PCR and telomere length analyses, is shown in

parenthesis for each genotype. Two asterisks indicate a statistically significant difference according to a Student’s t-test (Mann-Whitney) (P-values<0.001).

https://doi.org/10.1371/journal.pgen.1007407.g005
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inhibiting NHEJ. Rather, histone depletion prevents telomere fusions by facilitating the

recombinational processing of unprotected telomeres through a Rad51-independent mecha-

nism. This recombination mechanism is different from the main mechanisms that facilitate

the elongation of critically short telomeres during pre-senescence or that amplify Y0 subtelo-

meric elements in surviving cells, which do not require reduced levels of histones and are

highly dependent on Rad51.

Mec1 and Tel1 regulate DNA resection [59]. Using a plasmid recircularization assay we

observed that the absence of Mec1 and Tel1 –but not of Mec1 or Tel1 –strongly increases DSB

repair by NHEJ, suggesting that they have essential and redundant functions in DNA resection

that are revealed only after eliminating both factors. According to this result, T-TF accumula-

tion in mec1Δ tel1Δ cells might result as a consequence of defective DNA resection at telo-

meres, which would shift the balance between NHEJ and HR toward NHEJ. In addition, this

result raises the possibility that histone depletion prevents telomere fusions by inhibiting

NHEJ. However, histone depletion also increases NHEJ, not only in t::HHF2 (~8-fold) cells

but also in mec1Δ tel1Δ t::HHF2 cells (~20-fold), making it unlikely that histone depletion pre-

vents T-TFs by directly inhibiting NHEJ. Instead, our results show that histone depletion pre-

vents T-TFs in pre-senescent mec1Δ tel1Δ t::HHF2 cells by a Rad51-independent mechanism

of HR. This is in apparent contradiction with the observed increase in NHEJ in histone-

depleted cells. However, histone-depleted cells are proficient in HR [31,39], suggesting that

histone depletion facilitates HR under conditions of impaired DNA resection.

Histone depletion in yeast impairs the stability of advancing replication forks, leading to

fork breakage and rescue by a Rad51-independent HR mechanism [39]. This phenotype is

shared with the replication coupled–chromatin assembly asf1Δ and cac1Δ rtt106Δmutants

[37,40,60]. Therefore, histone depletion in mec1Δ tel1Δ t::HHF2 might increase the amount of

recombinogenic lesions at telomeres, leading to a local high concentration of recombination

factors that would compete with the NHEJ machinery thus preventing T-TFs. We have dis-

carded this possibility by showing that cac1Δ rtt106Δdid not prevent the accumulation of

T-TFs in mec1Δ tel1Δ background. Further, this possibility assumes that HR is limiting at telo-

meres in the absence of Mec1 and Tel1, which seems not to be the case for two reasons: first,

HR is proficient in maintaining the pre-senescence state in mec1Δ tel1Δ cells (Fig 4B); and sec-

ond, post-senescence mec1Δ tel1Δ surviving cells require HR (Fig 4B and 4D) [9]. Therefore,

HR is efficient at telomeres in the absence of Mec1 and Tel1, and histone depletion hardly

affects this efficiency, as mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells display similar profiles of

senescence entry and survivor formation. We observed only a slight increase in the doubling

time of pre-senescent cells that might be associated with the suppression of telomere fusions.

HR maintains the proliferative pre-senescent state of cells lacking telomerase by facilitating

the recombinational restart of stalled replication forks at telomeres [55]. This is achieved

through different recombination mechanisms. The accumulation of the non-coding RNA

TERRA as R-loops at short telomeres has been shown to promote the HR-dependent restart of

stalled replication forks [61]. Replication fork restart at telomeres can occur both by break-

induced replication (BIR), which deals with one-ended DSBs [36,44,54], and sister-chromatid

recombination (SCR) [62]. These mechanisms are highly dependent on Rad51, and accord-

ingly the lack of Rad51 accelerates the entry into senescence of cells lacking telomerase [57].

Rad51-independent, Rad59-dependent BIR events can also be detected, but its relevance in

maintaining the proliferative pre-senescent state of cells lacking telomerase is reduced in com-

parison with Rad51-dependent events as inferred from the slight effect on senescence entry

induced by the absence of Rad59 [44]. The fact that HR is able to maintain the proliferative

pre-senescent state but not to prevent T-TFs in mec1Δ tel1Δ cells suggests that the recombina-

tion events that protect telomeres from fusions differ from those that allow telomere DNA
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replication before senescence. We think that HR acts upon different substrates in these two

processes: stalled replication forks, to help replication at telomeres during pre-senescence, and

DSBs, to compete with NHEJ and prevent T-TFs (Fig 6). They differ in that the latter further

requires Mec1 and histone depletion and can operate in the absence of Rad51. Although less

efficiently, BIR can operate in the absence of Rad51 [63]. Therefore, we suggest that histone

depletion promotes the processing of unprotected telomeres by BIR. Actually, although telo-

mere protection was not associated with changes in bulk telomere length, we cannot discard

that fusions affect a subpopulation of critically short telomeres, and that HR promotes their

protection by BIR-induced lengthening.

How histone depletion facilitates the recombinational processing of unprotected telomeres is

currently unknown. One possibility is that the more accessible chromatin structure of the unpro-

tected telomeres in mec1Δ tel1Δ t::HHF2 cells favors its processing by HR, thus reducing the

potential substrate for NHEJ and consequently, the frequency of T-TFs. A more accessible chro-

matin might facilitate recombination-limiting steps. In line with this, the HR proteins Rad51

and Rad52, but not the NHEJ protein Ku80, bind with higher efficiency to DSBs under condi-

tions of reduced levels of histones in yeast [64], and histone depletion by knock down of human

SLBP shifts the balance between NHEJ and HR during DSB repair toward HR [65]. In addition,

chromatin disruption by either histone depletion or mutations in Spt6 and Spt4 stimulates

Rad51-independent HR by BIR [39,66]. Finally, defective chromatin assembly in mec1Δ tel1Δ
cac1Δ rtt106Δ cells hardly affects the subtelomeric chromatin as compared to histone depletion

in mec1Δ tel1Δ t::HHF2 cells, and it does not protect telomeres. However, programmed histone

depletion in pre-senescent cells is not associated with changes in the subtelomeric chromatin,

arguing against the idea that histone depletion facilitates the recombinational processing of telo-

meres by making subtelomeric chromatin more accessible to the recombination machinery.

Indeed, most T-TFs in mec1Δ tel1Δ involve the joining of the telomere repetitive tracts [9]. Alter-

natively, histone depletion might affect telomere anchoring to the nuclear envelope and/or the

folding back of the telomere as a first step to facilitate the access of the recombination machinery,

as both processes have been shown to repress recombination at telomeres [67,68]. Further stud-

ies will be required to elucidate how histone depletion promotes the recombinational processing

Fig 6. Model for telomere protection by induced histone depletion in mec1Δ tel1Δ cells. Rad51-dependent HR is

required to delay senescence early after telomerase inactivation, likely through template switching mechanisms that seem

to facilitate the restart of stalled replication forks with the sister chromatid (left). Cells lacking Mec1 and Tel1 maintain

this delay despite they do not induce histone depletion. However, they accumulate unprotected telomeres that are prone

to fuse with each other. These fusions might be stimulated by defects in DNA resection. Induced histone depletion in

mec1Δ tel1Δ cells facilitates the processing of unprotected telomeres by a Rad51-independent mechanism–likely BIR–thus

preventing NHEJ and T-TFs (right). Cells lacking telomerase also prevent telomere fusions through a Rad51-independent

HR mechanism, opening the possibility that the Mec1-dependent histone reduction that accompanies senescence is

required for telomere protection.

https://doi.org/10.1371/journal.pgen.1007407.g006
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of unprotected telomeres, which should include the genes regulated by Rap1 relocalization

and histone depletion in response to telomere shortening in tlc1Δ cells during pre-senes-

cence [30]. Nevertheless, it must be stressed that the fact that induced histone depletion

prevents T-TFs in mec1Δ tel1Δ cells does not necessarily mean that this is the mechanism

that operates in tlc1Δ cells, although the observation that Rad51-independent HR is also

required for telomere protection against fusions in tlc1Δ cells supports this possibility. Fur-

thermore, the lack of Rad52 leads to higher levels of T-TFs in mec1Δ tel1Δ t::HHF2 cells

than in tlc1Δ cells. Again, this observation might reflect not different protection mecha-

nisms but a higher frequency of telomere breakage in mec1Δ tel1Δ than in tlc1Δ cells, with

the subsequent accumulation of DSBs to be processed by NHEJ. Accordingly, Mec1 is

required for replication fork stability [69], specifically in hard-to-replicate sites [70]. Alter-

natively, this difference could be associated with the accumulation of NHEJ observed in

mec1Δ tel1Δ t::HHF2 cells as compared to tlc1Δ cells.

In response to telomere shortening human fibroblasts reduce the levels of histones and

chromatin assembly factors, which in turn disrupts chromatin integrity to reinforce the activa-

tion of the ATM and ATR pathways that accompany the senescence process [29]. Likewise,

histone depletion is a hallmark of replicative senescence and aging in yeast [30,71], suggesting

that it has been evolutionarily conserved in these processes [72]. Induced histone depletion in

yeast impairs chromatin integrity, DNA replication, chromosome segregation and DNA topol-

ogy, leading to genetic instability and checkpoint activation [38,39,73]. Hence, we suggest that

histone depletion has a dual role in genome integrity during pre-senescence in yeast. Histone

depletion leads to DNA damage helping to activate senescence. On the other hand, histone

depletion prevents the deleterious consequences of telomere fusions and subsequent fusion-

bridge-breakage cycles during the temporal window in which telomeres are unprotected.

Materials and methods

Yeast strains, plasmids and growth conditions

Yeast strains used to generate the spores analyzed in this study are listed in S1 Table. Deletion

mutants were constructed by a PCR-based strategy [74]. All analyses were performed with

haploid strains derived from diploids heterozygous for mec1Δ and tel1Δ and grown at 30˚C in

2% glucose-rich medium (YPAD)–unless 2% galactose-rich medium is indicated–and contain-

ing 5 μg/ml doxycycline (except for the tlc1Δ strain and its isogenic wild-type strain). Plasmid

p413TARtetH4 is a centromeric plasmid in which the expression of HHF2 is under control of

the doxycycline-inducible tet promoter [31]. pRS426 is a URA3-based multicopy plasmid [75].

p314N795 is a TRP1-based centromeric plasmid for rat glucocorticoid receptor (rGR) [76].

p426-H342A2B is a multicopy plasmid expressing the four core histones. For its construction

the HHT1-HHF1 and HTA1-HTB1 genomic loci were PCR amplified, cut with XhoI/EcoRI or

EcoRI/NotI, respectively, and inserted into the XhoI-NotI site of pRS426 by a triple ligation.

Oligonucleotides for PCR amplification are listed in S2 Table.

Plasmid-recircularization assay

The repair of an induced DSB by NHEJ was performed as described [47]. Cells were trans-

formed with 600 ng of plasmid p314N795 that had either been linearized at the rGR ORF with

NcoI or was uncut, and the efficiency of plasmid recircularization was determined as the num-

ber of transformants obtained with the linear plasmid relative to that obtained with the uncut

plasmid.
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Telomere-telomere fusions analysis

Telomere-telomere fusions (T-TFs) were analyzed by semiquantitative and quantitative PCR

analyses as reported [9]. Briefly, ~100 ng of Sau3A-treated genomic DNA extracted by stan-

dard protocols from asynchronous cultures was PCR-amplified for semiquantitative analyses

using a primer from the X element of chromosome XV-L and a primer from the Y0 element of

chromosome V-R (coordinates 183–207 and 576759–576783, respectively; Stanford Genome

Database). A DNA fragment from HIS4 was PCR-amplified as input control. T-TFs and HIS4
were PCR-amplified using 35 or 20 cycles, respectively, under the conditions previously

reported. Oligonucleotides for PCR amplification are listed in S2 Table. Quantitative analyses

were performed by real-time PCR by using the same amount of Sau3A-treated genomic DNA,

the oligonucleotides described above for semiquantitative analyses and the PCR conditions

described previously [9]. The frequency of T-TFs per genome was calculated with the formula:

T-TFs/genome = 2–N / N = Ct (T-TFs)–Ct (HIS4). Prior to applying this formula, the curves

representing the increasing amounts of DNA for the two products as a function of the number

of PCR cycles were confirmed to be parallel (i.e., the slope of the curve representing the log of

the input amount versus ΔCt was< 0.1).

Telomere length analysis

Total DNA from asynchronous cultures was extracted by standard protocols. DNA samples

were digested with XhoI and run in 1.2% TBE 1× agarose gels for 15 hours at 2 V/cm. Gels

were blotted onto Hybond-XL membranes and hybridized either at 65˚C with a 32P-labeled

PCR fragment containing 600 bp from XhoI to the centromere-distal end of the subtelomeric

Y’ element (probe Y0) or at 37˚C with a TG1–3 oligo labeled at the 50 terminus with ATP

(γ-32P) and T4 polynucleotide kinase (TG1–3 probe). Oligonucleotides are listed in S2 Table.

All signals were quantified in a Fuji FLA5100 with the ImageGauge analysis program.

Chromatin analysis by MNaseI digestion

Nucleosome positioning at TEL03L was determined by micrococcal nuclease (MNaseI) diges-

tion and indirect end-labelling [31]. MNaseI–treated DNA was digested with BamHI, resolved

in a 1.5% agarose gel, blotted onto a HybondTM-XL membrane and probed with a 230-bp
32P-labeled PCR fragment located at 60 bp from the BamHI site that reveals nucleosome posi-

tioning from this restriction site to TEL03L. Chromatin structure of the long subtelomeric Y0

elements was determined by the same method, except that MNaseI–treated DNA was digested

with ClaI, and probed with a 517-bp 32P-labeled fragment located at 412 bp from the centro-

mere-proximal ClaI site that reveals bulk chromatin accessibility (mono-, di-, tri- . . . nucleo-

somes) at and around the probed region. Oligonucleotides for PCR amplification are listed in

S2 Table. MNaseI profiles were generated with the ImageGauge analysis program.

Western blot

Yeast protein extracts were prepared using the TCA protocol as described [31] and run on a

15% sodium dodecyl sulfate-polyacrylamide gel. Histone H4 and Pgk1 were detected with the

rabbit polyclonal ab10158 (Abcam) and the mouse polyclonal 22C5D8 (Invitrogen) primary

antibodies, respectively, and either fluorophore-conjugate or peroxidase-conjugate secondary

antibodies. Total protein was determined by using the TFX Stain-Free FastCast Acrylamide kit

(Biorad) [77]. Bands were visualized and quantified using either the Odyssey infrared Imaging

System (Licor) or the ChemiDoc MP image system (Biorad).
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Chromatin fractionation

Chromatin fractionation was performed as described for young yeast cells [71] with some

modifications. Samples (30 ml) from mid-log phase cultures were collected by centrifugation,

washed with cold 0.1mM Tris pH 9.4, 10mM DTT, and incubated for 15 min in 1 ml of the

same buffer on ice. Cells were then washed with cold spheroplasting buffer (20mM Hepes pH

7.4, 1.2mM sorbitol, Roche Complete EDTA free protease inhibitor cocktail) and incubated

with 1 ml of the same buffer with 210 μg zymoliase 20T for 1 h at 30˚C. The spheroplasts were

collected, washed twice with cold washing buffer (20mM Tris pH 7.4, 20mM KCl, 1M sorbitol,

0.1μM spermine, 0.25μM spermidine, protease inhibitors), and resuspended in 1 ml lysis

buffer (20mM Tris pH 7.4, 20mM KCl, 1M sorbitol, 0.1μM spermine, 0.25μM spermidine, 1%

Triton X-100, protease inhibitors) for 5 min on ice. An aliquot (80 μl) was removed for the

total sample, and the remaining sample was centrifuged for 15 min at 13000 g at 4˚C to sepa-

rate soluble (supernatant) and chromatin-enriched (pellet) fractions. Each pellet was washed

with 0.5 ml cold lysis buffer and resuspended in 80 μl of water, and chromatin, soluble and

total samples were mixed with SDS buffer for western blot analyses. Similar volumes were

loaded for each sample, and similar cell equivalents of the chromatin and soluble fractions

were loaded for the fractionation controls.

Statistical analyses

Statistical analyses were performed using the Prism software (Graphpad). Numerical data that

underlies graphs and statistical analyses are provided in S3 Table.

Supporting information

S1 Fig. Induced histone depletion hardly affects mec1Δ tel1Δ cell growth. (A) Histone H4

and Pgk1 levels at chromatin and soluble fractions of the indicated strains from S1-derived cul-

tures. The average and range from two independent experiments is shown on the bottom. (B)

Cell growth analysis of wild type, t::HHF2, mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells (sml1Δ
background). Strains are indicated in parenthesis. See text for details. (C) Cell viability from

S1, S3 and S6-derived cultures of sml1Δmec1Δ tel1Δ (strains 43D, 5D and 53D), sml1Δmec1Δ
tel1Δ t::HHF2 (strains 7D, 8C and 40A) and tlc1Δ (strains 3C, 4B and 5A) cells. (D–F) Cell

growth (D), viability (E), and doubling time (F) of wild type, t::HHF2, mec1Δ tel1Δ and mec1Δ
tel1Δ t::HHF2 cells (sml1Δ background) from streak 2-derived cultures. Cell growth analysis in

(D) was performed by plating ten-fold serial dilutions from the same number of mid-log phase

cells. Cell viability was determined as the frequency of cells from an asynchronous liquid cul-

ture able to form colonies. The total amount of cells was counted in a Burker chamber. The

average and SEM of three independent strains are plotted.

(TIF)

S2 Fig. Histone depletion-mediated protection of telomeres in mec1Δ tel1Δ t::HHF2 is

independent of Htz1. (A) T-TFs in mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2 cells (sml1Δ back-

ground) from spore-inoculated cultures and diploids heterozygous for the indicated markers.

The result from four (spores) and two (diploids) independent strains (indicated below each

genotype) is shown. (B) T-TFs accumulation in sml1Δmec1Δ tel1Δ htz1Δ cells from streak 1

biomass from the indicated strains. T-TFs from sml1Δmec1Δ tel1Δ and sml1Δmec1Δ tel1Δ t::
HHF2 cells from streak 1 biomass was included as control. (C, D) Cell growth analysis of

mec1Δ tel1Δ htz1Δ cells (C) and mec1Δ tel1Δ cac1Δ rtt106Δ cells (D) (sml1Δ background) from

the indicated strains. Diploids heterozygous for those markers were dissected on rich-medium
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plates, and cells were streaked for several times on the same medium (S1 to S7).

(TIF)

S3 Fig. Telomere length analyses in mec1Δ tel1Δ and mec1Δ tel1Δ t::HHF2. (A, B) Telomere

length of the indicated strains as determined by southern blot using either a telomere-proximal

Y0 probe (A, B) or a TG1-3 probe (C). See legend to Fig 2 for more details.

(TIF)

S4 Fig. Role of HR on telomere fusions and telomere length in mec1Δ tel1Δ cells. (A) T-TF

accumulation in sml1Δmec1Δ tel1Δ and sml1Δmec1Δ tel1Δ rad52Δ strains (indicated below

each genotype) from streak S1 biomass, as determined by semi-quantitative PCR. (B)

HA-Rad52 is not functional. Cell growth was determined for wild-type and GAL1::HA-RAD52
strains in glucose and galactose medium in the absence or presence of MMS at the indicated

concentrations. (C) T-TF accumulation in mec1Δ tel1Δ cells is not associated with changes in

bulk telomere length. Telomere length of the indicated strains from streak S1 biomass was

determined by probing DNA samples from Fig 4C with a telomere-proximal Y0 probe. All

samples were run in the same gel.

(TIF)

S5 Fig. Histone overexpression in tlc1Δ cells. (A) Histone H4 levels in mec1Δ tel1Δ and tlc1Δ
cells, and in tlc1Δ cells transformed with either p426-H3.4.2A.2B (histone overexpression) or

pRS426 (empty vector) from streak 1-derived cultures as determined by western blot. The

amount of histone H4 was normalized to the amount of Pgk1. The average and range of 2

independent strains are shown, as well as the image of one the blots. (B) T-TFs in tlc1Δ cells

transformed with either p426-H3.4.2A.2B (histone overexpression) or pRS426 (empty vector)

from streak 1-derived cultures. Similar results were obtained with 8 more spores. tlc1Δ strains

were obtained from TLC1/tlc1Δ diploids transformed with the corresponding plasmid.

(TIF)

S6 Fig. T-TF variability in tlc1Δ rad52Δ cells is not associated with differences in bulk telo-

mere length. (A, B) T-TF accumulation (A) and telomere length (B) of the indicated strains

from S1 biomass, as determined by semiquantitative PCR and southern blot (using a Y0-spe-

cific probe), respectively. Total DNA was split into two samples for T-TF and telomere length

analyses. Asterisks in (B) indicate subpopulations of long telomeres.

(TIF)
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