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Abstract: Initial conditions (pre-equilibrium or after the first flooding of the column), mass transfer
mechanisms and sample composition (heterogeneity) have a strong impact on leaching of less and
strongly sorbing compounds in column percolation tests. Mechanistic models as used in this study
provide the necessary insight to understand the complexity of column leaching tests especially when
heterogeneous samples are concerned. By means of numerical experiments, we illustrate the initial
concentration distribution inside the column after the first flooding and how this impacts leaching
concentrations. Steep concentration gradients close to the outlet of the column have to be expected
for small distribution coefficients (Kd < 1 L kg−1) and longitudinal dispersion leads to smaller
initial concentrations than expected under equilibrium conditions. In order to elucidate the impact
of different mass transfer mechanisms, film diffusion across an external aqueous boundary layer
(first order kinetics, FD) and intraparticle pore diffusion (IPD) are considered. The results show that
IPD results in slow desorption kinetics due to retarded transport within the tortuous intragranular
pores. Non-linear sorption has not much of an effect if compared to Kd values calculated for the
appropriate concentration range (e.g., the initial equilibrium concentration). Sample heterogeneity in
terms of grain size and different fractions of sorptive particles in the sample have a strong impact
on leaching curves. A small fraction (<1%) of strongly sorbing particles (high Kd) carrying the
contaminant may lead to very slow desorption rates (because of less surface area)—especially if
mass release is limited by IPD—and thus non-equilibrium. In contrast, mixtures of less sorbing fine
material (“labile” contamination with low Kd), with a small fraction of coarse particles carrying the
contaminant leads to leaching close to or at equilibrium showing a step-wise concentration decline in
the column effluent.

Keywords: leaching test; equilibrium condition; non-equilibrium condition; modelling; sorption
kinetics; non-linear sorption; heterogeneity

1. Introduction

Leaching tests are widely used for the determination of contaminant release rates
from soils [1–4], recycling materials [5–11], construction products [12–16], radioactive and
other waste materials [17,18]. Compared to traditional batch shaking tests, column tests
are preferred for assessing the risk of release of potential pollutants into groundwater or
surface waters because they are closer to natural conditions [19,20]. Different mechanisms
controlling desorption kinetics may result in complex leaching behaviors. While initially
the observed column effluent concentration often reflects equilibrium conditions between
the solid phase (incl. intraparticle pores) and the mobile aqueous phase [21,22], the con-
centrations decrease and often an extended tailing is observed due to slow desorption
processes such as intraparticle diffusion [23–25].

Although most leaching test procedures aim at equilibrium conditions in the column
before the leaching starts, the true concentration distribution before the start of the perco-
lation depends not only on the test procedure (contact time, pre-equilibration time, flow
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velocity during first flooding) but also on the properties of both the solid material and the
pollutant of interest [26]. Equilibration and long-term leaching are further complicated if
the test sample consists of a heterogeneous mixture of different material types and grain
sizes [26–28], which is the common case if waste materials such as demolition waste or
soils are tested.

Finkel and Grathwohl (2017) evaluated the role of initial conditions for column leach-
ing tests with intraparticle pore diffusion models by comparing the hypothetical scenarios,
a perfectly equilibrated column vs. a column that wasn’t equilibrated at all [26]. They
could show that in many practical cases, peak and cumulative leachate concentrations
are rather independent of the initial conditions. However, if release kinetics are slow due
to large grain size or small intragranular porosity, the sensitivity to initial conditions is
relevant, in particular for initial peak and early cumulative leachate concentrations.

The shortcomings of all previous studies [26,29,30], is that only uniform initial con-
centrations in the columns were considered in the leaching models. However, due to the
specific conditions during the flooding of the column filled with initially dry material, the
true initial conditions at the start of the leaching test may considerably deviate from this
ideal, i.e., uniform distribution.

Against this background, the objectives of this study are (i) to illustrate the possibly
non-uniform initial conditions that may be achieved after the first flooding of the column,
(ii) to show the impact of these initial conditions on the temporal development of the
effluent concentrations, and (iii) to investigate how heterogeneous mixtures of particles
having different properties affect both the initial conditions in the column and the leaching
of the solutes. To achieve that, we used numerical solutions for flow and transport in a
column coupled to two kinetic models: (i) solute diffusion through an aqueous boundary
layer and (ii) intraparticle pore diffusion. The implementation of the numerical models is
described in detail in the appendices.

2. Theory and Background
2.1. Local Equilibrium: The Advection—Dispersion Equation

In order to facilitate the understanding of mass transfer-limited cases of contaminant
release in a column, we briefly introduce the equilibrium case for which the advection-
dispersion model is commonly used:

∂

∂t
(n Cw + ρb Cs) +

∂

∂x

(
n v Cw − n DL

∂Cw

∂x

)
= 0 (1)

where v [L T−1], n [-] and DL (= αv+ Dp) [L2 T−1] denote the seepage velocity of the water,
the intergranular porosity and the longitudinal dispersion coefficient. α [L], Dp (=nDaq)
[L2 T−1] and Daq [L2 T−1] denote the dispersivity, the pore diffusion coefficient and the
aqueous diffusion coefficient of the solute. x [L] and t [T] are the length of the column and
time. ρb (= (1− n)ρs) [M L−3] is the dry bulk density of the packed bed in the column
(porous media; ρs is the solids density). For local equilibrium conditions the concentration
in the solid phase (Cs) is in equilibrium with the solute concentration in water (Cw) and
the distribution coefficient Kd (= Cs/Cw) allowing for the calculation of the respective
concentrations. Under these conditions, Equation (1) can be simplified as:

∂Cw

∂t
=

DL
Rd

∂2Cw

∂x2 −
v

Rd

∂Cw

∂x
(2)

where Rd [-] represents the retardation factor, defined as:

Rd = 1 + Kd
ρb
n

(3)
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Assuming equilibrium conditions and an initially uniform distribution of the solute
in the column, leaching may be described by the analytical solution of Equation (2) [31]:

Cw

Cw,eq
= 1− 0.5

erfc

 x− v
Rd

t

2
√

DL
Rd

t

+ exp
(

v x
DL

)
erfc

 x + v
Rd

t

2
√

DL
Rd

t

 (4)

where erfc denotes the complementary error function. The aqueous concentration at
equilibrium, Cw,eq, can be calculated from the initial solid concentration (Cs,ini) accounting
for the mass balance when the contaminant mass in the water is equilibrated with the mass
in the solid:

Cw,eq =
Cs,ini

Kd +
n
ρb

(5)

The ratio n/ρb [L3 M−1] equals the liquid to solid ratio within the column, which in
most cases is much smaller than in a batch leaching test (e.g., 0.25 L kg−1 for a column test
with a porosity of n = 0.4 and a solid density of ρs = 2.65 g cm−3, compared to e.g., 10 L
kg−1 in a batch test). Since leaching tests start for practical reasons with material packed
more or less dry into the column, a uniform initial concentration is not necessarily achieved
during the first flooding of the column. Initial conditions as assumed in Equation (4)
(uniform concentration distribution), would only be achieved if the material is first mixed
with water, equilibrated and then packed into the column, which is not practical. During
the first flooding of the column, especially less sorbing solutes are displaced from the inlet
and higher concentrations occur towards the outlet, as illustrated in Figure 1 (see also
Appendix E). This may be accounted for by subtracting the distance of the solute displaced
initially (x/Rd with Rd > 1) in Equation (4):

Cw
Cw,eq

= 1− 0.5

erfc

 (
x− x

Rd

)
− v

Rd
t

2
√

DL
Rd

t


+ exp

(
v
(

x− x
Rd

)
DL

)
erfc

 (
x− x

Rd

)
+ v

Rd
t

2
√

DL
Rd

t

 (6)
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Figure 1. Initial concentration distribution in a column of length x for the “pre-equilibrated” case
(dashed line) and after the first flooding of an initially dry column from the bottom (solid line); no
dispersion, Rd = 2, after Grathwohl and Susset, 2009 [21].
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In this case the initial solute concentration (Cw,eq) in the column effluent is in equi-
librium with the initial concentration in the solids (Cw,eq = Cs,ini/Kd) and higher than
calculated in Equation (5), especially if Kd values are low.

In order to explore the influence of mass transfer limitations on initial and long-
term solute concentrations in column tests, two relevant mass transfer mechanisms are
compared: (1) film diffusion where diffusion from the solid-water interface occurs through
an aqueous boundary layer with a given thickness and (2) intraparticle pore diffusion
where diffusion inside the porous particle limits mass transfer.

2.2. Desorption Kinetics Limited by Film Diffusion

The simplest model for the kinetic release of a solute from solids considers diffusion
through an aqueous boundary layer surrounding spherical particles (Figure 2). Such film
diffusion models are also widely used for the dissolution of minerals with high solubilities
(e.g., salts). The solute release from the solid surface into the bulk water phase can be
described by a linear driving force with constant mass transfer coefficient k = Daq/δ f :

∂Cw

∂t
= k Ao(C′w − Cw

)
=

Daq

δ f

md 6
ρs d Vw

(
C′w − Cw

)
(7)

where δ f [L], Vw [L3], md [M] and d [L] denotes the thickness of the external film, the
volume of water, the dry mass of the solids in the column and the particle diameter,
respectively. Ao (= 6 md/(Vw ρs d)) is the specific surface area of the particles per unit
volume of water in the column [m2 m−3 = m−1] (the term 6/ρs d) represents the specific
surface area of spherical particles per dry mass, e.g., in m2 g−1). C′w is the concentration
at the solid-water interface where local equilibrium conditions apply (C′w = Cs/Kd). The
external film thickness (δ f ) can be estimated from empirical Sherwood numbers (Sh) and
the particle diameter (d):

Sh =
kd

Daq
=

d
δ f
→ δ f =

d
Sh

(8)
Materials 2021, 14, x FOR PEER REVIEW 5 of 33 
 

 

 
Figure 2. Scheme of mass transfer limited by film diffusion during the first flooding with fixed con-
centration at the interface (because the infiltrating water is always contacting fresh material as it 
advances). 

2.3. Desorption Limited by Intraparticle Pore Diffusion  
If the release of compounds from the solid phase is governed by intra-granular dif-

fusion, e.g., within a porous grain (Figure 3), then mass transfer is described by Fick’s 
second law in radial coordinates: 𝜕𝜕𝑡 𝜀 𝐶 , + 𝜌 𝐶 = 𝐷 𝜕 𝐶 ,𝜕𝑟 + 2𝑟 𝜕𝐶 ,𝜕𝑟  (11) 

with the boundary conditions  𝐶 , (𝑟 = 𝑅, 𝑡) = 𝐶  (12) 𝜕𝐶 ,𝜕𝑟 (𝑟 = 0, 𝑡) = 0 (13) 

r [L] is the radial coordinate in the sphere and 𝐷  [L2 T−1] the effective diffusion coeffi-
cient. 𝐶 ,  [M L−3] is the concentration of solute in the intra-granular pore water. 𝜀 [-] 
denotes the intraparticle porosity. 𝑅 [L] and 𝜌  [M L−3] (= 𝜌 (1 − 𝜀)) denote the radius 
and bulk density of the particle (sphere).  

 
Figure 3. Scheme of mass transfer limited by intraparticle pore diffusion. 
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concentration at the interface (because the infiltrating water is always contacting fresh material as
it advances).

For an overview on empirical relationships for the estimation of Sherwood numbers
see Appendix A. The mass balance in such two-phase systems expressed by their respective
rates is:

Vw
∂Cw

∂t
= −md

∂Cs

∂t
(9)
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Thus, the solute mass gained (or lost) by the water phase equals the solute mass lost
(or gained) from the solid phase. If Vw and md in a packed bed (porous media) are replaced
by n and ρb, the density of the solids (ρs) in Equation (7) drops out. Film diffusion coupled
to the one-dimensional advection-dispersion equation (Equation (1)) yields:

∂Cw

∂t
= DL

∂2Cw

∂x2 − v
∂Cw

∂x
+

Daq

δ f

6 (1− n)
n d

(
Cs

Kd
− Cw

)
(10)

Using the finite volume method, the column is spatially discretized by a number of
cells (see Figure A1) and the governing equation (Equation (10)) is solved iteratively by
employing the Newton–Raphson scheme. Details of the numerical solution of the film
diffusion model are presented in Appendix B.

2.3. Desorption Limited by Intraparticle Pore Diffusion

If the release of compounds from the solid phase is governed by intra-granular diffu-
sion, e.g., within a porous grain (Figure 3), then mass transfer is described by Fick’s second
law in radial coordinates:

∂

∂t
(
ε Cw,intra + ρpCs

)
= De

[
∂2Cw,intra

∂r2 +
2
r

∂Cw,intra

∂r

]
(11)

with the boundary conditions

Cw,intra(r = R, t) = Cw (12)

∂Cw,intra

∂r
(r = 0, t) = 0 (13)

r [L] is the radial coordinate in the sphere and De [L2 T−1] the effective diffusion coefficient.
Cw,intra [M L−3] is the concentration of solute in the intra-granular pore water. ε [-] denotes
the intraparticle porosity. R [L] and ρp [M L−3] (= ρs(1− ε)) denote the radius and bulk
density of the particle (sphere).
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For linear sorption with concentration independent distribution coefficients (i.e.,
Cs = Kd Cw,intra) Equation (11) becomes:

∂Cw,intra

∂t
= Da

[
∂2Cw,intra

∂r2 +
2
r

∂Cw,intra

∂r

]
(14)
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where Da [L2 T−1] is the apparent diffusion coefficient, defined as:

Da =
De

ε + Kdρp
=

Daqε

τ
(
ε + Kdρp

) ≈ Daqε2

ε + Kd(1− ε)ρs
(15)

Empirical studies showed that De increases approximately with the square of the
porosity [32]. This corresponds to a tortuosity τ [-] of the intra-granular pores—if expressed
as a function of intra-granular porosity—of τ ≈ 1/ε.

Considering intraparticle diffusion, the advection-dispersion model (Equation (1)) can
be rewritten as:

∂

∂t
(
nCw + (1− n)

(
εCw,intra + ρpCs

))
+

∂

∂x

(
nvCw − nDL

∂Cw

∂x

)
= 0 (16)

The corresponding equilibrium concentration (Cw,eq) in water after first flooding can
be rewritten as Cw,eq = Cs,ini/(ε/ρp + Kd), which is slightly lower than for non-porous
solids (Cw,eq = Cs,ini/Kd) because the intragranular pore space is assumed to be initially
free of water. The deviation becomes insignificant with the increase of Kd (ε/ρp + Kd ≈ Kd
when Kd � ε/ρp).

Coupling the intraparticle pore diffusion model (Equation (11)) to the one-dimensional
advection-dispersion equation (Equation (16)) allows for the expression of the change of
the solute concentration in the bulk water:

∂Cw

∂t
= DL

∂2Cw

∂x2 − v
∂Cw

∂x
− (1− n)

n
De

[
∂2Cw,intra

∂r2 +
2
r

∂Cw,intra

∂r

]
(17)

The intraparticle pore diffusion model (Equations (11)–(13)) was implemented nu-
merically using a finite volume method where the spherical particle was discretized by a
number of spherical shells of equal volume (based on the method of Jäger and Liedl [28]).
The column was spatially discretized by a number of cells (see Figure A1) and all the
governing equations (Equations (11)–(13) and (17)) were solved iteratively applying the
Newton–Raphson scheme. Compared to the 1D film diffusion case, the intraparticle pore
diffusion case is more complicated and becomes a 2D problem. Details of the numerical
solution of the intraparticle pore diffusion model are given in Appendix C.

2.4. Set-Up of “Numerical” Column Tests

The boundary conditions of the numerical experiments are based on the set-up of
column tests in daily practice in Germany [21,33,34]. Table 1 lists the relevant material
properties and the parameter ranges applied. The saturation time for the first pore volume
of the column and the contact time (after the first flooding period) were set to 5 h. Initially,
experiments with uniform materials were simulated where the intraparticle porosity, distri-
bution coefficient, aqueous diffusion coefficient and tortuosity were set the same for each
grain size fraction. The Sherwood number in packed beds was estimated based on the em-
pirical formula proposed by Liu et al. (2014) (Equation (A3)) [35]. In order to illustrate the
influence of longitudinal dispersion on the initial concentration distribution in the column
after the first flooding, we used fine particles (dp, f ine = 63 µm) where kinetics are very
fast, and the local equilibrium assumption is valid. The numerical model did not consider
dispersion beyond the outlet of the column. Non-linear sorption was simulated using the

Freundlich model (Cs = K f rC
1
n
w where K f r and 1/n denote the Freundlich coefficient and

Freundlich exponent, respectively).
Many factors may contribute to sample heterogeneity, such as grain size distribu-

tion and particle properties (sorption, porosities, etc.). To highlight the impact of particle
size and properties we focused on two grain size classes and different fractions of sorp-
tive/reactive particles in the sample. Distribution coefficients were varied in a range of
0.1–100 L kg−1. Lower Kd values (<0.1 L kg−1) were not considered here (this would
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have resulted in very high initial aqueous concentrations). If the Kd values become large
(Kd > 100 L kg−1), then the differences between the pre-equilibrated case and the “first
flooding” scenario vanish and effluent concentrations are constant over long time periods.
The Kd range chosen covers many frequent environmental contaminants, such as per- and
polyfluoroalkyl substances (PFAS), chlorinated solvents, polycyclic aromatic hydrocarbons
and some heavy metals.

Table 1. Summary of parameter values and ranges used to set up the numerical experiments.

Property Symbol (Unit) Reference and
[Alternative Values]

Net column length Xcol (cm) 30
Inner column diameter Dc (cm) 5.46
Total volume of column Vtot (L) 0.70
Dry solid density ρs (kg L−1) 2.60
Inter-granular porosity n (-) 0.45
Intraparticle porosity ε (-) 0.05
Solid mass in column md (kg) 1
Liquid to solid ratio in column LScol (L kg−1) 0.31
Initial concentration in solid phase Cs,ini (µg kg−1) 1000
Contact time tc (h) 5
Dispersivity α (m) [0, 0.03]
Water flow velocity v (m s−1) 1.67 × 10−5

Aqueous diffusion coefficient Daq (m2 s−1) 1 × 10−9

Particle diameters d (µm) [63, 2000]
Distribution coefficients Kd (L kg−1) [0.1, 1, 10, 100]
Freundlich coefficients K f r (µg kg−1:(µg L−1)1/n) [1.58, 7.94, 39.81]
Freundlich exponent 1/n 0.7
Sherwood number Sh = 2 + 0.1Pe1/2 (-) [2.1, 2.6]

3. Results and Discussion
3.1. Impact of Initial Conditions on Leaching

In order to investigate the impact of initial conditions on leaching behavior, we
compared two scenarios: (1) a column filled with pre-equilibrated material where the
initial concentration distribution in the column was uniform (Cw,eq = Cs,ini/

(
Kd +

n
ρb

)
)

and (2) columns with non-uniform concentration distributions after first flooding where
concentrations increased towards the outlet (to a maximum of Cw,eq = Cs,ini/Kd) while
at the inlet the solute was already depleted. To illustrate this, we used the film diffusion
model with fine grain sizes, and thus, fast kinetics (local equilibrium conditions). Figure 4
shows the initial aqueous concentration distribution in the up-flow column test after the
first flooding of the column compared to the pre-equilibrium case. The results show that
the differences in the initial concentration profiles became smaller with increasing sorption.
At high Kd values, the deviation of the initial concentration profiles only occurred at the
inlet of the column. At low Kd values, very high concentrations are expected at the column
outlet; in extreme cases this may lead to a density increase in the leachate and—especially if
flow is stopped—to density driven flow within the column. This would cause dilution and
lower leachate concentrations when the flow is restarted as was potentially observed by
Naka et al. [36]. Density driven mixing may be caused by soluble materials, e.g., sulphate
or other salts and not necessarily the target compounds. This phenomenon is quite similar
to the case where the dispersion is taken into account (see bottom curves of Figure 4 and
also Figures S1–S8 in SM), which leads to more “mixing” in the column and thus lower
initial concentrations at the outlet, especially for low Kd values.
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with dispersion; n = 0.45, v = 1.67 × 10−5 m s−1, α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1, tc = 5 h,
dp, f ine = 63 µm.

Figure 5 shows how the initial conditions (pre-equilibrated column and column after
first flooding) influence the leaching curves. Compared to the pre-equilibrated case, a
higher equilibrium concentration appeared at the outlet of the column after the first flooding
period and more contaminant mass was released from the column at early times, followed
by a rapidly decreasing concentration (see Figure 5, 2nd row). The deviations vanished with
increasing Kd and became almost insignificant for Kd ≥ 10 L kg−1. Dispersion also reduces
differences between the pre-equilibrated and the first flooding case. At high Kd values, the
maximum concentrations were still achieved but the tailings became smoother. With the
decrease of the Kd value, the concentration gradients at the inlet became steeper and the
“back” dispersion fluxes towards the outlet increased as well. In extreme cases, the peak
concentration at the column outlet was smaller than the maximum concentration expected
(e.g., Kd = 0.1 L kg−1). The effect of initial conditions on normalized concentrations
looks like a phase shift (see Figure 5, 1st row). This would lead to an underestimation
of Kd values derived from the pre-equilibrium analytical solution (Equation (4)) if the
conditions in the column after the first flooding are not appropriately considered. The
lower the Kd, the earlier the cumulative leachate concentration reaches its maximum
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value (mcum, max = 1000 µg kg−1). Dispersion shifts this point to later times (see Figure 5,
3rd row).
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Figure 5. Normalized and absolute concentration (Cw/Cw,eq, Cw) as well as cumulative concentration
(mcum ) in the column effluent vs. time (expressed as liquid to solid ratio: LS) for the initial conditions
(depicted in Figure 4) established after the first flooding of the column (solid lines) compared to the
pre-equilibrated case (dashed lines). Left column: without dispersion; right column: with dispersion.

3.2. Initial Conditions and Leaching with Mass Transfer Limitations

Mass-transfer limitations may change the picture considerably, with respect to initial
conditions and the development of leachate concentrations over time. Figure 6 shows
the influence of film diffusion (FD) compared to intraparticle pore diffusion (IPD) limited
desorption on the initial concentration distribution in the column after the first flooding
period. For large Kd values, equilibration is achieved after shorter distances in the column
because of the retardation of the clean water front. The deviations between FD and IPD are
due to different mass transfer zone lengths, Xs,63.2% (see Appendix D for a discussion of
the concept and calculation of this length for FD and IPD). For FD, the mass transfer zone
length is independent of the Kd value and proportional to the particle size (Equation (A28)).
In contrast, for IPD the length of the mass transfer zone increases with particle size to the
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power of 3/2 (d3/2) and decreases with
√

Kd (Equation (A32)) (e.g., Xs,63.2% = 10 cm, 3.5 cm,
and 1.1 cm for Kd values of 0.1 L kg−1, 1 L kg−1 and 10 L kg−1 (see Figure A2)). The length
of the mass transfer zone for IPD is much longer than for FD, but differences decrease with
increasing Kd values. For Kd values of 1 L kg−1 and 10 L kg−1, the mass transfer zone
lengths for IPD are much shorter than the column length (Xcol = 30 cm), which indicates
that the equilibrium concentration is achieved at the outlet of the column after the first
flooding. For small Kd values (e.g., Kd = 0.1 L kg−1), the equilibrium concentrations are not
achieved at the outlet if dispersion is considered (see Figure 6, lower panel) although the
mass transfer zone length (Xs,63.2% = 10 cm) is still shorter than the column length. This
is because the “clean” water front is close to the column outlet and dispersion “dilutes”
the steep concentration gradients (“back dispersion”). The deviations between FD and fast
kinetics almost vanish when dispersion is considered, indicating that with film diffusion,
equilibrium is almost achieved. The development of the concentration distribution for IPD
is also illustrated in animated graphs provided in the Supplementary Material (SM).
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Figure 6. Initial aqueous concentration distributions in the column after the first flooding depend-
ing on the mass transfer limitation; dotted lines: film diffusion (FD), dashed lines: intraparticle
diffusion (IPD); solid lines: fast kinetics (equilibrium, fine particles). Top panel: without dispersion;
bottom panel: with dispersion; n = 0.45, v = 1.67 × 10−5 m s−1, α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1,
tc = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm, dp, f ine = 63 µm.
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Figure 7 shows concentrations in aqueous leachates that correspond to the initial con-
ditions shown in Figure 6. If leaching is limited by IPD, then the leaching process is slower
and concentrations at early times are considerably lower than in the FD or the equilibrium
model. This is due to the retarded diffusive transport within the tortuous intragranular
pores and the correspondingly small effective diffusion coefficients (De). The contaminant
release rate becomes lower and lower over time. Leachate concentrations decrease first
with the square root of time (typical for transient diffusion) and then exponentially (see
Figure 7 without dispersion, and Appendix D for details about the development of the
internal mass transfer resistance over time). Note, the cumulative concentration curves
confirm the mass conservation of the numerical solutions.
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Figure 7. Normalized concentrations (Cw/Cw,eq) as well as cumulative concentrations (mcum ) in the
column effluent vs. time (expressed as liquid to solid ratio: LS) for different mass-transfer processes,
given the initial conditions depicted in Figure 6. Left column: without dispersion; Right column:
with dispersion.

3.3. Nonlinear Sorption Isotherms

For many of the environmental contaminants and solid materials that are typically
analyzed in column leaching tests, non-linear sorption isotherms describe the distribution
of solutes between the aqueous and solid phases. The significance of this non-linearity
for the development of the conditions in the column before the leaching starts has been
analyzed exemplarily by defining Freundlich isotherms that result in the same “effective”

Kd for the aqueous concentration at equilibrium: K f r = Kd/C
1
n−1
w,eq .

Figure 8 shows the influence of nonlinear sorption on both the initial concentrations in
the column and the leaching curves for the example of Kd = 1 L kg−1 when no dispersion
is considered. The differences in the concentration distribution before percolation starts
are moderate. Concentration profiles tend to be smoother with nonlinear sorption with
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a slightly lower maximum concentration at the column outlet for low to mid Kd values
if dispersion is considered (see SM, Figure S1). Differences become more obvious in the
tailing part of the leaching curves. Freundlich exponents smaller than 1 result in a longer
tailing as is expected. The effect of nonlinear sorption looks similar to the dispersion effect,
in both cases the leaching curves show more tailing (see SM, Figure S2). Nonlinearity of
sorption is notably less significant than kinetic limitations in the mass transfer mechanisms.
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coefficient K f r = 7.94, exponent 1/n = 0.7); n = 0.45, v = 1.67 × 10−5 m s−1, α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1, tc = 5 h,
Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm.

3.4. Impact of Heterogeneous Sample Composition

Real world materials that are typically investigated in leaching tests are not always
homogeneous. Although the sample might be addressed as ‘one material’, its individual
grains have different sizes and differ most likely also in other properties such as porosity,
tortuosity, sorption capacity, etc., and may contain different amounts of the contaminants
of interest. In order to illustrate the impact of material heterogeneity, we have carried out
several numerical leaching experiments with hypothetical material compositions.

First, we consider three bi-modal material compositions. Each of these compositions
consist of a fraction of contaminated particles (e.g., particulate organic carbon particles with
high Kd) and another fraction of particles that neither contain contaminants nor possess any
sorption capacity. If equilibrium conditions prevail during the first flooding and leaching,
the heterogeneity of the sample does not matter, it is simply the average Kd (Kd,av) that
rules. The situation changes if mass transfer between the solid and the aqueous phases is
limited due to diffusion (FD or IPD). If only a small fraction of the particles in the sample
carries the compounds of interest, the volume of particles released by the compound and
thus the surface area available for mass transfer becomes much smaller. This may lead
to pronounced non-equilibrium conditions after first flooding (see, e.g., Equations (A26)
and (A30)) and during leaching. Figure 9 shows a comparison of the initial concentration
profiles in the column after the first flooding, as well as the corresponding leaching curves
that would develop for the three bi-modal material compositions (100/10/1% of the
material is contaminated at a Kd = 1/10/100 L kg−1, respectively). A small fraction of
strong sorbents showed lower desorption rates compared to a large fraction of the weak
sorbents. For this “exotic” case where only 1% of the particles carries all the contamination,
initial nonequilibrium and long tailing was observed. This effect was very pronounced
for intraparticle pore diffusion; the concentrations initially started on a plateau (“like
equilibrium”), but then rapidly declined and showed a pronounced tailing and decrease
with the square root of time (or LS). It may be noted, that longitudinal dispersion becomes
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less relevant if non-equilibrium conditions prevail at high Kd values (see Figures S3 and S4
in SM). If such pronounced initial nonequilibrium is observed, then extended periods
of time would be needed to equilibrate the water in the column with the solids (e.g., a
manifold of the contact time of 5 h).
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as well as leaching (Figure 10) occurs under conditions close to equilibrium for both grain 
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Figure 9. Behavior of bi-modal material compositions of sorbing and non-sorbing particles: initial
concentration distribution in the column after the first flooding (top panel) and column effluent con-
centration (normalized: mid panel, cumulative: bottom panel) vs. time (expressed as liquid to solid
ratio: LS). Left column: homogeneous case with average Kd (= Kd,av = 1 L kg−1); mid column: only
10% of the particles carry the contaminant at Kd = 10× Kd,av; right column: only 1% of the particles
carry the contaminant at Kd = 100× Kd,av; the average Kd,av of the entire material is the same for all
compositions; solid lines: film diffusion cases, dashed lines: intraparticle diffusion case; n = 0.45,
v = 1.67 × 10−5 m s−1, α = 0 (no dispersion), Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1 × 10−9 m2 s−1,
ε = 0.05, dp,coarse = 2000 µm.

Samples consisting of mixtures of different particle sizes represent another typical and
frequently occurring case of material heterogeneity. To illustrate the impact of such grain
size heterogeneity, two bi-modal grain size distributions are considered here, introducing
two grain sizes, coarse particles having a diameter of dp,coarse = 2000 µm, and fine particles
with dp, f ine = 63 µm. The 1st hypothetical grain size distribution consists of 10% fine
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particles and 90% coarse particles, the 2nd distribution of 90% fine particles and 10%
coarse particles.

If mass transfer is limited by film diffusion, the establishment of the initial conditions
as well as leaching (Figure 10) occurs under conditions close to equilibrium for both grain
size distributions at all Kd values (0.1, 1, and 10 L kg−1). While the shapes of all leaching
curves are very similar, their locations are shifted in time according to the different Kd
values by a factor of 10. If intraparticle pore diffusion is considered, tailing is observed if
coarse particles predominate. This applies to both, the development of initial conditions in
the column and leaching. If fine particles predominate, the leaching is close to equilibrium
at early times; at later times, tailing is observed with the typical square root of time
behavior. Considering the dispersion effect, non-equilibrium concentrations can be seen at
the column effluent after first flooding especially at low Kd values (Kd =0.1 L kg−1). Initial
non-equilibrium conditions become more salient for intraparticle pore diffusion if coarse
particles predominate (see Figures S5 and S6 in SM).
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Figure 10. Behavior of the bi-modal material compositions of fine and coarse particles: initial
concentration distribution in the column after the first flooding (top panel) and column effluent
concentration (normalized: mid panel, cumulative: bottom panel) vs. time (expressed as liquid
to solid ratio: LS); solid lines: fine particle mass fraction 10%; dashed lines: fine particle mass
fraction 90%. (n = 0.45, v = 1.67 × 10−5 m s−1, α = 0 (no dispersion), Cs,ini = 1000 µg kg−1, tc = 5 h,
Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm, dp, f ine = 63 µm).



Materials 2021, 14, 4708 15 of 32

Combining the heterogeneity of particle size (d) and sorption capacity (Kd), we con-
sider three material compositions in the third case, which aims at showing circumstances
where strong non-equilibrium conditions may be expected. For many materials this is
probably not very realistic, but it may occur in material mixtures where a small particle
fraction carries a “labile” contamination with a low Kd vs. just a few large particles car-
rying the contaminant with a large Kd. A hypothetical mixture containing 10% of fine
particles with low sorption capacity (Kd = 10 L kg−1) and 90% of coarse particles with
high sorption capacity (Kd = 100 L kg−1) is compared with two extreme cases where
a hypothetical sample only contains pure fine particles with low sorption capacity and
another hypothetical sample contains pure coarse particles with high sorption capacity.
Figure 11 shows the initial concentration distribution for these three compositions after the
first flooding period as well as the corresponding leaching curves. Sorption equilibrium
is achieved rapidly if the sample consists of only fine particles with a small Kd or only
coarse particles with a high Kd. Pure coarse material with a high Kd shows a low equi-
librium concentration (Cw,eq = Cs,ini/Kd = 1000 µg kg−1/100 L kg−1 = 10 µg L−1) while
pure fine material with a low Kd presents a much higher equilibrium concentration
(Cw,eq = Cs,ini/Kd = 1000 µg kg−1/10 L kg−1 = 100 µg L−1) after a short flow distance. In-
terestingly, the mixed case where 10% of the column is fine material caused a high concen-
tration which would be sorbed by the coarse materials leading to a slightly higher plateau
concentration compared to pure coarse materials. The pollutants were redistributed be-
tween fine and coarse materials during the first flooding of the column. The concentration
increase towards the outlet of the column in the mixed case is due to fast desorption from
the fine material followed by slow sorption by the coarse material. The redistribution is
almost complete at the inlet of the column because of the long residence time (tc = 5 h).
Since the fine particles make up only to 10% of the total mass, they are already depleted in
contaminant concentrations inside the column and in equilibrium with the coarse particles
(reflecting both extreme cases). The front of the high concentration caused by the fine
particles is already close to the outlet, while the rest is in equilibrium with the 90% coarse
particle fraction.

The leaching curve of the mixed case (red lines) reflects the properties of the two pure
(homogeneous) cases with either fine or coarse particles. Ten percent of the fine particles
with low sorption capacity led to a peak effluent concentration which was only slightly
lower than the equilibrium concentration of the pure fine particles with low sorption
capacity. However, because the fine particles made up only 10% of the total mass, this
peak concentration leached out rapidly and the eluate concentrations followed the coarse
particles with a high sorption capacity for long time periods (blue curves). Although this
may appear to indicate non-equilibrium conditions (because of the rapid initial decline
of the concentrations followed by a plateau or “tailing”), leaching from fine and coarse
particles occurs at, or close to equilibrium. Compared to FD, the IPD in the mixed sample
showed a slower concentration decline because of the desorption kinetics of the IPD of
the coarse particles was slower than the case of FD and on the long-term control release
kinetics. For the cumulative mass release the mixed case is close to the coarse material for
both the FD and the IPD, whereas the fine-grained particles showed a much higher and
faster release (see Figure 11: bottom panel).
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Figure 11. Behavior of bi-modal material compositions of fine particles with low sorption capacity
(Kd =10 L kg−1) and coarse particles with high sorption capacity (Kd = 100 L kg−1): initial con-
centration distributions in the column after the first flooding (top panel) and the column effluent
concentration (normalized: mid panel, cumulative: bottom panel) vs. time (expressed as liquid
to solid ratio: LS). Left column: 100% coarse particles; mid column: mixed sample with 10% fine
particles; right column: 100% fine particles; n = 0.45, v = 1.67 × 10−5 m s−1, α = 0 (no dispersion),
Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm, dp, f ine = 63 µm.

4. Summary and Conclusions

We conducted numerical simulations to investigate the release characteristics of low to
strongly sorbing compounds (Kd = 0.1–100 L kg−1) in column leaching tests. Two different
scenarios for the establishment of the initial conditions before the start of the leaching
phase were considered: a fully pre-equilibrated column and a more realistic scenario
where a column is flooded with water from the bottom. In order to highlight the effect of
mass transfer limitations, two mechanisms are compared: film diffusion and intra-particle
diffusion. Cases without and with dispersion illustrate how dispersive mixing may mask
diffusion limited mass transfer. Furthermore, we looked into the impact of heterogeneous
sample compositions in terms of reactive particle fractions and particle sizes. Since possible
parameter combinations amount to almost infinite numbers, we have limited our analysis
to just a few exemplary cases that illustrate the role of individual material properties.
These few cases already show that virtually any leaching behavior can be produced with
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highly heterogeneous samples (depending on the mixing of different materials). The most
important conclusions are:

Initial conditions have a significant impact on leaching at low Kd values (Kd < 1 L kg−1).
With increasing Kd, the differences between pre-equilibrium and non-equilibrium condi-
tions gradually vanish for Kd > 10 L kg−1 (see Figure 5). Compounds with very low Kd
(“salts”) would reach extremely high concentrations (Kd << 1 L kg−1) at the column outlet
(see Figure 4) potentially leading to enhanced dispersion due to density fingering. The Kd
values derived from retardation factors (Rd in Equation (4)) would be underestimated if
the conditions in the column after the first flooding are not appropriately considered, due
to a “phase shift” in normalized concentrations curves (Cw/Cw,eq vs. LS).

Dispersion generally causes “smoothing” of concentrations gradients in the column
and tends to “mask” film and intraparticle diffusion characteristics due to enhanced
“mixing” of the solute within the column. It may lead to smaller initial concentrations
at the column outlet after the first flooding period than expected for equilibrium; this
is pronounced especially at low Kd values (see Figure 7 and Figure S2), which may be
interpreted as non-equilibrium, but is just a consequence of dilution by dispersive mixing.

Intraparticle pore diffusion (IPD) generally shows slower desorption kinetics than
film diffusion (FD) through an aqueous boundary layer. This is due to the much smaller
effective diffusion coefficient in the intraparticle pores and the large diffusion distance
that develops inside the particle over time, resulting in the typical square root of time
decrease of concentrations (a slope of 1/2 is observed in log-log plots of leaching curves,
see Figures 7, 9 and 10). IPD is more sensitive to the variation of particle sizes than FD (see
Figure 10). Mass transfer limitations in an aqueous boundary layer commonly exists for
surface adsorbed compounds and easily soluble solids (“salts”). Elements such as heavy
metals, which are slowly released from the solid phase, would require much lower solid
state diffusion coefficients; if reaction fronts propagate into the particle releasing metals,
intraparticle (solid) diffusion models apply again (shrinking core), which are very similar
to the IPD approach used here.

Non-linear sorption has little influence on the leaching test results if the “right”
effective Kd value is calculated for the proper concentration range (since for the nonlinear
sorption the Kd depends on the concentration, large deviations may occur if just the K f r
is determined far away of the sample’s concentration is used as “Kd”); nevertheless, as
concentrations decrease nonlinear sorption causes more tailing (see Figure 8).

Heterogeneous samples with only a small fraction of strongly sorbing particles lead
to much slower desorption rates (because of less surface area), especially if mass release
is limited by intraparticle pore diffusion (see Figure 9). In extreme cases (just 1% of the
material is contaminated at Kd = 100× Kd,av), leaching may start at a plateau (suggesting
equilibrium), but far below equilibrium concentrations (Cw,peak � Cw,eq) and concentra-
tions later decrease further; The Kd values derived from the initial aqueous concentration
(Kd = Cs,ini/Cw,peak) would be overestimated while the Kd values calculated from retarda-
tion factors would be underestimated.

In contrast to that, already relatively small amounts of fine particles lead to initial
equilibrium, but long-term tailing occurs and is dominated by the coarse particle fraction,
especially for intraparticle pore diffusion. Since our FD simulations are close to equilibrium,
results are not very affected by grain size heterogeneity (see Figure 10). Material mixtures
of small amounts of fine particles (10%) with low sorption capacity (Kd =10 L kg−1) and
large amounts of coarse particles with high sorption capacity (Kd = 100 L kg−1), exhibit
the respective characteristics of each of the individual components in different time periods
(see Figure 11). Small amounts of fine particles with low sorption capacity dominate
short term behavior of the mixtures and lead to a peak effluent concentration (Cw,peak)
which approaches the equilibrium concentration expected for fine particles (see Figure 11).
Since the mass fraction of fine particles is small (10%), the leachate concentrations drop
rapidly and reach slightly higher equilibrium levels of 100% pure coarse particles due to the
redistribution of pollutants between fine and coarse particles. Ten percent of fine particles
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with low sorption capacity causes a high equilibrium concentration which are sorbed
by the coarse particles with high sorption capacity. Kd values derived from the initial
aqueous concentration (Kd = Cs,ini/Cw,peak) would be underestimated, while Kd values
derived from the following plateau concentration would be overestimated. Cumulative
mass release, however, is often quite insensitive to mass transfer mechanisms (FD or IPD)
especially for LS < 5 (see Figure 11).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14164708/s1, Figure S1. Initial concentration profiles in the column after the first flood-
ing (up-flow) without and with dispersion (top and bottom panel); solid lines: linear sorption;
dashed lines: non-linear sorption cases (based on a Freundlich exponent 1/n = 0.7), n = 0.45,
v = 1.67 × 10−5 m s−1, α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05,
dp,coarse = 2000 µm, Figure S2. Normalized concentrations (Cw/Cw,eq) as well as cumulative concen-
trations (mcum) in the column effluent vs. time (expressed as liquid to solid ratio: LS) for different
initial conditions depicted in Figure S1; solid lines: linear sorption; dashed lines: nonlinear sorption.
Left column: without dispersion; right column: with dispersion, Figure S3. Initial concentration distri-
bution in the column after the first flooding (up-flow) for different bi-modal compositions of sorbing
and non-sorbing particles; left column: homogeneous case with average Kd (=Kd,av = 1 L kg−1); mid
column: only 10% of the particles carry the contaminant at Kd = 10× Kd,av; right column: only 1%
of the particles carry the contaminant at Kd = 100× Kd,av; the average Kd,av of the entire material is
the same for all compositions; solid lines: film diffusion case, dashed lines: intraparticle diffusion
case. Top panel: without dispersion; bottom panel: with dispersion; n = 0.45, v = 1.67 × 10−5 m s−1,
α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm,
Figure S4. Normalized concentrations (Cw/Cw,eq) as well as cumulative concentrations (mcum) in the
column effluent vs. time (expressed as liquid to solid ratio: LS) for different combinations of sorbing
particles and distribution coefficients (initial conditions depicted in Figure S3); left: without disper-
sion; right: with dispersion; solid lines: film diffusion cases, dashed lines: intraparticle diffusion
cases, Figure S5. Initial concentration distribution in the column after the first flooding (up-flow) for
two different bi-modal grain size distributions of fine and coarse particles; solid lines: fine particle
mass fraction 10%; dashed lines: fine particle mass fraction 90%. (n = 0.45, v = 1.67 × 10−5 m s−1,
α/x = 0 or 0.1, Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm,
dp, f ine = 63 µm); top panel: without dispersion; bottom panel: with dispersion, Figure S6. Influence
of different grain size fractions and distribution coefficients on normalized concentrations (Cw/Cw,eq)
as well as cumulative concentrations (mcum) in the column effluent vs. time (expressed as liquid to
solid ratio LS); left: without dispersion; right: with dispersion; solid lines: fine particle mass fraction
10%; dashed lines: fine particle mass fraction 90%; kinetic parameters are the same as Figure S5,
Figure S7. Initial concentration distribution in the column after the first flooding (up-flow) for dif-
ferent bi-modal material compositions of fine particles with low sorption capacity (Kd = 10 L kg−1)
and coarse particles with high sorption capacity; left: 100% coarse particles (Kd = 100 L kg−1);
middle: mixed sample with 10% fine particles; right: 100% fine particles; solid lines: film diffusion
(FD), dashed lines: intraparticle diffusion cases (IPD); n = 0.45, v = 1.67 × 10−5 m s−1, α/x = 0 or 0.1,
Cs,ini = 1000 µg kg−1, tc = 5 h, Daq = 1× 10−9 m2 s−1, ε = 0.05, dp,coarse = 2000 µm, dp, f ine = 63 µm; top
panel: without dispersion; bottom panel: with dispersion, Figure S8. Leachate concentrations (Cw) as
well as cumulative concentrations (mcum) in the column effluent vs. time (expressed as liquid to solid
ratio: LS) for different combinations of fine particles with low sorption capacity (Kd = 10 L kg−1)
and coarse particles with high sorption capacity (Kd = 100 L kg−1); left: without dispersion; right:
with dispersion; solid lines: film diffusion cases, dashed lines: intraparticle diffusion cases; kinetic
parameters are the same as Figure S7.
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Appendix A. Empirical Relationships for the Estimation of Sherwood Numbers

There are many studies available in the literature in which solid-liquid mass transfer
in fluidized beds and flow through systems are investigated over a wide range of Reynolds
numbers. Most of these correlations can be adequately described by the following equation:

Sh = A + BReθScγ (A1)

where Sh is the Sherwood number. A is a constant (theoretically = 2 for spherical particles
in a stagnant infinite medium) and B is a constant to be determined by regression analysis
of experimental data. Re and Sc denote the Reynolds and Schmidt number which are
defined as:

Sc =
η

ρLDaq
Re =

ρLd v
η

(A2)

where η [M L−1 T−1] denotes the dynamic viscosity of the fluid. ρL [M L−3] is the density
of the fluid and v [L T−1] denotes the flow velocity.

The empirical exponents θ and γ in Equation (A1) may be determined experimentally
or from theory. The Blasius (1908) solved the Navier-Stokes equation and continuity
equation for laminar flow over a sharp leading edge and found that the ratio of fluid
velocity boundary layer thickness to concentration boundary layer thickness is proportional
to the Schmidt number with a power of 1/3 (= γ in Equation (A1)) which is widely used in
literature [37–43]. Liu et al. (2014) showed a higher empirical exponent γ of 1/2 based on
penetration theory [35,44]. θ values depend on the experimental setup and are generally
adapted from experimental data. Most of the empirical relationships show that θ values lie
in the range of 0.5–0.75 [35,37,39–43].

Liu et al. (2014) proposed an empirical relationship for mass transfer in packed beds
only based on the Peclet number (Pe = Re× Sc) [35]:

Sh = 2 + 0.1Pe1/2 (A3)

Equation (A3) is equivalent to Equation (A1) for θ = γ = 1/2. This Sherwood number
correlation was applied in the numerical models. Sh numbers obtained for the chosen
column setup were close to 2 indicating slow mass transfer close to the theoretical limit (2).

Appendix B. Film Diffusion Coupled to Advective-Dispersive Transport

Equation (10) in the main text shows the governing equations of film diffusion cou-
pled to advective-dispersive transport. These partial differential equations are solved
numerically using the finite volume method (as illustrated in Figure A1a).

Discretizing the transport operator in space while keeping the time derivative yields
the following system of ordinary differential equations:

∂Cw,j
∂t = DL

(Cw,j−1−2Cw,j+Cw,j+1)

∆x2 − v
(Cw,j−Cw,j−1)

∆x

+
Daq
δ f

6(1−n)
nd

(Cs,j
Kd
− Cw,j

)
∂Cs,j

∂t = −Daq
δ f

6
ρs d

(Cs,j
Kd
− Cw,j

) (A4)

where Cw,j [M L−3], Cw,j−1 [M L−3] and Cw,j+1 [M L−3] denote the solute concentration in
the water phase in volume j, j− 1 and j + 1, respectively. Cs,j [M M−1] denotes the solute
concentration in the solid phase in volume j.
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The approximation of the time derivative of Equation (A4) can be expressed as the
concentration difference between the new and the previous time, divided by the time
interval ∆t. A time weighting factor ϕ was used to navigate between implicit and explicit
time integration. For ϕ = 0.5, the Crank-Nicholson-scheme is realized, whereas for ϕ = 0
and ϕ = 1, the fully implicit and explicit scheme is used, respectively.
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(
Daq
δ f

6
ρs d

(
Ck

s,j
Kd
− Ck

w,j

))
(A5)

where the indices k and k + 1 denote the corresponding concentration values at the
previous time step and at the new time step.

In order to solve this system of equations, we may merge the two concentration vectors
into a single one (C = [Cw; Cs]; with the semicolon being a line delimiter):

C =



Cw,1
Cs,1

...
Cw,j
Cs,j

...
Cw,N
Cs,N


2N×1

=



C1
C2
...

C2j−1
C2j

...
C2N−1

C2N


2N×1

(A6)

with jε[1, 2, . . . , N].
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A standard method of solving non-linear ordinary equations is the Newton–Raphson
scheme [45]. It is based on linearizing the residual function f (Ck+1) at the current guess
Ck+1

guess of Ck+1. The residual function f (Ck+1) is defined as:

f2j−1 =
Ck+1

w,j −Ck
w,j

∆t

−(1− ϕ)

(
DL

(
Ck+1

w,j−1−2Ck+1
w,j +Ck+1

w,j+1

)
∆x2 − v
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Ck+1

w,j −Ck+1
w,j−1

)
∆x

+
Daq
δ f

6(1−n)
nd

(
Ck+1

s,j
Kd
− Ck+1

w,j

))
−ϕ
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DL
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Ck
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Daq
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Ck+1
s,j −Ck

s,j
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Daq
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(
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δ f

6
ρs d
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− Ck

w,j
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(A7)

The residual function vector can be expressed as:

f
(

Ck+1
)
=



f1
f2
...

f2j−1
f2j
...

f2N−1
f2N


2N×1

(A8)

The residual function vector becomes a zero vector if Ck+1 is chosen right and a single
step of the Newton–Raphson method can be denoted as:

f
(

Ck+1
)
≈ f

(
Ck+1

guess

)
+
(

Ck+1 − Ck+1
guess

)
∂ f (Ck+1)

∂Ck+1

∣∣∣∣
Ck+1=Ck+1

guess

Ck+1 = Ck+1
guess −

f (Ck+1
guess)
J = Ck+1

guess −
f (Ck+1

guess)
∂ f(Ck+1)

∂Ck+1

∣∣∣∣∣
Ck+1=Ck+1

guess

(A9)

where J denotes the Jacobian matrix, which is the matrix of derivatives of all values of
f
(

Ck+1
)

with respective to all values of Ck+1. The residual f
(

Ck+1
)

is reevaluated after

updating Ck+1. If the resulting residual is not sufficiently close to zero, Ck+1
guess is set to the

last solution of Ck+1 and Equation (A9) is reapplied. In our case, the Jacobian matrix can
be derived analytically:

J =



∂ f1
∂C1

∂ f1
∂C2

· · · ∂ f1
∂C2N−1

∂ f1
∂C2N

∂ f2
∂C1

∂ f2
∂C2

. . . ∂ f2
∂C2N−1

∂ f2
∂C2N

...
... · · ·

...
...

∂ f2N−1
∂C1

∂ f2N−1
∂C2

· · · ∂ f2N−1
∂C2N−1

∂ f2N−1
∂C2N

∂ f2N
∂C1

∂ f2N
∂C2

· · · ∂ f2N
∂C2N−1

∂ f2N
∂C2N


2N×2N

(A10)
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In order to ensure the accuracy of the model, error control was employed at each time
step and an error vector (∆Ck+1) was used to monitor the difference between the old and
new guess values, which is defined as:

∆Ck+1 =



∣∣∣Ck+1
1, guess,new − Ck+1

1, guess,old

∣∣∣∣∣∣Ck+1
2, guess,new − Ck+1

2, guess,old

∣∣∣
...∣∣∣Ck+1

2j−1, guess,new − Ck+1
2j−1, guess,old

∣∣∣∣∣∣Ck+1
2j, guess,new − Ck+1

2j, guess,old

∣∣∣
...∣∣∣Ck+1

2N−1, guess,new − Ck+1
2N−1, guess,old

∣∣∣∣∣∣Ck+1
2N, guess,new − Ck+1

2N, guess,old

∣∣∣


2N×1

(A11)

The iteration process stops if the maximum value of error vector ∆Ck+1
max is smaller than

the tolerable error e (e.g., e = 10−15).

Appendix C. Intraparticle Pore Diffusion Coupled to Advective-Dispersive Transport

Intraparticle pore diffusion is widely used to describe the sorptive uptake of pollu-
tants in porous materials such as activated carbon, zeolites and many technical materials.
Equations (11) and (17) describe intraparticle diffusion coupled to advective-dispersive
transport. The intraparticle diffusion model approximates the solid grains as spherical
particles. These spherical particles are discretized into a number of shells of equal volume.
Mass transfer between solid and intra-granular water phases is assumed to be fast and
local equilibrium is assumed. For sorption, the Freundlich isotherm model is employed for
nonlinear and linear (exponent = 1) cases. Figure A1b shows the numerical grain model
where the spherical grains are divided into L shells. For a specific shell p in volume j the
corresponding difference-equations were used [46]:
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) 1
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) 1
n
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) (A12)

where the subscripts p + 0.5 and p − 0.5 represent the corresponding parameter value
between shells (p and p + 1) and (p and p − 1), respectively. Subscript j denotes the
corresponding parameter value in volume j. Subscripts k and k + 1 denote the “old” and
“new” time levels.

Based on the boundary conditions (Equations (12) and (13), main text), the innermost
shell and the outermost shell are treated specially. The solute concentration in the intra-
granular water phase at the new time step (Ck+1

p,j ) can be expressed as:

[
ε + ρpK f r

(
Ck+1

p,j

) 1
n−1

+ De∆t
r2

p

1−ϕ
rp+0.5−rp−0.5

(
r2

p+0.5
rp+1−rp

+
r2

p−0.5
rp−rp−1

)]
Ck+1

p,j

=

[
De∆t

r2
p

1−ϕ
rp+0.5−rp−0.5

r2
p+0.5

rp+1−rp

]
Ck+1

p+1,j +

[
De∆t

r2
p

1−ϕ
rp+0.5−rp−0.5

r2
p−0.5

rp−rp−1

]
Ck+1

p−1,j

+

[
De∆t

r2
p

ϕ
rp+0.5−rp−0.5

r2
p+0.5

rp+1−rp

]
Ck

p+1,j +

[
De∆t

r2
p

ϕ
rp+0.5−rp−0.5

r2
p−0.5

rp−rp−1

]
Ck

p−1,j

+

[
ε + ρpK f r

(
Ck

p,j

) 1
n−1
− De∆t

r2
p

ϕ
rp+0.5−rp−0.5

(
r2

p+0.5
rp+1−rp

+
r2

p−0.5
rp−rp−1

)]
Ck

p,j

(A13)
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for shell p = 2 to shell p = L− 1 and

1
∆t

(
εCk+1

1,j + ρpK f r

(
Ck+1

1,j

) 1
n − εCk

1,j − ρpK f r

(
Ck

1,j

) 1
n
)

= De
r2

1

1−ϕ
r1+0.5−r1−0.5

(
r2

1+0.5
Ck+1

2,j −Ck+1
1,j

r2−r1

)
+ De

r2
1

ϕ
r1+0.5−r1−0.5

(
r2

1+0.5
Ck

2,j−Ck
1,j

r2−r1

)
After transformation :[

ε + ρpK f r

(
Ck+1

1,j

) 1
n−1

+ De∆t
r2

1

1−ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck+1

1,j

=

[
De∆t

r2
1

1−ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck+1

2,j +

[
De∆t

r2
1

ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck

2,j

+

[
ε + ρpK f r

(
Ck

1,j

) 1
n−1
− De∆t

r2
1

ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck

1,j

(A14)

for shell 1 (or the innermost shell, p = 1) and:

1
∆t

(
εCk+1

L,j + ρpK f r

(
Ck+1

L,j

) 1
n − εCk

L,j − ρpK f r

(
Ck

L,j

) 1
n
)

= De
r2

L

1−ϕ
R−rL−0.5

(
R2 Ck+1

w,j −Ck+1
L,j

R−rL
− r2

L−0.5
Ck+1

L,j −Ck+1
L−1,j

rL−rL−1

)
+De

r2
L

ϕ
R−rL−0.5

(
R2 Ck

w,j−Ck
L,j

R−rL
− r2

L−0.5
Ck

L,j−Ck
L−1,j

rL−rL−1

)
After transformation :[

ε + ρpK f r

(
Ck+1

L,j

) 1
n−1

+ De∆t
r2

L

1−ϕ
R−rL−0.5

(
R2

R−rL
+

r2
L−0.5

rL−rL−1

)]
Ck+1

L,j

=

[
De∆t

r2
L

1−ϕ
R−rL−0.5

R2

R−rL

]
Ck+1

w,j +

[
De∆t

r2
L

1−ϕ
R−rL−0.5

r2
L−0.5

rL−rL−1

]
Ck+1

L−1,j

+

[
De∆t

r2
L

ϕ
R−rL−0.5

R2

R−rL

]
Ck

w,j +

[
De∆t

r2
L

ϕ
R−rL−0.5

r2
L−0.5

rL−rL−1

]
Ck

L−1,j

+

[
ε + ρpK f r

(
Ck

L,j

) 1
n−1
− De∆t

r2
L

ϕ
R−rL−0.5

(
R2

R−rL
+

r2
L−0.5

rL−rL−1

)]
Ck

L,j

(A15)

for shell L (or the outermost shell, p = L).
Based on the mass balance, solute mass change in the external water phase (Mw)

equals the solute mass change in the spherical particles; for better understanding, the
simple case of particles with uniform size is shown:

∂Mw

∂t
= Vw

∂Cw

∂t
= 4πR2FNp (A16)

where F [M L−2 T−1] denotes the solute flux density into the external water phase. R and
Np denote the radius and the total number of the spherical particles. The latter can be
calculated by:

Np =
md

ρp

(
4
3 πR3

) (A17)

The solute flux density into the external water phase is given by:

F = De
CL − Cw

R− rL
(A18)
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Substituting F and Np with Equations (A18) and (A17) in Equation (A16) and taking
advection and dispersion into account, the solute concentration in the external water phase
at the new time step Ck+1

w,j can be expressed by:

Ck+1
w,j −Ck

w,j
∆t = (1− ϕ)

(
DL

(
Ck+1

w,j−1−2Ck+1
w,j +Ck+1

w,j+1

)
∆x2 − v

(
Ck+1

w,j −Ck+1
w,j−1

)
∆x

+ 3Demd
ρpVwR

(
Ck+1

L,j −Ck+1
w,j

R−rL

))
+ϕ

(
DL

(
Ck

w,j−1−2Ck
w,j+Ck

w,j+1

)
∆x2 − v

(
Ck

w,j−Ck
w,j−1

)
∆x

+ 3Demd
ρpVwR

(
Ck

L,j−Ck
w,j

R−rL

))
After transformation :

[1 + (1− ϕ)
(

3Demd∆t
ρpVwR(R−rL)

+ 2DL∆t
∆x2 + v∆t

∆x

)]
Ck+1

w,j

=
[
(1− ϕ)

(
DL∆t
∆x2 + v∆t

∆x

)]
Ck+1

w,j−1 +
[
(1−ϕ)DL∆t

∆x2

]
Ck+1

w,j+1

+
[
(1−ϕ)3Demd∆t
ρpVwR(R−rL)

]
Ck+1

L,j +
[

ϕ
(

DL∆t
∆x2 + v∆t

∆x

)]
Ck

w,j−1

+
[

ϕDL∆t
∆x2

]
Ck

w,j+1 +
[

ϕ3Demd∆t
ρpVwR(R−rL)

]
Ck

L,j

+
[
1− ϕ

(
3Demd∆t

ρpVwR(R−rL)
+ 2DL∆t

∆x2 + v∆t
∆x

)]
Ck

w,j

(A19)

In order to solve this system of equations, we may merge the two concentration vectors
to a single one (C = [Cw; Cp]; with the semicolon being a line delimiter):

C =



Cw,1
C1,1

...
Cp,1

...
CL,1

...
Cw,j
C1,j

...
Cp,j

...
CL,j

...
Cw,N
c1,N

...
Cp,N

...
CL,N


(L+1)∗N×1

=



C1
C2
...

Cp+1
...

CL+1
...

C(L+1)∗(j−1)+1
C(L+1)∗(j−1)+2

...
C(L+1)∗(j−1)+p+1

...
C(L+1)∗j

...
C(L+1)∗(N−1)+1
C(L+1)∗(N−1)+2

...
C(L+1)∗(N−1)+p+1

...
C(L+1)∗N


(L+1)∗N×1

(A20)

with pε[1, 2, . . . , L] and jε[1, 2, . . . , N].
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Using the Newton–Raphson scheme, the following residual function f (Ck+1) is lin-
earized at the current guess Ck+1

guess of Ck+1 [45]:

f(L+1)∗(j−1)+1 =
[
1 + (1− ϕ)

(
3Demd∆t

ρpVwR(R−rL)
+ 2DL∆t

∆x2 + v∆t
∆x

)]
Ck+1

w,j

−
[
(1− ϕ)

(
DL∆t
∆x2 + v∆t

∆x

)]
Ck+1

w,j−1 +
[
(1−ϕ)DL∆t

∆x2

]
Ck+1

w,j+1

−
[
(1−ϕ)3Demd∆t
ρpVwR(R−rL)

]
Ck+1

L,j −
[

ϕ
(

DL∆t
∆x2 + v∆t

∆x

)]
Ck

w,j−1

−
[

ϕDL∆t
∆x2

]
Ck

w,j+1 −
[

ϕ3Demd∆t
ρpVwR(R−rL)

]
Ck

L,j

−
[
1− ϕ

(
3Demd∆t

ρpVwR(R−rL)
+ 2DL∆t

∆x2 + v∆t
∆x

)]
Ck

w,j

f(L+1)∗(j−1)+2 =

[
ε + ρpK f r

(
Ck+1

1,j

) 1
n−1

+ De∆t
r2

1

1−ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck+1

1,j

−
[

De∆t
r2

1

1−ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck+1

2,j −
[

De∆t
r2

1

ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck

2,j

−
[

ε + ρpK f r

(
Ck

1,j

) 1
n−1
− De∆t

r2
1

ϕ
r1+0.5−r1−0.5

r2
1+0.5

r2−r1

]
Ck

1,j

f(L+1)∗(j−1)+p+1 =

[
ε + ρpK f r

(
Ck+1

p,j

) 1
n−1

+De∆t
r2

p

1−ϕ
rp+0.5−rp−0.5

(
r2

p+0.5
rp+1−rp

+
r2

p−0.5
rp−rp−1

)]
Ck+1

p,j

−
[

De∆t
r2

p

1−ϕ
rp+0.5−rp−0.5

r2
p+0.5

rp+1−rp

]
Ck+1

p+1,j −
[

De∆t
r2

p

1−ϕ
rp+0.5−rp−0.5

r2
p−0.5

rp−rp−1

]
Ck+1

p−1,j

−
[

De∆t
r2

p

ϕ
rp+0.5−rp−0.5

r2
p+0.5

rp+1−rp

]
Ck

p+1,j −
[

De∆t
r2

p

ϕ
rp+0.5−rp−0.5

r2
p−0.5

rp−rp−1

]
Ck

p−1,j

−
[

ε + ρpK f r

(
Ck

p,j

) 1
n−1
− De∆t

r2
p

ϕ
rp+0.5−rp−0.5

(
r2

p+0.5
rp+1−rp

+
r2

p−0.5
rp−rp−1

)]
Ck

p,j

f(L+1)∗j =

[
ε + ρpK f r

(
Ck+1

L,j

) 1
n−1

+ De∆t
r2

L

1−ϕ
R−rL−0.5

(
R2

R−rL
+

r2
L−0.5

rL−rL−1

)]
Ck+1

L,j

−
[

De∆t
r2

L

1−ϕ
R−rL−0.5

R2

R−rL

]
Ck+1

w,j −
[

De∆t
r2

L

1−ϕ
R−rL−0.5

r2
L−0.5

rL−rL−1

]
Ck+1

L−1,j

−
[

De∆t
r2

L

ϕ
R−rL−0.5

R2

R−rL

]
Ck

w,j −
[

De∆t
r2

L

ϕ
R−rL−0.5

r2
L−0.5

rL−rL−1

]
Ck

L−1,j

−
[

ε + ρpK f r

(
Ck

L,j

) 1
n−1
− De∆t

r2
L

ϕ
R−rL−0.5

(
R2

R−rL
+

r2
L−0.5

rL−rL−1

)]
Ck

L,j

(A21)
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The residual function vector can be organized as:

f
(

Ck+1
)
=



f1
f2
...

fp+1
...

fL+1
...

f(L+1)∗(j−1)+1
f(L+1)∗(j−1)+2

...
f(L+1)∗(j−1)+p+1

...
f(L+1)∗j

...
f(L+1)∗(N−1)+1
f(L+1)∗(N−1)+2

...
f(L+1)∗(N−1)+p+1

...
f(L+1)∗N


(L+1)∗N×1

(A22)

Similar to the film diffusion case (see Appendix B), the Ck+1 vector can be determined
by Equation (A9) as well and the Jacobian matrix of intraparticle pore diffusion case can be
expressed as:

J =



∂ f1
∂C1

∂ f1
∂C2

· · · ∂ f1
∂C(L+1)∗N−1

∂ f1
∂C(L+1)∗N

∂ f2
∂C1

∂ f2
∂C2

. . . ∂ f2
∂C(L+1)∗N−1

∂ f2
∂C(L+1)∗N

...
... · · ·

...
...

∂ f(L+1)∗N−1
∂C1

∂ f(L+1)∗N−1
∂C2

· · · ∂ f(L+1)∗N−1
∂C(L+1)∗N−1

∂ f(L+1)∗N−1
∂C(L+1)∗N

∂ f(L+1)∗N
∂C1

∂ f(L+1)∗N
∂C2

· · · ∂ f(L+1)∗N
∂C(L+1)∗N−1

∂ f(L+1)∗N
∂C(L+1)∗N


(L+1)∗N×(L+1)∗N

(A23)
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In order to ensure the accuracy of the model, an error vector (∆Ck+1) was used as
described above for Equation (A11):

∆Ck+1 =



∣∣∣Ck+1
1,guess,new − Ck+1

1,guess,old

∣∣∣∣∣∣Ck+1
2,guess,new − Ck+1

2,guess,old

∣∣∣
...∣∣∣Ck+1

p+1,guess,new − Ck+1
p+1,guess,old

∣∣∣
...∣∣∣Ck+1

L+1,guess,new − Ck+1
L+1,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗(j−1)+1,guess,new − Ck+1
(L+1)∗(j−1)+1,guess,old

∣∣∣∣∣∣Ck+1
(L+1)∗(j−1)+2,guess,new − Ck+1

(L+1)∗(j−1)+2,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗(j−1)+p+1,guess,new − Ck+1
(L+1)∗(j−1)+p+1,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗j,guess,new − Ck+1
(L+1)∗j,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗(N−1)+1,guess,new − Ck+1
(L+1)∗(N−1)+1,guess,old

∣∣∣∣∣∣Ck+1
(L+1)∗(N−1)+2,guess,new − Ck+1

(L+1)∗(N−1)+2,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗(N−1)+p+1,guess,new − Ck+1
(L+1)∗(N−1)+p+1,guess,old

∣∣∣
...∣∣∣Ck+1

(L+1)∗N,guess,new − Ck+1
(L+1)∗N,guess,old

∣∣∣


(L+1)∗N×1

(A24)

The iteration processes stop when the maximum value of the error vector ∆Ck+1
max is

smaller than the tolerable error e (e.g., e = 10−15).

Appendix D. Length of the Mass Transfer Zone (Xs) for the First Order
Analytical Solution

Analytical solutions can be derived for the case of the first flooding of the column
which are used here for verification of the numerical codes.

Appendix D.1. Analytical Solution Based on the Film Diffusion Model

During the first flooding of the column, the front water flow is always contacting fresh
contaminant material. Therefore, the solute concentration at the particle-water boundary is
constant and in equilibrium with the solids:

Cw,eq =
Cs,ini

Kd
(A25)

Inserting Equation (A25) into Equation (7) gives:

∂Cw

∂t
= k

6(1− n)
nd

(
Cw,eq − Cw

)
(A26)
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which upon integration yields the following analytical solution for the initial condition
Cw(t=0) = 0 (desorption):

Cw∫
0

∂Cw
(Cw,eq−Cw)

=
t∫

0
k 6(1−n)

nd ∂t

− ln
(
Cw,eq − Cw

)
+ ln

(
Cw,eq

)
= − ln

(
1− Cw

Cw,eq

)
= k 6(1−n)

nd t
Cw

Cw,eq
= 1− exp

(
−k 6(1−n)

nd t
) (A27)

The contact time in Equation (A27) can be substituted with the ratio of the travel
distance (x) and the flow velocity (v). The length of the mass transfer zone is defined by
setting the argument of the exponential function to−1, referring to the location x where the
solute concentration in the groundwater reaches 63.2% of the equilibrium concentration.

Xs,63.2% =
v n d

6k(1− n)
(A28)

Equation (A28) shows that the length of mass transfer zone depends on the flow
velocity, inter-granular porosity as well as particle size, but is independent of the distribu-
tion coefficient.

If the length of the mass transfer zone is shorter than the column length (Xcol), a
concentration higher than 63.2% of the equilibrium concentration will be observed in the
column effluent until the mass transfer zone arrives at the column outlet. The time needed
to reach 63.2% equilibrium concentration at the column outlet equals:

t63.2% = Xs
v + (Xcol−Xs)

v Rd

= Xcol
v

(
1 + Kd

ρb
n

(
1− Xs

Xcol

)) (A29)

Considering fast kinetics ( Xs → 0), t63.2%(≈ Xcol/(v/Rd)) is mainly dominated by
the retarded seepage velocity (v/Rd).

Appendix D.2. Analytical Solution Based on the Intraparticle Pore Diffusion Model

Expressing internal mass transfer resistance by means of intraparticle pore diffusion,
with mass transfer coefficient k = De/δp, where De is the effective intraparticle diffusion
coefficient (De = Daqε/τ ≈ Daqε2) and the mean square displacement δp (δp =

√
πDa tc)

representing the diffusion distance, which grows with the square root of contact time
between particles and water (tc) at early times, leads to:

∂Cw

∂t
= k Ao(Cw,eq − Cw

)
=

De√
πDa tc

6(1− n)
nd

(
Cw,eq − Cw

)
(A30)

The contact time between water and dry particles can be estimated by the ratio of
particle size and flow velocity (tc = d/v).

For the initial condition Cw(t=0) = 0, integration of Equation (A30) yields the following
analytical solution:

Cw∫
0

∂Cw
(Cw,eq−Cw)

=
t∫

0

De√
πDa tc

6(1−n)
nd ∂t

− ln
(
Cw,eq − Cw

)
+ ln

(
Cw,eq

)
= − ln

(
1− Cw

Cw,eq

)
= De√

πDa
d
v

6(1−n)
nd t

Cw
Cw,eq

= 1− exp

(
− De√

πDa
d
v

6(1−n)
nd t

) (A31)
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The length of the mass transfer zone of intraparticle pore diffusion can be calculated by:

Xs,63.2% = v n d
6 De√

πDa d
v

(1−n)

=
√

πd3v
De(ε+Kdρp)

n
6(1−n)

(A32)

Xs,63.2% based on intraparticle pore diffusion increases with particle size to the power
of 3/2 (d3/2) and decreases with the square root of the distribution coefficient (

√
Kd). The

time required to observe the corresponding concentration of 63.2% of the equilibrium
concentration at the column outlet can be determined with Equation (A29).

Appendix D.3. Comparison of Analytical and Numerical Solution and Estimation of Mass Transfer
Zone Length (Xs)

In Figure A2, analytical solutions for the increase of the concentration in the first water
parcel over distance (which here represents time: t = x/v) during the first flooding of
the column are shown for FD (Equation (A28)) and IPD (Equation (A31)). The numerical
solutions are described in Appendices B and C.

A comparison reveals that the analytical solutions and the numerical solutions over-
lap almost perfectly for both FD and IPD (see Figure A2). This verifies the accuracy of
the numerical model. The length of the mass transfer zone for FD is 0.35 cm and in-
dependent of Kd, and much shorter than for IPD with Xs = 10 cm, 3.5 cm and 1.1 cm
for Kd values of 0.1 L kg−1, 1 L kg−1 and 10 L kg−1, respectively. The deviations be-
tween FD and IPD gradually vanish with increasing Kd values. If the initial concen-
tration in the column leachate is close to equilibrium, it may be used for the determi-
nation of Kd (Kd = Cs,ini/Cw,peak); Kd is overestimated if the initial effluent concentra-
tion does not reach equilibrium (Cw,peak < Cw,eq). The length of the mass transfer zone
(Equations (A28) and (A32)) may be used to assess equilibrium at the beginning of the
column test.
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n = 0.45, v = 1.67 × 10−5 m s−1, α /x = 0 (no dispersion), Cs,ini = 1000 µg kg−1, t = 5 h, Daq = 1 × 10−9 m2 s−1, ε = 0.05,
dp,coarse = 2000 µm.
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Appendix E. Comparison of Analytical and Numerical Solution (Code Verification)

In order to further confirm the accuracy of the numerical solution, the initial con-
centration distribution in the column after first flooding, as well as leaching curves are
compared with the analytical solution (Equation (6)). The analytical solution is only
valid for equilibrium sorption conditions and to compare it with the numerical solution,
fine particles (dp, f ine = 63 µm) are used to get close to equilibrium (to fast FD kinetics).
Figures A3 and A4 show the good agreement of both solutions. The slight deviations be-
tween analytical and numerical solutions, especially at low Kd values, are due to kinetics
in the numerical solution. Deviations gradually vanish with the increase of Kd.
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