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Brain imaging genetics is an evolving neuroscience topic aiming to identify genetic variations related to 
neuroimaging measurements of interest. Traditional linear regression methods have shown success, but their 
reliance on individual-level imaging and genetic data limits their applicability. Herein, we proposed S-GsMTLR, 
a group sparse multi-task linear regression method designed to harness summary statistics from genome-wide 
association studies (GWAS) of neuroimaging quantitative traits. S-GsMTLR directly employs GWAS summary 
statistics, bypassing the requirement for raw imaging genetic data, and applies multivariate multi-task sparse 
learning to these univariate GWAS results. It amalgamates the strengths of conventional sparse learning methods, 
including sophisticated modeling techniques and efficient feature selection. Additionally, we implemented a 
rapid optimization strategy to alleviate computational burdens by identifying genetic variants associated with 
phenotypes of interest across the entire chromosome. We first evaluated S-GsMTLR using summary statistics 
derived from the Alzheimer’s Disease Neuroimaging Initiative. The results were remarkably encouraging, 
demonstrating its comparability to conventional methods in modeling and identification of risk loci. Furthermore, 
our method was evaluated with two additional GWAS summary statistics datasets: One focused on white matter 
microstructures and the other on whole brain imaging phenotypes, where the original individual-level data was 
unavailable. The results not only highlighted S-GsMTLR’s ability to pinpoint significant loci but also revealed 
intriguing structures within genetic variations and loci that went unnoticed by GWAS. These findings suggest 
that S-GsMTLR is a promising multivariate sparse learning method in brain imaging genetics. It eliminates the 
need for original individual-level imaging and genetic data while demonstrating commendable modeling and 
feature selection capabilities.
1. Introduction

Brain imaging genetics is an influential and captivating brain science 
field. Generally, it jointly analyzes genetic variations (e.g., single nu-

cleotide polymorphisms, SNPs), structural or functional neuroimaging 
scans (e.g., quantitative traits, QTs) [1,2]. A primary goal of imaging 
genetics is to investigate the associations between brain imaging QTs 
and SNPs, with the expectation of uncovering the genetic basis of brain 
structures and disorders [3,4].

Multi-task linear regression (MTLR) is a widely adopted sparse learn-

ing method in brain imaging genetics. Unlike univariate linear regres-

sion, MTLR simultaneously examines the effects of genetic variants on 
multiple neuroimaging quantitative traits (QTs) [5–8]. By exploring var-

ious types of sparsity, MTLR facilitates the identification of significant 
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genetic variants at different levels, such as groups of SNPs within the 
same gene [9–11]. Despite the success of MTLR methods, they face a 
significant practical challenge: conventional MTLR relies on access to 
original individual-level imaging and genetic data, rendering them in-

effective when such data is unavailable.

Genome-wide association studies (GWAS) aims to identify genetic 
variants that exhibit significant associations with phenotypic traits, 
emerging as a widely-used method over the past decade [12,13]. Fortu-

nately, GWAS publicly release their summary statistics results, offering 
a wealth of intermediate data on the associations between imaging QTs 
and SNPs. To date, GWAS has been widely applied to brain imaging 
phenotypes, successfully identifying numerous significant genetic vari-

ants associated with brain structure and disorders [14–16]. For example, 
GWAS has been applied to investigate the heritability of human brain 
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white matter microstructure [17], and other brain imaging-derived phe-

notypes (IDPs), such as volume based morphology [18]. Although GWAS 
has successfully identified significant genetic variants, it is primarily a 
univariate learning method, which may overlook complex yet mean-

ingful associations between SNPs [19,4]. This limitation also applies to 
brain imaging QTs due to the gene pleiotropy, as GWAS can only an-

alyze the associations between each image QT and genetic variation. 
Multi-task learning offers a promising solution to these challenges. Ad-

ditionally, information on correlations between SNPs, such as linkage 
disequilibria (LD), is readily accessible through public databases like the 
1000 Genomes Project Consortium [20], further enabling the feasibility 
of multi-task and “multi-SNP” analysis of GWAS data. For these reasons, 
increased efforts have been made to utilize these freely available sum-

mary statistics from GWAS to study the associations between multiple 
brain imaging and genetics. For example, metaCCA has been developed 
to identify relevant imaging and genetic biomarkers but not the precise 
genetic basic of QTs of interest [21]. Further, MTAG was proposed only 
aims to the traits whose GWAS estimates were correlated [22], CONFIT 
needs a prior which is hard to obtain in practical [23], and MTAR only 
considers variations of one gene each time [24,25]. Therefore, it is of 
significant interest and importance to develop sparse multi-task learn-

ing methods that can perform multi-task multivariate analysis of GWAS 
results without requiring access to the original imaging genetic data.

In this paper, we proposed a novel group-sparse multivariate multi-

task linear regression based on GWAS summary statistics (S-GsMTLR) 
for brain imaging genetics. S-GsMTLR eliminates the need for original 
individual-level imaging genetic data by leveraging summary statistics 
from GWAS. To evaluate the advantages of S-GsMTLR, we conducted 
two investigations. First, we generated a dataset containing all SNPs on 
chromosome 19 from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database. The results indicated that S-GsMTLR performs compa-

rably to conventional GsMTLR in terms of feature selection, root mean 
square errors (RMSE), and correlation coefficients, demonstrating its 
equivalent performance even without access to individual-level data. 
Second, we applied S-GsMTLR to two GWAS summary statistics datasets 
where the original individual-level data were unavailable. One focused 
on white matter microstructures (referred to as WMM GWAS), and 
the other studied whole-brain imaging phenotypes. The results showed 
that S-GsMTLR not only identified relevant loci found by GWAS but 
also uncovered interesting structural associations within SNPs that were 
missed by GWAS. This highlights the powerful capability of S-GsMTLR 
as a tool for imaging genetics, providing significant insights for multi-

variate multi-task analysis of univariate GWAS results, while offering 
substantial advantages over existing imaging genetic studies. Overall, 
S-GsMTLR represents a promising approach for brain imaging genet-

ics, enabling effective analysis and discovery of genetic associations by 
leveraging summary statistics from large GWAS.

2. Methods

In this article, we used italic letters denote scalars, boldface low-

ercase letters represent column vectors, and boldface capitals for ma-

trices. For 𝐗 = (𝑥𝑖𝑗 ), 𝐱𝑖 denotes its 𝑖-th row, 𝐱𝑗 for its 𝑗-th column, 
and 𝐗𝑖 denotes the 𝑖-th matrix. ‖𝐗‖2 denotes the Euclidean norm, ‖𝐗‖2,1 denotes the sum of the Euclidean norms of the rows of 𝐗, and ‖𝐗‖𝐹 =

√∑
𝑖

∑
𝑗 𝑥

2
𝑖𝑗

denotes the Frobenius norm.

2.1. Backgrounds

Generally, Genome wide association studies (GWAS) studies the as-

sociation between one brain imaging QT 𝐲𝑝 ∈ ℝ𝑛×1 and one SNP 𝐱𝑔 ∈
ℝ𝑛×1 by a linear regression model, i.e.,
3289

𝐲𝑝 = 𝛼𝑔𝑝 + 𝐱𝑔𝛽𝑔𝑝 + 𝜺, (1)
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where 𝛼𝑔𝑝 is the y-intercept accommodating the effects of covariates 
(e.g., age, gender etc.). 𝜺 ∈ ℝ𝑛×1 represents the Gaussian noise, 𝛽𝑔𝑝 is 
the regression coefficient (effect size) of SNP 𝑔 on QT 𝑝. As previously 
mentioned, summary statistics from large GWAS are typically freely 
available. This accessibility provides a unique opportunity to perform 
multivariate multi-task analysis using these summary statistics.

Sparse multi-task linear regression method is a most popular multi-

variate method in brain imaging genetics. Let 𝐗 ∈ ℝ𝑛×𝑑 represent the 
genotype matrix with 𝑛 participants and 𝑑 SNPs, and 𝐘 ∈ ℝ𝑛×𝑐 denote 
the phenotype matrix with the same 𝑛 subjects, and 𝑐 is the number of 
traits (tasks). Then a general sparse multi-task regression model can be 
defined as:

min
𝐖

‖𝐗𝐖−𝐘‖2
𝐹
+ 𝛾1𝑅1 (𝐖) + 𝛾2𝑅2 (𝐖) . (2)

𝐖 ∈ℝ𝑑×𝑐 is the regression coefficient matrix with each row loading the 
weights of all SNPs for an imaging QT. 𝛾1 and 𝛾2 are hyperparameters 
to balance the loss function and the regularization terms i.e., 𝑅1 (𝐖)
and 𝑅2 (𝐖). Although conventional sparse multi-task regression models 
have been successfully applied to identifying multivariate associations 
in brain imaging genetics, their practical application is limited by the 
difficulty of acquiring individual-level data. Therefore, it is crucial to de-

velop multivariate multi-task learning methods that can leverage freely 
available summary statistics from large GWAS. This approach facilitates 
multivariate multi-task analysis of univariate GWAS results while over-

coming the limitations posed by the need for individual-level data.

2.2. Summary statistics based group-sparse multi-task regression method

To leverage summary statistics from GWAS, we first take the deriva-

tive of Eq. (2) and set it to zero according to conventional optimization 
techniques. Hence, the critical step to solve the conventional multi-task 
regression model is:

𝐖 =
(
𝐗𝑇𝐗+ 𝛾1𝐃1 + 𝛾2𝐃2

)−1𝐗𝑇𝐘
=
(
Σ𝑋𝑋 + 𝛾1�̂�1 + 𝛾2�̂�2

)−1
Σ𝑋𝑌 ,

(3)

where �̂�1 =
𝐃1
𝑛−1 and �̂�2 =

𝐃2
𝑛−1 are block diagonal matrices, and both 

of them are deduced from the gradient or sub-gradient of 𝑅1 (𝐖) and 
𝑅2 (𝐖). In practice, different regularization terms could yield differ-

ent levels of sparsity, leading to different subsets of SNPs of rele-

vance. In order to identify the most meaningful genetic risk factors, 
we applied 𝐺2,1-norm and 𝑙1-norm. Specifically, 𝑅1(𝐖) = ‖𝐖‖𝐺2,1

=∑𝐾

𝑘=1

√∑
𝑖∈𝑛𝑘

∑𝑐

𝑗=1𝑤
2
𝑖𝑗

, where SNPs are grouped into 𝐾 groups by 
gene, 𝜋𝑘 for 𝑘 = 1, ..., 𝐾 represents the 𝑘-th set of SNPs. Then the 𝑘th di-

agonal block of �̂�1 is 1
2(𝑛−1)‖‖𝐖𝑘‖‖𝐹 where 𝐈𝑘 is an identity matrix whose 

size is 𝜋𝑘, and the 𝑖-th diagonal element of �̂�2 is 1
2(𝑛−1)‖‖𝐖𝑖‖‖2 .

Moreover, the two most important components of the formula are 
Σ𝑋𝑋 = 𝐗𝑇𝐗

𝑛−1 and Σ𝑋𝑌 = 𝐗𝑇𝐘
𝑛−1 , which represent the intra-covariance of 

genotype data and the inter-covariance between genotype and pheno-

typic data, respectively. Consequently, once Σ𝑋𝑌 and Σ𝑋𝑋 are obtained, 
the solution 𝐖 can be determined. Therefore, we will present the solu-

tions for Σ𝑋𝑌 and Σ𝑋𝑋 in the following paragraphs without requiring 
access the original genetic matrix 𝐗 and imaging data 𝐘.

2.2.1. Calculating the inter-covariance Σ𝑋𝑌
According to Eq. (1), when we normalize the genetype and pheno-

type matrices with zero mean and unit variance respectively, the effect 
size 𝛽𝑔𝑝 would equal to their covariance, i.e.:

𝛽𝑔𝑝 =
(
𝐱𝑇
𝑔
𝐲𝑝
)(

𝐱𝑇
𝑔
𝐱𝑔
)−1

=
𝐱𝑇
𝑔
𝐲𝑝

𝑛− 1
. (4)

Therefore, we can calculate the inter-covariance Σ𝑋𝑌 ∈ℝ𝑑×𝑐 in Eq. (3)
with a corresponding summary statistics matrix 𝜷 ∈ℝ𝑑×𝑐 , i.e.,
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Σ𝑋𝑌 = 𝐗𝑇𝐘
𝑛− 1

=
⎛⎜⎜⎜⎝

𝐱1𝐲1
𝑛−1 ⋯ 𝐱1𝐲𝑐

𝑛−1
⋮ ⋱ ⋮

𝐱𝑑𝐲1
𝑛−1 ⋯ 𝐱𝑑𝐲𝑐

𝑛−1

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
𝛽11 ⋯ 𝛽1𝑐
⋮ ⋱ ⋮
𝛽𝑑1 ⋯ 𝛽𝑑𝑐

⎞⎟⎟⎠ . (5)

In practice, we do not know that whether the summary statistics are 
normalized, thus we suggest transforming 𝛽𝑔𝑝 first, i.e., 𝛽normalized

𝑔𝑝
=

1√
𝑁𝑠𝑒𝑔𝑝

× 𝛽𝑔𝑝, where 𝑠𝑒𝑔𝑝 represents the standard error of 𝛽𝑔𝑝 , and 

𝑁 denotes the sample size [21]. Consequently, we can leverage the 
widely published summary statistics from large GWAS to obtain the 
inter-covariance Σ𝑋𝑌 in Eq. (3) easily.

2.2.2. Calculating the intra-covariance Σ𝑋𝑋
We now need to find a way to calculate the intra-covariance Σ𝑋𝑋 . 

This intra-covariance measures the pairwise relationship of loci, indi-

cating the genetic structure of the population. Thank to the genome 
stability, the intra-covariance for two subgroups from the same ethnic-

ity could be close enough as long as the number of subjects for each 
subgroup is large enough [26]. Given this proposition, although we do 
not have the original genotype data, we can obtain a pretty good alter-

native if a large sub-population from the same ethnic group is available, 
i.e., we can effectively estimate Σ𝑋𝑋 as

Σ̂𝑋𝑋 =
𝐗𝑇
𝑟𝑒𝑓

𝐗𝑟𝑒𝑓
𝑛𝑟𝑒𝑓 − 1

, (6)

where 𝐗𝑟𝑒𝑓 ∈ℝ𝑛𝑟𝑒𝑓×𝑑 denote the genetype data of the reference coher-

ent with 𝑛𝑟𝑒𝑓 individuals.

The 1000 Genome Project (1kGP) database (www .international-

genome .org) publicly provides many ethnic populations, which is usu-

ally used as reference panel. In this study, we carefully choose subjects 
from the same ethnic population, and calculate an approximate intra-

covariance. That is, we can obtain Σ𝑋𝑋 without accessing the original 
genotype data 𝐗. This approximate intra-covariance works quite well 
empirically and experimentally in practice.

Finally, all the building blocks of Eq. (3) have been addressed, en-

abling us to solve the conventional group-sparse multi-task linear re-

gression model using only summary statistics from GWAS, which we 
term S-GsMTLR. For clarity, we refer to the corresponding conventional 
regression model we named as GsMTLR. Specifically, the iterative opti-

mization procedure for S-GsMTLR is detailed in Algorithm 1.

Algorithm 1 The S-GsMTLR algorithm.

Require: Summary statistics matrix from GWAS, hyperparameters 𝛾1 and 𝛾2;
Output: �̂� ∈ℝ𝑑×𝑐 .

1: Construct the inter-covariance matrix 𝜷 ∈ℝ𝑑×𝑐 according to Eq. (5);

2: Calculate the intra-covariance matrix Σ̂𝑋𝑋 ∈ ℝ𝑑×𝑑 from the reference hap-

lotype data according to Eq. (6);

3: Initialize �̂�1 ∈ℝ𝑑×𝑐 and let 𝑡 = 1;

4: while not converge do

5: Update �̂�𝑡 by �̂�𝑡 =
(
Σ̂𝑋𝑋 + 𝛾1�̂�1 + 𝛾2�̂�2

)−1
𝜷 ;

6: 𝑡 = 𝑡 + 1;

7: end while

2.3. Extension to chromosome-wide analysis

When applying S-GSMTLR for whole-chromosome analysis, the com-

putation of Σ̂𝑋𝑋 becomes computationally intensive and unfeasible. 
However, estimating Σ𝑋𝑋 is a crucial step in solving S-GSMTLR (Al-

gorithm 1). To address this challenge, we introduce a heuristic decou-

pled computational approach that employs a divide-and-conquer strat-

egy within chromosomes to reduce the computational burden. Specif-

ically, we divide the high-dimensional genotype matrix containing all 
genetic variants on the entire chromosome into smaller independent 
3290

submatrices, each corresponding to the size of a LD block. Thus, the 
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high-dimensional SNPs dataset is divided into 𝑀 disjoint subsets: 𝐗 =⨁𝑀

𝑚=1𝐗
𝑚, where 

⨁
represents the matrix operator. This strategy lever-

ages the inherent block structure of SNP datasets to maintain the per-

formance of our model while decoupling and processing the interaction 
terms between SNPs in parallel. Consequently, we can derive the fol-

lowing closed solution for our proposed S-GSMTLR:

�̂�𝑚
𝑡
=
(
Σ̂𝑚
𝑋𝑋

+ 𝛾1�̂�𝑚1 + 𝛾2�̂�𝑚2
)−1

𝜷, 𝑓𝑜𝑟 𝑚 = 1,… ,𝑀, (7)

where Σ̂𝑚
𝑋𝑋

, �̂�𝑚1 and �̂�𝑚2 are the 𝑚-th corresponding sub-matrix of Σ̂𝑋𝑋 , 
�̂�1 and �̂�2 respectively. Similarly, this strategy can also be applied to 
conventional GsMTLR for chromosome-wide analysis.

2.4. Theoretical guarantees

We have the following theorem to guarantee an appropriate solution.

Theorem 1. The difference between the solutions of S-GsMTLR and conven-

tional GsMTLR is upper bounded by‖‖‖�̂�−𝐖‖‖‖‖‖‖�̂�‖‖‖ ≤

‖‖‖Σ̂𝑋𝑋 −Σ𝑋𝑋
‖‖‖‖‖Σ𝑋𝑋‖‖ , (8)

where �̂� is the solution of S-GsMTLR and 𝐖 is that of conventional 
GsMTLR.

Without loss of generality, we consider that there is only one regular-

ization term, e.g., 𝓁1-norm, in the convectional GsMTLR model. Based 
on the solutions of S-GsMTLR (Algorithm 1) and conventional method 
(Eq. (3)), we have

�̂� =
(
Σ̂𝑋𝑋 + 𝛾1�̂�1

)−1
Σ𝑋𝑌 ⇒ Σ̂𝑋𝑋�̂�+ 𝛾1�̂�1�̂� = Σ𝑋𝑌 , (9)

𝐖 =
(
Σ𝑋𝑋 + 𝛾2�̂�1

)−1
Σ𝑋𝑌 ⇒ Σ𝑋𝑋𝐖+ 𝛾2�̂�2𝐖 = Σ𝑋𝑌 , (10)

where Σ̂𝑋𝑋 and Σ𝑋𝑋 are the within-covariance obtained from the ref-

erence genotype data and the individual-level data respectively, �̂� and 
𝐖 are the regression coefficient of our S-GsMTLR and conventional 
GsMTLR respectively, 𝛾1 and 𝛾2 are tuning parameters of S-GsMTLR and 
conventional GsMTLR respectively, �̂�1 is a block diagonal matrix where 
the 𝑖-th diagonal block is 1

(𝑛−1)|𝐖𝑗 | (𝑗 ∈ [1, 𝑑]), and �̂�2 is a block diagonal 

matrix where the 𝑗-th diagonal block is 1
(𝑛−1)|�̂�𝑖| (𝑖 ∈ [1, 𝑑]). Since the fi-

nal solution of 𝐖 and �̂� are the weights of genetic data, its positive 
or negative values would not affect the identification results of our or 
conventional learning model. Therefore, we assume that the weights 𝐖
and �̂� of different SNPs are all positive (or negative). Hence, we can get 
that �̂�1�̂� = �̂�2𝐖 equals to the 𝑑 × 𝑐 matrix of 1∕(𝑛 −1) (or −1∕(𝑛 −1)), 
Eq. (9) and Eq. (10) are respectively can be turned into(
Σ𝑋𝑋 + Σ̂𝑋𝑋 −Σ𝑋𝑋

)
�̂�+

𝛾1
𝑛− 1

= Σ𝑋𝑌 , (11)

Σ𝑋𝑋𝐖+
𝛾2
𝑛− 1

= Σ𝑋𝑌 . (12)

When we subtract Eq. (12) from Eq. (11), and arrive at

Σ𝑋𝑋
(
�̂�−𝐖

)
+
(
Σ̂𝑋𝑋 −Σ𝑋𝑋

)
�̂�+

𝛾1 − 𝛾2
𝑛− 1

= 0. (13)

Since 𝛾1 and 𝛾2 are hyperparameters and they should be the same for 
both models. Hence, we finally have

Σ𝑋𝑋
(
�̂�−𝐖

)
= −

(
Σ̂𝑋𝑋 −Σ𝑋𝑋

)
�̂�

⇒

‖‖‖�̂�−𝐖‖‖‖ = −
‖‖‖Σ̂𝑋𝑋 −Σ𝑋𝑋

‖‖‖
(14)
‖‖‖�̂�‖‖‖ ‖‖Σ𝑋𝑋‖‖

http://www.internationalgenome.org
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⇒

‖‖‖�̂�−𝐖‖‖‖‖‖‖�̂�‖‖‖ ≤

‖‖‖Σ̂𝑋𝑋 −Σ𝑋𝑋
‖‖‖‖‖Σ𝑋𝑋‖‖ .

Equation (14) tells us that the difference between regression coeffi-

cient of S-GsMTLR �̂� and conventional GsMTLR 𝐖 mainly depends on 
the difference between estimated covariance Σ̂𝑋𝑋 and original Σ𝑋𝑋 . In 
other words, the closer the estimated Σ̂𝑋𝑋 being to the original Σ𝑋𝑋 , 
the more accurate the S-GsMTLR result is. Therefore, we suggest choos-

ing the reference panel from the same or at least near population [26]. 
This can ensure a good estimation in practice. Specifically, in this paper, 
we estimated Σ̂𝑋𝑋 by the European population reference (EUR) haplo-

type data from the 1kGP as we are interested in non-Hispanic Caucasian 
subjects (see section 3).

3. Experiments and results

In this section, we conducted two experiments to evaluate the perfor-

mance of the proposed S-GsMTLR. First, to compare the performance of 
our proposed model with the conventional GsMTLR, we used a dataset 
from the ADNI database, which includes individual-level imaging and 
genetic data. Specifically, we directly applied the conventional GsMTLR 
to the ADNI dataset. For S-GsMTLR, we first performed a univariate 
GWAS on the same ADNI dataset using PLINK v1.9 [27] to obtain GWAS 
summary statistics and then applied S-GsMTLR to these GWAS results.

In the second experiment, to assess whether our approach can iden-

tify meaningful biomarkers when only GWAS results are available, we 
applied S-GsMTLR to two different GWAS-only datasets, where the 
original individual-level data was unavailable. Since the conventional 
GsMTLR cannot handle GWAS-only dataset, we compare our results with 
previous GWAS findings in the second experiment. The results were then 
compared with the GWAS findings.

3.1. Experimental settings

For tuning parameters, we conducted a two-step grid search strategy 
to fine tune the parameters. We first searched three candidates from a 
moderate interval 10𝑖(𝑖=[-3, -2, ..., 2, 3]), since too large and too small 
parameters will lead to undesirable feature subsets. Once the suitable 
parameters Γ were obtained in this interval, we then search in a much 
smaller interval Γ±[0.5, 0.6, ..., 5, 6]. In the context of S-GsMTLR, due to 
the unavailability of individual-level data, we partitioned the summary 
statistics into two distinct sub-datasets for training and testing, thereby 
bypassing the need for individual-level data [28–30]. In the end, the 
stopping criterion for S-GsMTLR is ‖‖𝐖𝑡+1 −𝐖𝑡

‖‖𝐹 ∕ max
(‖‖𝐖𝑡

‖‖𝐹 ,1) ≤
10−4 in our experiments.

The ADNI data were from non-Hispanic Caucasian participants, and 
the subjects of IDP GWAS and WMM GWAS were European ancestry (as 
detailed in section 3.3). Consequently, we employed the genetic data of 
all 503 European individuals from 1kGP (release No. 20130521) as the 
reference cohort to estimate the genotypic correlation covariance Σ𝑋𝑋
in our study. The 1kGP database comprehensively collected genetic vari-

ations by sequencing the whole genome for different ethnic populations, 
providing a valuable public genomic resource [31].

Additionally, all experiments carried out on the same software plat-

form and used the same data partition of the same database to ensure 
the fairness of comparison.

3.2. Evaluative criteria

We took widely used RMSE as the criteria to evaluate conventional 
GsMTLR and S-GsMTLR. Of note, the individual-level data was invisible 
to S-GsMTLR, and thus the conventional RMSE cannot be computed as 
usual. In this paper, we derived a proximate evaluation criterion instead, 
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which can evaluate our proposed method as well.
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Table 1

Participant characteristics.

HC MCI AD

Number 182 292 281

Gender (M/F, %) 48.90/51.10 48.63/51.37 53.38/46.62

Handedness (R/L, %) 89.56/10.44 88.70/11.30 90.39/9.61

Age (mean±std) 73.93±5.51 70.90±6.84 72.61±8.15

Education (mean±std) 16.43±2.68 16.18±2.68 15.95±2.82

In general, for the 𝑗-th imaging QT, we calculate its RMSE value 
based on the ground truth 𝐲𝑗 ∈ ℝ𝑛×1 and its predicted value �̂�𝑗 ∈ℝ𝑛×1
by

RMSE
(
𝐲𝑗 , �̂�𝑗

)
=
√(‖𝐲𝑗 − �̂�𝑗‖22)∕𝑛

=
√(

𝐲𝑇
𝑗
𝐲𝑗 + �̂�𝑇

𝑗
�̂�𝑗 − 2𝐲𝑇

𝑗
�̂�𝑗
)
∕𝑛.

(15)

Since �̂�𝑗 =𝐗𝐰𝑗 , we have

RMSE
(
𝐲𝑗 , �̂�𝑗

)
=
√(

𝐲𝑇
𝑗
𝐲𝑗 +𝐰𝑗𝐗𝑇𝐗𝐰𝑗 − 2

(
𝐗𝑇 𝐲𝑗

)𝑇𝐰𝑗)∕𝑛
=
√(

𝐲𝑇
𝑗
𝐲𝑗 +𝐰𝑇

𝑗
𝐗𝑇𝐗𝐰𝑗 − 2

(
𝐗𝑇𝐘

)𝑇
𝑗
𝐰𝑗

)
∕𝑛

=

√√√√(
𝐲𝑇
𝑗
𝐲𝑗

𝑛− 1
+𝐰𝑇

𝑗
Σ𝑋𝑋𝐰𝑗 − 2Σ𝑋𝑌 𝑇𝑗 𝐰𝑗

)
∕
(

𝑛

𝑛− 1

)
,

(16)

where 𝐰𝑗 ∈ ℝ𝑑×1 is the weights for imaging QT 𝑗. Since the pheno-

typic vector 𝐲𝑗 had been normalized with zero mean and unit variance, 

we know 
𝐲𝑇
𝑗
𝐲𝑗

𝑛−1 = 1. Hence, we finally had the RMSE for conventional 
GsMTLR as

RMSE
(
𝐲𝑗 , �̂�𝑗

)
=
√

(1 − 1
𝑛
)
(
1 +𝐰𝑇

𝑗
Σ𝑋𝑋𝐰𝑗 − 2(Σ𝑋𝑌 )𝑇𝑗 𝐰𝑗

)
. (17)

And for S-GsMTLR as

RMSE
(
𝐲𝑗 , �̂�𝑗

)
=
√

(1 − 1
𝑛
)
(
1 +𝐰𝑇

𝑗
Σ̂𝑋𝑋𝐰𝑗 − 2𝜷𝑇

𝑗
𝐰𝑗

)
, (18)

where Σ̂𝑋𝑋 is the estimated within-covariance used in S-GsMTLR, 𝜷 ∈
ℝ𝑑×𝑐 is the regression coefficient or the effect size of univariate GWAS 
studies used in S-GsMTLR. And we found it quite effective and accept-

able in practice.

3.3. Data source

3.3.1. Individual-level neuroimaging genetic data of ADNI

The brain imaging genetic data were obtained from the ADNI 
database (adni .loni .usc .edu). One primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of 
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www .adni -info .org.

The neuroimaging data of the 18-F florbetapir (AV45) PET scans 
were obtained from the ADNI website, and the demographic information 
of all subjects were summarized in Table 1. These amyloid imaging data 
were preprocessed on the basis of the pipeline contained in [32]. After 
preprocessing, the whole brain were subsampled to generate regions of 
interest (ROI) measurements based on the MarsBaR automated anatom-

ical labeling (AAL) atlas [33]. For ease of comparison, ten amyloid-

derived imaging QTs, which are known to be related to AD, and the 
details of these imaging QTs were listed in Table 2. Using the regression 
weights derived from the healthy control participants, these imaging 
QTs was pre-adjusted to remove the effects of the baseline age, gender, 

education, and handedness.

http://adni.loni.usc.edu
http://www.adni-info.org
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Table 2

18-F florbetapir (AV45) PET scans-derived imaging QTs 
used in this paper.

QT ID ROI

LHippocampus
Hippocampus

RHippocampus

LFrontalMid
Middle frontal gyrus

RFrontalMid

LFrontalMedOrb
Superior frontal gyrus, medial orbital

RFrontalMedOrb

LFrontalSupMedial
Superior frontal gyrus, dorsolateral

RFrontalSupMedial

LRectus
Gyrus rectus

RRectus

Table 3

The information of 10 WMM QTs used in S-GsMTLR from the brain white matter 
microstructure GWAS database.

Name Information

Average_MD average value of mean diffusivity across all 21 white matter 
tracts

Average_RD average value of radial diffusivity across all 21 white matter 
tracts

PTR_MD mean diffusivity of the Posterior thalamic radiation (PTR)

PTR_RD radial diffusivity of the Posterior thalamic radiation (PTR)

RLIC_MD mean diffusivity of the Retrolenticular part of internal capsule 
(RLIC)

RLIC_RD radial diffusivity of the Retrolenticular part of internal capsule 
(RLIC)

CGH_MD mean diffusivity of the Cingulum hippocampus (CGH)

CGH_RD radial diffusivity of the Cingulum hippocampus (CGH)

SS_AD axial diffusivity of the Sagittal stratum (SS)

SS_MD mean diffusivity of the Sagittal stratum (SS)

The genotypic data for the same population used in this study were 
also downloaded from the ADNI website, which were genotyped by 
the Human 610-Quad or OmniExpress Array (Illumina, Inc., San Diego, 
CA, USA). The pre-processing procedure was carried out through the 
standard quality control (QC) and imputation steps. Secondly, quality-

controlled SNPs was calculated by the MaCH software [34] to estimate 
the missing genotypes. The chromosome 19 sequence contains the well-

known AD risk genes such as APOE, TOMM40, and APOC1. Therefore, 
we took all SNPs in chromosome 19, including 145,124 SNPs. Our goal 
is to identify a small portion of SNPs which is correlated with abnor-

mal imaging QTs of AD patients, under the situation where the original 
imaging genetic data is unavailable.

3.3.2. Summary statistics from GWAS

The brain white matter microstructure (WMM) GWAS was per-

formed to uncover the genetic basis of brain white matters, involving 
215 diffusion tensor imaging phenotypes from 34,024 British-ancestry 
individuals of the UK Biobank (UKB) database [17]. In order to eval-

uate the performance of our propose method, we extracted 1000*10 
and 5000*10 two SNPs-QTs summary statistics matrices from WMM 
GWAS results in this work. These 1,000 (chr5: 82481553 - 82921104) 
and 5,000 (chr5: 81947637 - 83988233) SNPs were around the signifi-

cant locus rs10052710 in chromosome 5, and the detailed information 
of 10 WMM QTs is provided in Table 3.

The second GWAS we used in this paper was the whole brain 
imaging-derived phenotypes (IDPs) GWAS database, which studied 
8,428 individuals’ brain IDPs from the UKB database, covering a com-

prehensive set of imaging QTs derived from different types of brain 
imaging data such as diffusion weighted imaging (dMRI) and suscepti-

bility weighted imaging (swMRI or SWI) [18]. We respectively chose 
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two summary statistics matrices of the same sizes from IDP GWAS 
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Table 4

The names and its abbreviations of 10 IDP QTs used in S-GsMTLR from 
the IDPs GWAS database.

Name Information

rpoicR IDP_dMRI_TBSS_ICVF_Retrolenticular_part_of_internal _capsule_R

rpoicL IDP_dMRI_TBSS_ICVF_Retrolenticular_part_of_internal _capsule_L

chR IDP_dMRI_TBSS_ICVF_Cingulum_hippocampus_R

chL IDP_dMRI_TBSS_ICVF_Cingulum_hippocampus_L

ccgR IDP_dMRI_TBSS_ICVF_Cingulum_cingulate_gyrus_R

ccgL IDP_dMRI_TBSS_ICVF_Cingulum_cingulate_gyrus_L

infR IDP_dMRI_ProbtrackX_ICVF_ifo_r

infL IDP_dMRI_ProbtrackX_ICVF_ifo_l

arR IDP_dMRI_ProbtrackX_ICVF_ar_r

arL IDP_dMRI_ProbtrackX_ICVF_ar_l

Table 5

RMSE values of S-GsMTR and GsMTR when 
applied to the ADNI dataset.

GsMTLR S-GsMTLR

LHippocampus 0.9880 0.9762

RHippocampus 0.9867 0.9773

LFrontalMedOrb 0.9835 0.9780

RFrontalMedOrb 0.9839 0.9837

LFrontalSupMedial 0.9845 0.9926

RFrontalSupMedial 0.9926 0.9772

LFrontalMid 0.9840 0.9797

RFrontalMid 0.9855 0.9904

LRectus 0.9941 0.9817

RRectus 0.9901 0.9868

mean 0.9873 0.9824

results. These two matrices encapsulated information of 1,000 (chr5: 
82717885 - 82962751) and 5,000 (chr5: 82189046 - 83559329) SNPs 
around the significant SNP rs13164785 on chromosome 5, and the de-

tails of ten IDP QTs is contained in Table 4.

3.4. Study on the ADNI data set

3.4.1. The degree of model fitting

We performed a comparative analysis of the RMSE results for S-

GsMTLR and conventional MTLR, as presented in Table 5. The RMSE 
results of S-GsMTLR were computed by Eq. (18), while those for con-

ventional GsMTLR were calculated by Eq. (17). The results in table 
illustrated that the RMSE values for S-GsMTLR closely align with those 
of conventional MTLR, indicating a comparable modeling performance. 
These results collectively demonstrated that S-GsMTLR achieves a per-

formance akin to that of conventional MTLR.

3.4.2. Identification of risk biomarkers

We first compared feature selection results of S-GsMTLR and GsMTLR 
in terms of SNPs by regression coefficients. Specifically, the scatter plots 
of the regression weights of SNPs on imaging QTs for both S-GsMTLR 
and GsMTLR are presented in the top panel of Fig. 1. In each sub-plot, 
the y-coordinate represents the average effect of each SNP on ten imag-

ing QTs, while the x-coordinate indicates the position of each SNP. A 
higher scatter point signifies that SNP at this location has a larger effect 
on QTs. For clarity, we marked and annotated the top ten SNPs in each 
sub-plot. Both conventional GsMTLR and our S-GsMTLR successfully 
and the most significant AD risk locus rs429358 (APOE). Additionally, 
all the top ten SNPs identified by both methods were identical and corre-

sponded to well-established AD risk loci, such as rs10414043 (APOC1), 
rs769449 (APOE), and rs34404554 (TOMM40). This observation in-

dicates that our proposed S-GsMTLR has an equivalent capability to 
identify genetic factors of AD compared to conventional methods. Fur-

thermore, we also presented the mapping visualization of the average 
weights of all SNPs on ten imaging QTs in the bottom panel of Fig. 1. To 
make it clear, we provided the heat map of regression coefficients of top 

ten SNPs on each imaging QT in Fig. 2. We could clearly observe that 
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Fig. 1. Weights for SNPs (top panel) and the visualization of 10 imaging QTs (bottom panel) of conventional GsMTLR and S-GsMTLR. We marked and labeled the 
top 10 SNPs with green color in the top panel. The color coding in bottom panel represents the weights of imaging markers.

Fig. 2. Top 10 selected SNPs by regression coefficients. The value in each color block is the regression coefficients.
S-GsMTLR and GsMTLR both identified a strong association between 
SNP rs429358 and all ten imaging QTs. Notably, our method demon-

strated that the imaging QTs for the left and right hippocampus had 
the strongest associations with the top ten genetic variants, indicating 
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superior performance of the proposed method.
We also quantitatively compared the regression weights between S-

GsMTLR and conventional GsMTLR. The correlation coefficient, denoted 
as 𝜌, ranges from -1 to 1, with higher absolute values indicating closer 
equivalence and zero indicating no relationship. All 𝜌 values for the 

ten imaging QTs were significantly less than 1 (𝑝 < 0.0001), indicating 
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Fig. 3. Heat maps of normalized gene expression value (zero mean normalization of log2 transformed expression) for prioritized genes for top ten SNPs, for GTEx 
v8 RNAseq data (bottom panel) and BrainSpan data (top panel). The letters in the bottom panel label represent time units for life stages, pcw for post-conception 
weeks, mos for months, and yrs for years.
Table 6

Top ten SNPs selected by both conventional and our 
proposed method.

GsMTLR S-GsMTLR

SNPs 𝑝-value SNPs 𝑝-value

rs429358 2.35E-16 rs429358 2.35E-16

rs10414043 4.60E-13 rs10414043 4.60E-13

rs769449 3.28E-13 rs769449 3.28E-13

rs66626994 1.07E-08 rs66626994 1.07E-08

rs34404554 2.47E-08 rs7256200 4.60E-13

rs71352238 4.07E-08 rs34404554 2.47E-08

rs7256200 4.60E-13 rs71352238 4.07E-08

rs111789331 2.15E-09 rs111789331 2.15E-09

rs12721046 1.49E-09 rs12721046 1.49E-09

rs2075650 2.47E-08 rs2075650 2.47E-08

that S-GsMTLR has a strong agreement with conventional GsMTLR in 
identifying relevant biomarkers.

In summary, the above results consistently indicated that S-GsMTLR 
possesses feature selection capabilities comparable to conventional 
GsMTLR. Notably, S-GsMTLR demonstrated a more robust performance 
in the regression weights in terms of imaging QTs. Consequently, S-

GsMTLR emerges as a compelling and robust approach for identifying 
the genetic underpinnings of interested imaging QTs, eliminating the 
need for access to the original individual-level imaging genetic data.

3.4.3. Effectiveness of genetic risk factors

To assess the statistical significance of the identified genetic vari-

ants, we applied a one-way analysis of variance (ANOVA) to evaluate 
the impact of the top ten SNPs on diagnosis status, with age, sex, hand-

edness, and years of education as covariates. A genetic variant was 
considered significant if its primary effect on diagnostic status was statis-

tically significant. The 𝑝-values from the one-way ANOVA for the top ten 
SNPs identified by our method, as well as by the conventional GsMTLR, 
are summarized in Table 6. All 𝑝-values were statistically significant 
(𝑝 < 0.05), demonstrating that our method can effectively identify AD 
risk variants by leveraging summary statistics from GWAS.

3.4.4. Gene expression analyses

To further evaluate the biological significance of the identified loci 
at the gene expression level, we utilized GENE2FUNC tool of FUMA 
[35] for gene expression analysis. This tool enables us to explore gene 
expression patterns associated with the top ten identified SNPs. We in-

corporated data from the GTEx database (Version 8), which includes 54 
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tissue types, as well as BrainSpan RNA sequencing data covering 29 de-
velopmental stages. Using these datasets, we constructed heat maps of 
gene expressions, with each heat map representing the average normal-

ized expression value for its respective label.

We presented mRNA expression profiles of priority genes associated 
with the top 10 SNPs on chromosomes 19 across 54 developing and 
adult brain tissue types, as shown in Fig. 3. The bottom panel presents a 
heat map of gene expression based on GTEx version 8 RNA sequencing 
data, highlighting expression levels in various brain tissues for the genes 
APOE, APOC1, and TOMM40. In the BrainSpan data, these genes exhib-

ited high expression levels throughout life cycle as shown in the top 
panel of Fig. 3. Specifically, APOE and TOMM40 remains most highly 
expression across all life stages, while APOC1 shows increased expres-

sion in the late prenatal stages (26 post-conception weeks, 26_pcw). 
These findings underscore the effectiveness of our S-GsMTLR method 
in identifying genetic variants associated with various human brain tis-
sues across different stages of the life cycle.

All these results not only demonstrated the powerful feasibility of 
S-GsMTLR, but also its effectiveness in a sparse linear regression model 
for imaging genetic studies without requiring individual-level data.

3.5. Application to summary statistics from brain imaging GWAS

Our goal is to use the proposed S-GsMTLR method to conduct group-

sparse multivariate multi-task analysis on summary statistics from large 
GWAS, identifying meaningful associations and genetic variations with-

out the need for original imaging genetic data.

3.5.1. Application to summary statistics from the brain WMM GWAS

To evaluate the model-fitting capability of our proposed S-GsMTLR 
when applied to GWAS summary statistics without access to the original 
individual-level imaging and genetic data, we first present the RMSE val-

ues for datasets containing 1,000 and 5,000 SNPs in Table 7. The results 
indicate that the RMSE values for all ten DTI QTs were low, demonstrat-

ing the robust modeling capability of the S-GsMTLR method.

The scatter plots of the regression coefficients are displayed in Fig. 4, 
with the top ten genetic variants marked and labeled. Both sub-plots re-

vealed the same top ten SNPs for datasets containing 1,000 and 5,000 
SNPs, demonstrating the scalability and stability of S-GsMTLR. For clar-

ity, we also presented the regression weights of the top ten SNPs on 
each imaging QT in Fig. 5. In this figure, rs10052710 (VCAN) exhibite 
the strongest correlation with all ten QTs, and the association between 
this locus and the imaging QT Average-MD (average value of mean dif-

fusivity across 21 white matter tracts) has the highest coefficient value. 

Additionally, we present the locus plot of the lead SNP rs10052710 in 
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Table 7

RMSE values of ten QTs and its average when applied S-GsMTLR to the summary statistics from brain white matter microstructure GWAS for 
data set with 1,000 SNPs and 5,000 SNPs.

Date Set Average_MD Average_RD PTR_MD PTR_RD CGH_MD CGH-RD RLIC-MD RLIC_RD SS_MD SS_AD Mean

1,000 SNPs 0.9248 0.9297 0.9351 0.9363 0.9418 0.9546 0.9428 0.9464 0.9275 0.9621 0.9401

5,000 SNPs 0.9889 0.9896 0.9903 0.9905 0.9913 0.9932 0.9914 0.9920 0.9893 0.9943 0.9911

Fig. 4. Regression weights when applied S-GsMTR to brain white matter microstructure GWAS. The left and right panel presented the results for data set with 1,000 
and 5,000 SNPs respectively.

Fig. 5. The top ten selected SNPs by regression coefficients when applied S-GsMTLR to the GWAS summary statistics from brain white matter microstructure GWAS.
Fig. 6, which showed that rs10052710 is an intron variant of VCAN on 
chromosome 5, exhibiting the highest significance level linked to all ten 
imaging biomarkers. These findings suggest that rs10052710 might be 
primarily responsible for brain white matter microstructural differences 
and abnormalities, warranting further investigation. Furthermore, both 
the scatter plots and heat maps clearly depicted the group structure of 
the top ten identified risk variants. For example, rs12653305 (VCAN) 
and rs67827860 (VCAN) showed similar patterns in both the scatter 
plots and heat maps. Similar results were observed for rs17205972 
(VCAN), rs35544841 (VCAN), and rs13164785 (VCAN).

These findings demonstrate that S-GsMTLR not only can identify loci 
reported by GWAS but also excels in sparse feature selection and reveal 
group structures for multiple SNPs within the same gene. This highlights 
the superiority of S-GsMTLR over single-variable GWAS in structural 
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information mining.
Moreover, we present a comprehensive overview of the gene expres-

sion of the top ten SNPs in Fig. 7. Notably, the top ten SNPs identified 
by S-GsMTLR are all linked to the gene VCAN. The heat map presented 
in the image above vividly illustrates the expression levels of the VCAN

gene in different brain tissues. In the bottom panel, we can observe that

VCAN expression is highest during the early prenatal period (9-24 weeks 
after conception), while the reverse is true during the postpartum pe-

riod. In summary, these two heat maps show that our methods have 
successfully identified the genetic basis of brain tissue with elevated ex-

pression levels during human brain development.

Furthermore, Fig. 7 provides a comprehensive overview of gene 
expression for the top ten SNPs. Notably, these SNPs, identified by S-

GsMTLR, are all linked to the VCAN gene. In the top panel, VCAN

expression is highest during the early prenatal period (8-24 weeks after 

conception) and decreases during the postpartum period. The heat map 
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Table 8

RMSE values of ten QTs and its average value when applied S-GsMTLR to the summary statistics from brain IDPs GWAS for 
data set with 1,000 SNPs and 5,000 SNPs.

Data Set Rrpoic Lrpoic Rch Lch Rccg Lccg Rinf Linf Rar Lar Mean

1,000 SNPs 0.9776 0.9779 0.9731 0.9741 0.9723 0.9767 0.9726 0.9737 0.9757 0.9729 0.9747

5,000 SNPs 0.9980 0.9980 0.9976 0.9977 0.9976 0.9980 0.9976 0.9977 0.9979 0.9976 0.9978
Fig. 6. Locus plots for the top lead SNP rs10052710.

in the bottom panel vividly illustrates the expression levels of VCAN in 
various brain tissues. These heat maps collectively demonstrate that our 
methods have successfully identified genetic variants associated with 
elevated gene expression in brain tissues during human brain develop-

ment.

Taken together, all above results demonstrated that S-GsMTLR can 
not only model the associations between multiple genetic variations and 
multiple brain imaging DTIs from summary statistics, but also success-

fully discovered important genetic variations being responsible for brain 
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white matter microstructures.

Fig. 7. Heat maps of normalized gene expression value (zero mean normalization of l
data (bottom panel) and GTEx v8 RNAseq data (top panel). The letters in the bottom

mos for months, and yrs for years.
3.5.2. Application to summary statistics from the comprehensive IDP 
GWAS

We further investigated the performance of S-GsMTLR using sum-

mary statistics from another brain imaging GWAS database. The RMSE 
results, summarized in Table 8. We can observe that the RMSE values 
for all imaging QTs were consistently low, demonstrating our method’s 
powerful multivariate multi-task modeling capability.

Fig. 8 shows the average regression weights of SNPs across all ten 
imaging QTs, with significant loci highlighted and annotated. For clar-

ity, Fig. 9 presents the regression weights of the top ten SNPs for each 
imaging QTs. Notably, rs13164785 (VCAN) exhibited the strongest re-

lationships with all ten imaging QTs, consistent with the results of 
univariate GWAS. Importantly, both the scatter plots and heat maps in-

dicate that S-GsMTLR identified group structures among several SNPs, 
which were overlooked by GWAS. For instance, the variants rs13164785 
(VCAN) and rs67827860 (VCAN) had nearly identical weights, suggest-

ing similar or comparable functionality. Interestingly, both rs13164785 
and rs67827860 belong to the VCAN gene, with LD scores of 1 [36].

Most importantly, S-GsMTLR identified the GWAS-missed locus 
rs309587 (VCAN), which was later reported by the authors in an ex-

panded IDP GWAS study [37] and confirmed by other researchers [38]. 
In Fig. 10, the locus plot of rs309587 illustrated that this lead SNP is 
an intronic variant situated within the VCAN gene on chromosome 5. 
Then we performed a phenome-wide association study (pheWAS) anal-

ysis for this locus to investigate its potential associations with diverse 
array of phenotypes across 28 domains, as illustrated in Fig. 11. pheWAS 
was performed using publicly available data from the GWAS Atlas [39]

(https://atlas .ctglab .nl). The figure revealed a noteworthy association 
of rs309587 with neurological phenotypes, as well as metabolic and 
skeletal traits. Consequently, this feature selection results demonstrated 
that S-GsMTLR can not only replicate the GWAS results quite well, but 
also outperform it in terms of genetic basic identification and the struc-

ture information identification. In summary, these results demonstrated 
that S-GsMTLR performed quite well in brain imaging genetic studies 

by only using the summary statistics from GWAS.

og2 transformed expression) for prioritized genes for top ten SNPs, for BrainSpan 
 panel label represent time units for life stages, pcw for post-conception weeks, 

https://atlas.ctglab.nl
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Fig. 8. Regression weights when applied S-GsMTR to brain IDPs GWAS. The left and right panel presented the results for data set with 1,000 and 5,000 SNPs 
respectively.

Fig. 9. The top 10 selected SNPs by regression coefficients when applied S-GsMTLR to the summary statistics from brain IDPs GWAS.

4. Discussion and conclusion

Conventional sparse multi-task learning methods have played piv-

otal roles in brain imaging genetics [40,41,11]. However, these methods 
rely on individual-level imaging and genetic data, which limits their 
broader application. Meanwhile, publicly available GWAS results typi-

cally identify associations between single SNP and single QT, potentially 
overlooking meaningful information related to multiple variations and 
multiple traits. To address these limitations, we proposed S-GsMTLR 
(group-sparse multivariate multi-task linear regression method based on 
summary statistics from GWAS) for brain imaging genetics. S-GsMTLR 
applies multivariate multi-task analysis on univariate GWAS results, 
aiming to study genetic basic of interested multiple imaging QTs while 
not accessing the individual-level data. We have proved that this strat-

egy was reasonable and practical being supported by Theorem 1. Re-

sults on ADNI database and two additional GWAS databases showed 
that S-GsMTLR performed quite well without accessing the original 
individual-level imaging and genetic data. The model’s capability to uti-

lize preselected imaging QTs for identifying relevant genetic variants 
even outperformed than GWAS. In practice, our method could obtain 
comparable results to conventional one if two conditions were satisfied. 
First, the reference population was appropriately chosen, which guaran-
Fig. 10. Locus plots for SNP rs309587.
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teed the correctness of the covariance information. Second, the number 
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Fig. 11. pheWAS result for rs309587. PheWAS plot presents the significance of rs309587 on a range of traits based on MAGMA gene-based tests (Bonferroni corrected 
𝑃 -value threshold: 7.51e-7).
of the reference population should not be small which guaranteed the 
covariance’s goodness of fit. Since 1kGP database provide diverse eth-

nic groups and enough subjects, these two conditions could be met in 
most cases [42,43].

All in all, our group-sparse multivariate multi-task learning method, 
S-GsMTLR, proved to be an effective and powerful computational strat-

egy in the realm of brain imaging genetic studies. It is worth empha-

sizing that our approach is not bound by a specific regression model, 
instead, it can accommodate a wide range of regression methods. Mov-

ing forward, it is imperative to incorporate pathway and brain network 
information into our sparse learning framework.
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