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Judging the poses, sizes, and shapes of objects
accurately is necessary for organisms and machines to
operate successfully in the world. Retinal images of
three-dimensional objects are mapped by the rules of
projective geometry and preserve the invariants of that
geometry. Since Plato, it has been debated whether
geometry is innate to the human brain, and Poincare
and Einstein thought it worth examining whether formal
geometry arises from experience with the world. We
examine if humans have learned to exploit projective
geometry to estimate sizes and aspects of
three-dimensional shape that are related to relative
lengths and aspect ratios.

Numerous studies have examined size invariance as a
function of physical distance, which changes scale on the
retina. However, it is surprising that possible constancy
or inconstancy of relative size seems not to have been
investigated for object pose, which changes retinal
image size differently along different axes. We show
systematic underestimation of length for extents
pointing toward or away from the observer, both for
static objects and dynamically rotating objects.
Observers do correct for projected shortening according
to the optimal back-transform, obtained by inverting the
projection function, but the correction is inadequate by
a multiplicative factor. The clue is provided by the
greater underestimation for longer objects, and the
observation that they seem to be more slanted toward
the observer. Adding a multiplicative factor for
perceived slant in the back-transform model provides
good fits to the corrections used by observers. We
quantify the slant illusion with two different slant
matching measurements, and use a dynamic
demonstration to show that the slant illusion
perceptually dominates length nonrigidity.

In biological and mechanical objects, distortions of
shape are manifold, and changes in aspect ratio and
relative limb sizes are functionally important. Our model
shows that observers try to retain invariance of these
aspects of shape to three-dimensional rotation by
correcting retinal image distortions due to perspective
projection, but the corrections can fall short. We discuss
how these results imply that humans have internalized
particular aspects of projective geometry through

evolution or learning, and if humans assume that images
are preserving the continuity, collinearity, and
convergence invariances of projective geometry, that
would simply explain why illusions such as Ames’ chair
appear cohesive despite being a projection of disjointed
elements, and thus supplement the generic viewpoint
assumption.

Introduction

A biological or machine visual system can
successfully operate in the world only by accurately
judging poses, sizes, and shapes of objects. In eyes
with lenses, projective geometry describes the mapping
of three-dimensional (3D) scenes to retinal images,
so in understanding what they are viewing, animals
and humans have constant experience with the
consequences of this geometry. Not surprisingly,
whether geometrical operations are innately embedded
in the human mind has been debated since antiquity, for
example, Plato’s Meno (Cooper, 2002). In an interesting
development, Poincare (2017) and Einstein (1921)
expanded the debate to whether formal geometry arises
from everyday experience. Consequently, if we can
show that human estimates of object size and shape
are based on geometric knowledge, that could provide
answers to age-old questions about the links between
geometry and experience.

A 3D object seen from different views forms quite
different retinal images, and many different objects can
form identical retinal images (Ittelson, 1952), so 3D
inferences based solely on monocular two-dimensional
(2D) retinal information are underspecified. However,
the frequently occurring projection of reflections from
objects on the ground to retinal images is a 2D-to-2D
mapping, described by an invertible trigonometric
function. So in this case, the back-transform derived by
inverting the projection function could be used to make
veridical inferences from retinal images. We showed
previously that human observers consistently apply
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the optimal observer-oriented back-transform for pose
inferences in 3D scenes and in pictures of 3D scenes
(Koch et al., 2018). This leads to veridical estimates for
real 3D scenes, albeit with a systematic frontoparallel
bias, and to an illusory rotation toward the observer in
obliquely viewed pictured scenes. In the images we used
for pose estimation, we noticed that the perceived sizes
of objects vary with pose, and shapes of objects seem
to be distorted, especially those aspects of shape that
depend on relative sizes in different directions. Here we
tackle the mental geometry of estimating relative sizes,
using graphic displays calibrated against real objects.
Variations in these size estimates across different
poses also provide information about perceived shape
distortions, such as aspect ratios and relative sizes of
limbs.

Mathematically defined, shape is the geometrical
attribute of an object that is invariant to translation,
rotation, and scale effects (Kendall et al., 2009), but
whether these invariances hold for perceptions of
particular solid 3D shapes is an empirical question.
Invariance to translation and rotation are properties
of Euclidean spaces, whereas retinal image formation
is described by perspective projection, which does not
allow for these invariances. Perceptual invariance would
thus require neural processes that overcome distortions
created by the retinal projection, so the first step is to
quantify perceived aspects of 3D shape under different
views.

There is a long tradition of research on shape
and size constancy, but surprisingly some important
aspects of this issue have been almost ignored, because
almost all experiments have examined the perceptual
effects of placing identical objects at different distances
from the observer, which scales the size of the retinal
image, but does not test for rotation or translation
invariance. For example, Gibson (1950) examined
size invariance as a function of physical distance and
maintained that we see approximately the veridical
size by making use of inverse projection to recover the
structure of the environment from the structure in the
optic array. A number of similar studies have shown
that humans are able to compensate partially for the
retinal projection, so estimated sizes are closer to the
physical size of the object (Gibson & Cornsweet, 1952;
Joynson & Newson, 1962; Kaiser, 1967; Purdy, 1960;
Sedgwick, 1986; Wallach & Moore, 1962). However,
studies that asked observers to match a width to a
depth found inconstancy of perceived 3D relative size,
as depth had to be set 1.5 to 5.0 times the width to be
judged as equal over different distances (Beusmans,
1998; Loomis, Da Silva, Fujita, & Fukushima, 1992).
In scene perception, a similar systematic perceptual
anisotropy of depth versus width has been found (Baird
& Biersdorf, 1967; Levin & Haber, 1993; Loomis &
Philbeck, 1999; Norman et al, 1996; Philbeck, 2000;
Ribeiro, Fukusima, & Da Silva, 1995; Toye, 1986;

Wagner, 1985), suggesting a common cause, possibly
insufficient correction of image compression caused by
perspective projection. This perceptual anisotropy is
not found when distances are estimated by nonvisual
motor tasks such as blind walking (Elliott, 1986, 1987;
Fukusima, Loomis, & Da Silva, 1997; Loomis et al.,
1992; Loomis, Klatzky, Philbeck, & Golledge, 1998;
Philbeck & Loomis, 1997; Philbeck, Loomis & Beall,
1997; Rieser, Ashmead, Talor, & Youngquist, 1990;
Sinai, Ooi, & He, 1998; Steenhuis & Goodale, 1988;
Thomson, 1983), thus characterizing the anisotropy as
related to the greater compression ratios for depths in
retinal images as compared with widths.

Object poses change retinal image size differently
along different axes, but constancy of relative size seems
not to have been investigated for these conditions, so
we address that lacuna in this study. The view from
the top in the movie in Figure 1 shows a rigid 3D
object with two physically equal limbs at a right angle,
rotating on the ground. In the view from the front
looking down a 15° angle, most observers see the
limb passing through poses pointing at or away from
them as transitorily shorter than the orthogonal limb.
Using quantitative measurements, we show that, for
estimating relative sizes, observers generally correct
sufficiently for projective distortions in accordance with
the optimal back-transform, except for poses close to
the line of sight. Size underestimation increases with
object length, which we show is due to a slant illusion.
The illusion occurs because increased length and
increased slant both increase projections along the same
axis, so in the absence of stereo cues, the visual system is
unable to disambiguate the two causes. We discuss how
results showing performance determined by the optimal
geometric back-transform imply that humans have
internalized particular aspects of projective geometry
through evolution or learning.

Methods

Experiment 1: Size estimates of 3D objects

The first question we address is how well observers
can estimate 3D sizes across different poses of the same
object lying on the ground, because projections lead
to different amounts of retinal image compression
depending on pose angle (Figure A1). Using Blender,
we created a blue rectangular 3D parallelepiped (test
stick) lying on the center of a dark ground, and a yellow
vertical 3D cylinder (measuring stick) standing on the
test stick. Blue parallelepipeds were presented in one
of 16 poses from 0° to 360° every 22.5° (Figure 2a).
Their length was equal to 10, 8, or 6 cm with a 3 ×
3 cm cross-section (Figure 2b). Observers estimated
physical lengths by adjusting the height of the vertical
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Figure 1. Demonstration of size inconstancy. A rigid object with two physically equal limbs at a right angle is rotating on the ground, as
shown in the view from the top. When viewed from the front at a 15° elevation, the limb pointing at or away from the observer
appears transitorily shorter than the orthogonal limb.

Figure 2. Stimuli for experiment 1. (a) Experiment 1a: Blue test stick lying on dark ground in 16 different poses, from 0° to 337.5° at
every 22.5°. (b) Experiment 1a: Three lengths, 6, 8, 10 cm, of blue stick were presented in each pose, with adjustable yellow
measuring stick. (c) Experiment 1b: Same as Experiment 1a, except for a grid making the ground plane explicit.

measuring stick between 2.75 and 12 cm, until it seemed
to be the same 3D length as the horizontal test stick.
In Experiment 1a, the object was presented on a dark
ground plane and in Experiment 1b a regular white

grid was superimposed on the ground plane to make
it explicit (Figure 2c). The dark ground was used so
observers could not use a ground grid to estimate
size.
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Stimuli and methods
The observer’s viewing position was stabilized by

using a chinrest so that the image was viewed on the
monitor with an elevation angle of 15° at a distance of
1.0 m, matching the rendering parameters of the camera
in Blender. Displayed sizes in the Blender-rendered
images were calibrated against exact geometrical
derivations to ensure accuracy of the simulations
(Appendix). The retinal image was thus identical to
that from the 3D object, except for the absence of
stereo disparity. Observers were instructed to equate the
physical lengths of the two limbs by pushing buttons to
adjust the height of the measuring stick. There were no
time limits. Randomly ordered trials were repeated in
three sets, and observers were allowed to take a break
between sets. The line of sight through the center of
the ground was designated the 90° to 270° axis and
the line orthogonal to it, the 0° to 180° axis. Images
were displayed on a 22-inch DELL SP2309W Display.
Matlab and PsychoToolbox were used to display the
stimulus, run the experiment, and analyze the data
for all the experiments. Six observers with normal or
corrected vision participated. Viewing was binocular
because it was more natural for the observers, and
Koch et al. (2018) had not found any difference between
monocular and binocular viewing for pose estimation
in similar conditions. All experiments presented in this
article were conducted in compliance with the protocol
approved by the institutional review board at SUNY
College of Optometry and the Declaration of Helsinki,
and observers gave written informed consent.

Results

Figure 3a shows perceived 3D lengths as a function
of 3D pose, averaged over three repeats each for six
observers. Dashed lines represent the physical length.
Two trends are salient: there is greater underestimation
of length for poses pointing toward or away from
the observer, and there is greater underestimation of
length for longer objects. Individual data show both
trends for every observer (Figure A2). Underestimation
for different object lengths can be compared on the
same relative scale in Figure 3b, where the logarithm
of the ratio of perceived length over physical length
is plotted against the 3D poses. This figure confirms
the two trends. The first factor we ruled out for the
underestimation is that the dark ground made it
ambiguous whether the object was lying on the ground,
by rerunning all the conditions of Experiment 1a on a
white grid drawn on the ground (Experiment 1b). When
the average lengths perceived on the white grid are
plotted against average lengths perceived on the dark
ground, most symbols fall close to the unit diagonal

Figure 3. Perceived 3D lengths in experiment 1. Symbols
represent parallelepipeds with lengths of 10 cm (red circle), 8
cm (blue triangle), and 6 cm (Green square). (a) Average
perceived length across 3D pose (six observers.) Dashed lines
indicate physical 3D lengths. Perceived lengths are
underestimated as a systematic function of pose. (b) Logarithm
of average perceived 3D length divided by physical length
across different 3D poses. Length estimates of the test sticks
were close to veridical for frontoparallel poses but were
seriously underestimated for poses pointing at or away from

→
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(Figure 3c), showing that the estimation of 3D length is
very similar on the two ground planes.

Comparing empirical with optimal size estimation
We now try to understand estimation of 3D

length, especially the underestimation for poses
toward and away from the observer, and the greater
underestimation for longer lengths, by deriving the
geometrical information available to observers. A
schematic diagram of the projection (Figure A1), and a
mathematical derivation of Equation 1, are included in
the Appendix. For a parallelepiped of length (L3D), the
projected length (Lc) changes with pose � as a distorted
sinusoid (viewing elevation = �c, focal length of the
camera = fc, and distance from the object = dc):

Lc = L3D · fc ·
√
cos2 (�) + sin2 (�) · sin2 (�c)

dc − L3D · sin (�) · cos (�c)
(1)

However, the projected length of the vertically
oriented cylinder Lm (where the physical length is
L3DM), stays invariant with pose because the object is
rotated around the axis of the cylinder:

Lm = L3DM · fc · cos (�c)
dc − L3DM · sin (�c)

(2)

Given the projected lengths on the display, the
projected lengths on the retina, Lr, would be (focal
length of the eye = fr, and distance from the display =
dr):

Lr = fr
dr

· Lc (3)

On the dark ground, the retinal image of the object
contains the only information available for doing size
estimation and our model predicts 3D size estimates

←
the viewer (around 90° and 270°.) The underestimation ratio
increased with the physical length of the test stick. (c) Perceived
length on grid background (experiment 1b) plotted against
perceived length on dark background (experiment 1a), showing
points falling close to the unit diagonal (solid line), indicating
that they are similar. (d) Optimal correction factor (solid line)
and empirical correction factor (symbols) across 3D pose. The
empirical correction factor is close to one for the front-parallel
poses, which is optimal. The empirical correction factor is
greater than the one near the line of sight (90° and 270°), but
significantly lower than the optimal for the longer sticks. Bars
on symbols are 95% confidence intervals.

solely from retinal projections of the objects. Koch
et al. (2018) showed that humans are excellent at
inferring 3D pose of objects on the ground, and
their estimations closely match predictions from the
geometrical back-projection from retina to the ground
plane. In principle, an observer could similarly make
veridical estimates of 3D sizes by using the geometrical
back-projection from the retinal image, which is given
by substituting the expression for Lc from Eq. 1 into
Eq. 3, and then manipulating the equation to get an
expression for the optimal estimated 3D length L̂3D:

L̂3D= Lr ·dr ·dc
Lr ·dr ·sin (�)·cos (�c)+ fc · fr ·

√
cos2 (�)+sin2 (�)·sin2 (�c)

(4)

By dividing the physical length by the projected
length, we obtain the optimal length correction index
for each pose. From Equation 1, the projected length is
almost a linear function of physical length, with a slight
acceleration, so the optimal length correction varies
little for the three sizes when plotted as a function of
3D pose, as shown by the overlap of the three solid line
curves in Figure 3d. The symbols in Figure 3d plot the
ratio of perceived length from Figure 3a over projected
length (empirical length correction), and show that for
poses other than frontoparallel, observers estimate 3D
lengths to be longer than projected lengths (empirical
length correction of > 1.0). The greatest correction
takes place for poses pointing toward or away from the
observer, but that is still less than what is required for
veridical estimates, especially for the longer lengths.
The general form of empirical length correction as a
function of 3D pose is similar to the optimal length
correction curve, suggesting that observers may be using
the optimal back-transform, but with an additional
multiplicative factor leading to the suboptimality.

Geometric model for 3D size estimation
A strong clue to the multiplicative factor is revealed

by inspection of the stimuli in Figure 4a. When a 6-cm
and a 10-cm parallelepiped are placed on the ground,
the upper surface of the longer stick looks more slanted
down. The genesis of this illusion is that, if the 6-cm
stick were increased in length to 10 cm, its projection
would come further down along the vertical axis of
the image. A similar increase in vertical coordinates
in the projected image would happen if the slant of
the 6-cm stick was increased or equivalently if the
object was pictured from a higher camera elevation.
The visual system is thus faced with deciding between
the quantitative increase in slant versus the quantitative
increase in length. Figure 4b (left) shows that increasing
the camera elevation changes the aspect ratio of a 10 cm
× 3 cm top surface at 90° pose by a factor of 5.65 from
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Figure 4. Geometry model for 3D size estimation. (a) The 6- and
10-cm test sticks are lying on ground, pictured with 15° camera
elevation. The longer stick is seen as more slanted down toward
the viewer, equivalent to an increase in viewing camera
elevation. The effect is the same with a grid on the ground. (b)
(left) Aspect ratio of the top surface of 10 × 3 cm (red) and
front surface of 3 × 3 cm (blue) of stick lying on ground in a 90°
pose against camera elevation. The main change is the
projection of the length of the top surface. (right) Optimal
correction factor for the stick as a function of camera elevation.
The correction factor decreases with increasing camera
elevation. (c) A model using the optimal geometrical
back-transform but with overestimation of viewing elevation
fits the underestimates of object length.

0.3227 (at 5°) to 1.8247 (at 30°), but barely changes
the aspect ratio of the 3 cm × 3 cm front surface from
1.4120 at 5° to 1.3096 at 30°, a factor of 1.08. The main
change is due to the shortening of the projected length
of the top surface. The front surface changes are thus
not a strong enough cue to discern change of camera
elevation, or equivalently the slant of the object. In the

absence of other cues, it seems that the visual system
hedges its bets and the physically longer stick is seen
as both longer and more slanted than the physically
shorter stick. The illusion is powerful enough to be
visible, even when three different length parallelepipeds
are joined together and placed on a gridded ground
(Figure A4). If a visual system assumes that an object
is more slanted or pictured from a higher elevation, it
will apply a smaller correction factor. Figure 4b (right)
shows that the optimal length correction decreases by
almost a factor of five as the cameral elevation increases
from 5° to 30°; thus, a misperception of increased slant
would lead to a smaller correction factor applied to the
projected length. Note that the multiplicative factor will
change the estimated length most for poses close to 90°,
and very little for poses close to 0°.

Based on the results and the visual observations,
we formulated the hypothesis that observers are
using an optimal back-transform, but overestimating
the slant of the object (or equivalently the camera
elevation), thus correcting less than required for the
shortening. Therefore, we tested whether adding a
multiplier k > 1 to the viewing elevation in the optimal
geometrical back-transform function could provide
good fits to the empirical estimates for different physical
lengths:

L̂3D = Lr ·dr ·dc
Lr ·dr ·sin (�)·cos (k·φc )+ fc · fr ·

√
cos2 (�)+sin2 (�)·sin2 (k·φc )

(5)

Figure 4c replots the empirical corrections
from Figure 3d for the three lengths of test sticks. For
each length, we found the k for which the optimal
correction factor curve best fits the empirical correction
factors, and shows that the model fits the results for all
three physical lengths well, with just one free parameter
that increases perceived camera elevation. because the
perceived slant can be slightly different for 90° and 270°
poses, we allowed k to be different values for 0° to 180°
and 180° to 360°. Based on the best fitting k values, the
estimated camera elevations were around 16° for the
6-cm stick, 20° for the 8-cm stick, and 25° for the 10-cm
stick. Parenthetically, we also tested whether putting
a multiplier on distance, to simulate misperceived
distance (Sedgwick, 1989), could explain the data,
but that was not successful. Consequently, we tested
whether the slant illusion would hold up to quantitative
measurements.

Experiment 2: Slant misestimation as a factor
for suboptimal length correction

Perceived slant is affected by length of object and
viewing elevation, so there is no way to measure
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Figure 5. Slant misestimation as a function of length. Experiment 2a: (a) Blue adjustable measuring stick (6 cm) was paired with one
yellow test stick (10, 8, or 6 cm) lying on dark ground in in the same pose (90° or 270°). (b) Observers were asked to match slant, but
they were actually changing camera elevation on just the measuring stick (note the change in angle between camera screen and top
surface of object). (c) Relative perceived camera elevation for each length of fixed stick (circle, 10 cm; triangle, 8 cm; square, 6 cm),
separately for the two poses (red, 90°; blue, 270°). Observers’ overestimation of camera elevation increases with the length of test
stick, which corresponds with an increase in perceived slant. (d) At the slant match, projected lengths (vertical extents in image) for
the two sticks are roughly equal (bars indicate 95% confidence intervals). (e) Experiment 2b: Directly matched perceived slant as a
function of camera elevation. Consistent with experiment 2a, the perceived slant increases with the physical size of the test stick.
Average perceived slants are: 2.16°, 4.02°, and 6.98° for a 5° camera elevation (the green square), 12.71°, 17.80°, and 21.11° for 15°
camera elevation (the blue triangle), and 25.62°, 27.73°, and 34.95° for 25° camera elevation (the red circle).

absolute perceived slants with good precision. Instead
we checked whether relative perceived slants across
stick lengths followed the trend predicted by the
best-estimated camera elevations in the model. The
biggest size undercorrection was for poses along the line
of sight, and the optimal back-transform predicts that
overestimating slant will have little effect on poses close
to frontoparallel, so we made slant measurements only

for poses pointing toward or away from the observer.
In Experiment 2a, we compared fixed perceived slants
of 6-, 8-, and 10-cm sticks to the adjustable perceived
slant of a 6-cm stick, when both sticks were either at
90° poses or at 270° (Figure 5a). In Experiment 2b, a
single parallelepiped was presented on the screen at 90°
or 270°, and observers adjusted a vector to match its
perceived orientation.
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Methods
The observers from Experiment 1 also participated

in Experiment 2. In Experiment 2a, Blender was used
to make two parallelepipeds, a yellow stick image was
rendered from a fixed 15° camera elevation, and a blue
stick with camera elevations that could be adjusted
from 0° to 30° at every 1° step. The other properties
of the rendering were the same as Experiment 1, as
were the display monitor and observer viewpoint
settings. Observers were asked to adjust the slant
of the blue stick to match that of the paired yellow
fixed stick by pushing buttons, without time limits.
Unknown to them, observers were actually adjusting
the camera elevation on the rendering of the blue
stick through the 31 possible settings. Figure 5b shows
that this manipulation changes the angle between
camera screen and top surface of the object, so
it has the same effect as changing the slant of the
object. Because the aspect ratio of the front surface
barely changes in these settings (Figure 4b left), the
front surface provides almost no clue to the relative
slant for these adjustments. The two sticks were
randomly assigned to left and right on each trial. Three
separate sets contained random assignments of every
condition (2 poses of the pair × 3 lengths of fixed
stick). Observers were allowed to take a break between
sets.

In Experiment 2b, nine images were made using
Blender, three lengths of the stick (6, 8, and 10 cm)
rendered from three camera elevations (5°, 15°, and 25°)
to vary the perceived slant for each length. Observers
viewed the image of a single stick with the same
geometry as Experiments 1 and 2a, that is, from a
viewing angle matched to the 15° rendering. They were
asked to adjust the orientation of a vector around a
circle to match the slant of the stick. The vector was
displayed on a 12.9-inch iPad hanging on the wall next
to the observer placed vertically at the same height
as the stick, orthogonal to the main display screen,
so the vector orientation could be matched to the
object’s slant without requiring mental rotations. Three
sets each contained a random arrangement of each
image. Observers were allowed to take a break between
sets.

Results
The main result (Figure 5c) is that observers

perceived camera elevations as higher for the longer
fixed sticks, despite all sticks lying flat on the same
ground plane. In Experiment 2a, when both sticks
were posed at 90°, the average camera elevations were
and 15.50°, 20.94°, and 24.50° for the 6-cm, 8-cm,
and 10-cm sticks, respectively. For the 270° poses, the
averages were 16.00°, 19.94°, and 23.44°, respectively.
Individual results are shown in Figure A5. These

values are close to but not exactly the same as we
estimated for the best fits of the model, because we
measured relative slants and the model incorporates
absolute perceived slants. The results are compatible
with our hypothesis that observers may be applying a
smaller correction factor to longer sticks because they
see them as more slanted. It is interesting that, when
equating slant, observers end up also equating projected
lengths of the two top surfaces, that is, the excursion
along the vertical axis of the image (Figure 5d), thus
corroborating our conjecture that the increased vertical
extent as a function of length is the cause of the slant
illusion. Because the observers equated the projected
lengths of the measuring stick and the test stick in
Experiment 2a, to rule out that observers simply
matched lengths rather than perceived slants, we did
direct measurements of slant in Experiment 2b. The
results are plotted in Figure 5e (individual results
in Figure A6). The 5° and 25° camera elevations were
used to create a variation in the perceived slants separate
from variations in lengths. Estimated slants increase
systematically with camera elevation of rendering,
validating this method as measuring perceived slant.
The results relating to the size measurements are the
ones at 15° camera elevation: 12.71° for the 6-cm
stick, 17.80° for the 8-cm stick, and 21.11° for the
10-cm stick. It is difficult to compare absolute numbers
for the two different slant-matching techniques for a
number of reasons. One is that the ground rises to
meet the horizon, so it itself would be matched to
different slants, depending on viewing elevation and
degrees of visual angle. The perceived ground plane
slant would need to be factored out in unknown ways
from the absolute slant estimates in Experiment 2b,
but not from the equated slants in Experiment 2a. It
is worth noting that observers found it much easier
to equate two slants in Experiment 2a than to match
absolute slant with a vector in Experiment 2b, and this
finding was reflected in greater variance for the vector
settings across the three repeats for every observer.
The important point is that Experiment 2b confirmed
with independent measurements that perceived
slant increases as a function of increased physical
length.

Slant illusion demonstration
That the illusion of increased slant is perceptually

compelling is further demonstrated by the movie
in Figure 6. The view from the top in the movie
in Figure 6 shows same rotating object as in Figure 1,
but with dynamically changing lengths of the limbs,
with the limb passing through poses pointing at or
away from the observer made transitorily longer than
the orthogonal limb. The adjustment was based on
estimates from the fitted model in Figure 4c to so that
the limbs seem to be approximately perceptually equal
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Figure 6. Demonstration of slant illusion. A rigid object with two limbs at a right angle is rotating on the ground. The length of the limb
passing through the line of sight is lengthened and then shortened, as shown in the view from the top. This makes the limbs seem to
be equal in all poses in the view from the 15° elevation. The percept is maintained by increasing the length of the limb passing
through the line of sight according to the average size estimate in experiment 1. Instead of seeing the physical length changes, each
limb seems to bounce up and down when it faces toward or away from the observer, because the slant illusion dominates the
percept.

in all poses when viewed from the front at 15° elevation.
As the object rotates, the limbs do not seem to change
much in length, unlike in Figure 1, thus validating the
adjustment. Instead, the limb passing through poses
pointing at or away from the observer seems to bounce
up and down because of a slant illusion similar to the
static case, which seems to dominate the percept of
changing length. In the dynamic case, the perceptual
domination of slant changes could be related to the
possibility that articulated objects are more common
in the world then are objects that increase or decrease
in length over a short period. The same appeal to
natural statistics could be invoked to explain perceiving
expansion or contraction in depth of solid objects is
difficult (Jain & Zaidi, 2011; Jansson & Johansson,
1973; Johansson, 1964), while other deformations
are easy to discern, even for rotating and flowing
shapes (Cohen, Jain & Zaidi, 2010; Fantoni, Caudek
& Domini, 2014; Bates et al, 2019). However, the slant
illusion is just as compelling in the static case, so a
major factor could be biases in perceiving depth versus
extent from retinal images (Cohen & Zaidi, 2007; Jain
& Zaidi, 2013; Kim & Burge 2018). Although not a part
of this study, we want to note that perceived slant is
also affected by other factors, such as object shape. For
example, 6-, 8-, and 10-cm cubes are much more similar
in apparent slant than the three sizes of parallelepipeds

used in this study, and informal manipulations suggest
that length to height ratio is also a factor.

Discussion

The first empirical contribution of this study is
to measure size estimates of 3D objects as they are
rotated on a ground plane into different poses, which is
equivalent to changing viewpoints around the object.
Invariance to rotation is one of the mathematical
properties of shape, so it is surprising that no previous
studies looked at the constancy or inconstancy of
relative sizes and aspect ratios of shapes across poses.
We found systematic and repeatable distortions of
perceived relative size across poses even for simple
symmetric and regular objects. Estimates of length
were close to veridical for frontoparallel poses, but were
seriously underestimated for poses pointing at or away
from the observer. Interestingly, the underestimation
increased with the physical length of the parallelepiped.
Slant matching measurements revealed that longer
objects were seen as slanted down, equivalent to an
increase in viewing elevation. The second empirical
contribution of the study is the slant illusion when
slanting or lengthening an object lead to very similar






Journal of Vision (2020) 20(8):14, 1–16 Maruya & Zaidi 10

images, and the video demonstration that the visual
system seems to report a dynamic illusory slant instead
of a physical length change.

The main theoretical contribution of this study
is to link 3D size estimates to the mental use of
projective geometry. Size estimates as a function of pose
form a curve that has the same shape as the optimal
back-transform, and the back-transform curve fits the
estimates with one free multiplicative parameter. Thus,
our model that incorporates observers’ misestimates of
object slant in the optimal geometrical back-transform
equation can explain the inconstancy of relative size
for different poses, and for different object sizes. Thus,
size inconstancy results despite observers using the
correct geometric back-transform, if retinal images
evoke misestimates of slant. Remarkably, relative size
estimates as a function of object pose were similar across
our observers, suggesting that the mental subconscious
use of this geometrical knowledge is common among all
observers.

Although we have expressed our measurements in
terms of length, our measurements also reveal one
type of inconstancy of shape perception across poses,
or equivalently across different views of one static
object. Consider the dual-limbed object formed by
the parallelepiped and cylinder together in Figure 2.
Because the perceived length of the parallelepiped
changes in different poses relative to the perceived length
of the cylinder, the object is not perceived as constant in
shape. A dynamic example of perceived shape changes,
because of relative limb lengths not being perceived
as constant, is provided by the movie in Figure 1. In
addition, our measurements predict that a solid 3D
object will undergo perceived aspect ratio changes in
different poses, as perceived size along the axis pointing
toward the observer will be underestimated compared
with the two orthogonal axes. Our results suggest that
observers do try to correct for the projected shortening,
using knowledge of projective geometry, but it is not
enough to achieve shape constancy. The inconstancy of
the estimated depth relative to width, found by previous
studies on perceived object shapes and distances in
perceived scenes, may also be explained by using the
slant parameter in our geometrical back-transform
model.

It is theoretically interesting that we show that
humans do not completely discount the distortions
created by perspective projection, despite possibly
using the optimal geometric back transform. It is
worth considering what else could be explained by
assuming mental knowledge of projective geometry.
Projective geometry preserves continuity, collinearity,
and convergence. If a visual system assumes that, when
collinear edges and intersections between edges occur
in an image, it is generally because the perspective
projection is preserving continuous edges and corners

from the 3D world, then some objects separated into
disjointed parts, for example, Ames chair (Ittelson,
1952), would be seen as unbroken and cohesive from
the proper viewpoint. This explanation of cohesion
is necessary before invoking stronger assumptions
of simplicity or regularity in reconstructing the 3D
world (Attneave & Frost, 1969; Leclerc & Fischler,
1992; Li & Pizlo, 2011; Marill, 1991). The “generic
viewpoint assumption” (Freeman, 1994) thus implicitly
contains a “generic projective geometry assumption,”
and this can be made more concrete in object and
scene perception by incorporating priors that assume
the invariants of projective geometry, especially when
extracting 3D shapes from contours (Elder, 2018; Li,
Pizlo & Steinman, 2009; Sugihara, 1986; Wang et al.,
2018). The fact that slant is ambiguous in perspective
projection is compatible with some real-world illusions
of slant and nonrigidity (Griffiths & Zaidi, 1998,
2000). Animals and humans have constant exposure
to perspective projection through image-forming
eyes. Therefore, it has been an open question whether
brains have learned to exploit projective geometry to
understand 3D scenes. Our results imply that human
brains use embedded knowledge of projective geometry
to estimate 3D sizes and shapes from their retinal
images. Combining the new results to our previous
results that humans use optimal projective geometry
back-transforms to estimate 3D poses in real 3D
scenes and their pictures (Koch et al., 2018), strongly
suggests that human brains have internalized particular
aspects of projective geometry through evolution or
learning.

Keywords: 3D size, 3D shape, 3D pose, projective
geometry, inverse optics
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Appendix

Derivation of Equation 1 for projected length
given physical length and 3D pose

For a parallelepiped of length (L3D), the projected
length (Lc) changes with pose � as a distorted sinusoid
(viewing elevation = �c,).

https://ntrs.nasa.gov/search.jsp?R1019900013616
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Derivation of 2D projected lengths from lengths
of 3D objects at any pose

Consider a line in R3 with physical length L3D, and
pose �, lying on the X-Z ground plane, and extending
from the center of the plane (0, 0, 0) to (x, 0, z):

(x, 0, z) = (L3D cos (�) , 0,L3D sin (�)) (A1)

If the line is viewed with the camera elevation �c
from the Z-axis (Figure A1), for the camera screen that
is equivalent to a rotation of the coordinates around the
X-axis by �c. The center point stays at (0, 0, 0), and the
endpoint coordinates (x′, y′, z′) are given by:

(x′
y′
z′

)
=

(1 0 0
0 cos (�c) − sin (�c)
0 sin (�c) cos (�c)

)(x
0
z

)
(A2)

simplifying to:

x′ = x
y′ = −zsin (�c)
z′ = zcos (�c)

(A3)

For the focal length of the camera = fc and the
distance from the object = dc, the projection of the
center (0, 0, 0) in the 2D U-V picture plane is (0, 0). The
projection of (x′, y′, z′) to (u, v) is given by:

u = x′
dc−z′ · fc

v = y′
dc−z′ · fc (A4)

Thus, the projected length of the stick Lc, is given by:

Lc =
√
u2 + v2 (A5)

Figure A1. Schematic diagram of the projection of two sticks
centered on the ground, viewed from an elevation of �c.

Figure A2. Calibrating rendered images for relative size.
Projected length of the test stick divided by projected length of
an equal sized Measuring Stick. There is no difference in the
derived ratios for the three physical lengths shown as solid line
curves. Points represent physical measurements of lengths of
objects rendered by Blender on display screen.

Substituting Equations (A1), (A3), and (A4) in (A5):

Lc=
√(

x′

dc − z′ · fc
)2

+
(

y′

dc − z′ · fc
)2

=
√(

x2 + z2 · sin2 (�c)
) (

fc
dc − z · cos (�c)

)2

=
√
(L3D · cos (�))2 + (L3D · sin (�))2 · sin2 (�c)

dc − L3D · sin (�) · cos (�c)
fc

= L3D · fc ·
√
cos2 (�) + sin2(�) · sin2 (�c)

dc − L3D · sin(�) · cos (�c)

Calibrating sizes rendered by Blender

Theoretical projected lengths calculated from
Equations 1 and 2 were compared with the lengths
of the sticks rendered by Blender on the display
screen. Because our main concern in Experiment 1
was with the relative lengths of the horizontal and
vertical sticks in the 3D scenes, we calculated the
ratios of the projected lengths of the parallelepiped
to the orthogonally attached cylinders of the same
physical length and plotted them as a function of
3D pose. Blender and geometrically derived ratios
both followed a distorted and asymmetric sinusoidal
curve, and had very similar values (Figure A2).
Because the derived projection of the measuring stick
is always the same length, this curve also describes
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Figure A3. Perceived 3D length for each observer. Symbols represent parallelepipeds with lengths 10 cm (red circle), 8 cm (blue
triangle), and 6 cm (green square). Average perceived length across 3D pose (six observers.) Dashed lines indicate physical 3D lengths.
Perceived lengths are underestimated as a systematic function of pose. The systematic patterns are similar for all observers.

the projected length of the test stick as a function of
pose.

Lengths estimated by individual observers

Individual observer’s length estimates corresponding
to Figure 3a are shown in Figure A3.

Slant illusion for conjoined objects on gridded
ground

Misestimates of slant by individual observers
Individual observer relative slant estimates

corresponding to Figure 5c are shown in Figure A4,
and absolute slant matches corresponding to Figure 5e
in Figure A5
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Figure A4. Slant illusion for conjoined objects on gridded
ground: Front surfaces look identical, but the top surfaces look
more slanted for the longer solids.

Figure A5. Equal slants across object lengths for each observer. Relative perceived camera elevation for each length of fixed stick
(circle, 10 cm; triangle, 8 cm; square, 6 cm), separately for the two poses (red, 90°; blue, 270°) for each observer.
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Figure A6. Matched slants across object lengths for each observer. Directly matched perceived slant as a function of camera elevation
for each observer.


