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Abstract One of the early pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β
(Aβ) plaques in the brain. There has been a tremendous interest in the development of Aβ plaques imaging
probes for early diagnosis of AD in the past decades. Optical imaging, particularly near-infrared fluorescence
(NIRF) imaging, has emerged as a safe, low cost, real-time, and widely available technique, providing an
attractive approach for in vivo detection of Aβ plaques among many different imaging techniques. In this review,
we provide a brief overview of the state-of-the-art development of NIRF Aβ probes and their in vitro and in vivo
applications with special focus on design strategies and optical, binding, and brain-kinetic properties.
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1. Introduction

Alzheimer's disease (AD) is the most common type of dementia
among older people, affecting approximately 35 million people
worldwide, with 5 million new cases every year1. Clinical
symptoms of AD include progressive cognitive decline, irrever-
sible memory loss, disorientation, language impairment, and
emotional instability1. The dilemma places significant mental,
social and economic burdens on patients, families, and commu-
nities1. Unfortunately, there are no currently effective treatments
available to reverse or stop the progress of this devastating disease,
primarily due to difficulties in identification of disease etiology2–4.

Several pathological hallmarks of this disease have been identi-
fied, namely, the deposition of amyloid-β (Aβ) plaques and
neurofibrillary tangles, elevated reactive oxygen species (ROS),
imbalanced metal ion (e.g., Cu, Fe, and Zn) homeostasis, and
decreased brain acetylcholine (Ach) levels. Three major theories
have been proposed to explain these pathological hallmarks:
amyloid cascade3,5,6, oxidative stress7,8, and the metal ion hypo-
theses7. The amyloid cascade hypothesis is currently the prevailing
one. It is believed that the formation Aβ plaques arises from
aggregation of peptides Aβ40 and Aβ42, and is the initial event in the
pathogenesis of the AD. Aβ40 and Aβ42 are degradation products of
amyloid peptide precursor (APP), generated from cleavage by β-
and γ-secretases. These cleaved peptides have a tendency to
aggregate into different Aβ species such as dimers, oligomers,
fibrils, and plaques, and may also interact with metal ions and
produce ROS, with subsequent neuronal atrophy and death4.
Regardless of the nature of the intertwined toxicological pathways
induced by Aβ aggregates, it is widely accepted that the formation
of Aβ plaques precedes the clinical symptoms of AD. Therefore,
they are excellent diagnostic and predictive biomarkers for the early
detection of AD5,6,9. Moreover, the current clinical diagnosis of AD
is primarily based upon family and patient's medical history as well
as neurological and neuropsychological observations. Thus, the
diagnosis is often inaccurate. Confirmative AD diagnosis can only
be made through postmortem histopathological examination of brain
Aβ plaques. There exists a great and urgent need to develop non-
invasive and accurate probes for Aβ plaques to improve the current
diagnosis of AD. Such probes will also be useful in monitoring
disease progression and effectiveness of new AD treatments.

In the past decade, significant advances have been made in the
design of molecular probes for specific labeling, detection,
imaging of Aβ plaques both in vitro and in vivo. A number of
different imaging modalities and approaches have been applied,
including magnetic resonance imaging (MRI)10–14, positron emis-
sion tomography (PET)15–19, single photon emission computed
tomography (SPECT)20–24, and optical imaging techniques25. MRI
based approaches suffer from low resolution since the size of Aβ
plaques typically range from 20 to 60 μm, while only larger
plaques (450 μm) are detectable26. Compared with MRI, radio-
labeled PET and SPECT probes are more sensitive methods. Many
probes, such as [11C]PIB27,28, [11C]SB-1329,30, [11C]AZD218431,
[18F]FPIB32, [18F]AZD469433,34, [18F]FDDNP35,36, [18F]AV-137-39,
[18F]AV-4540–42 and [123I]IMPY20, have advanced in clinical trials.
PET-based probes are more promising in terms of their translational
applications. Three PET probes [18F]FPIB (VizamylTM), [18F]AV-
45 (AmyvidTM) and [18F]AV-1 (NeuraceqTM) were recently
approved by the FDA. The clinical diagnostic utility of these PET
imaging agents is limited: they cannot be used to confirmatively
diagnose AD, only to support other diagnostic criteria43. Further-
more, the use of PET probes is limited by high cost and narrow
availability, since generation of these probes needs specialized
facilities that have a cyclotron for the generation of short-lived
radionuclides (e.g., [11C], t1/2¼20 min and [18F], t1/2¼110 min)
and an automated synthetic unit to produce radiolabelled probes.
Compared with PET, SPECT has broader availability and lower cost
as a routine diagnosis method due to the use of easily-generated
radionuclides with longer half-lives (e.g., [125I], t1/2¼60.1 d, [123I],
t1/2¼13.2 h, and [99mTc], t1/2¼6.0 h). Current SPECT-based probes
either have relatively high background for the radioiodinated probes
due to high lipophilicity and nonspecific binding or have poor blood-
brain barrier (BBB) penetration in the case of 99mTc-labeled SPECT
probes. Only one SPECT probe, [123I]IMPY, has advanced in clinical
trials. In general, radionuclear-based imaging modalities PET and
SPECT are limited by high cost, radiation exposure, and single signal
readout.

In contrast to the radionuclear-based imaging techniques,
optical imaging modalities are rather inexpensive; important merits
include nonradioactive, real-time imaging with the option of multi-
targets tracing in vitro and in vivo, wide availability, and high-
resolution imaging depending on the specific technique used44–47.
For in vivo applications, in order to avoid absorption and back-
ground autofluorescence and scattering of biological molecules,
probe fluorescence emission wavelength in the near-infrared (NIR)
region between 650 and 900 nm is advantageous so that one can
achieve an optimal penetration depth and high sensitivity. There-
fore, NIR fluorescence imaging has emerged as an attractive
alternative to PET/SPECT and MRI techniques, and may provide a
solution for the early diagnosis of AD. In the following sections,
we discuss challenges and design strategies associated with the
development of NIRF Aβ probes for in vivo applications, followed
by a list of current reported probes and their optical, binding and
brain-kinetic properties, as well as in vitro and/or in vivo studies
(Table 1).
2. Challenges in developing NIRF Aβ probes

A number of NIR fluorophores such as cyanine dyes (Cy7),
indocyanine green dyes (ICG), alexa fluor dyes (660–790 nm),
and SRfluor dyes have been developed and employed for in vivo
applications; many of them are commercially available47. None-
theless, these known NIR fluorophores have large molecular weight
and intrinsic charges. They are likely to be unsuitable for labeling
Aβ plaques in the brain because of their limited BBB permeability.
In order to use a fluorophore for in vivo brain Aβ imaging, several
criteria are required48–50: (1) a suitable wavelength of excitation and
emission within the NIR range (650�900 nm); (2) high BBB
permeability (logP values between 2 and 3.5, or clogPo5.0 are
considered optimal51,52); (3) high affinity for specific labeling of the
Aβ plaques in the brain with low nonspecific binding to other
proteins; (4) rapid clearance of the unbound dye from the brain; and
(5) significant changes in the probe fluorescence properties upon
binding to Aβ plaques. It is challenging to design probes meeting all
the requirements. First, many NIR fluorophores are often highly-
conjugated structures with molecular weight over 600 Da, while a
small and compact scaffold with molecular weight less than 600 Da
is required for NIRF Aβ probes. Secondly, the probes should have
balanced lipophilicity to ensure good BBB penetration and avoid
nonspecific binding. Moreover, high affinity and significant fluor-
escence property changes require fluorophore scaffolds which are
challenging to design. Ultimately, it is difficult to predict in vivo
properties of a designed NIRF probe before synthesis and testing.



Table 1 Summary of NIR imaging probes for Aβ plaques.

Name M. W. Ki (nmol/L) Kd (nmol/L) clogP a (logP b) ε (M�1 cm�1) λabs (nm) λex (nm) λem (nm) (free) λem (nm) (binding) Φ (%) Intensity
incresement (fold)

References

NIAD-4 334.41 10 – 4.52 35700c – 492c 603c – 0.008d, 5e,f 400f 48
NIAD-11 400.47 – – 4.77 – 545g – 690g �710f 11e,f – 53
NIAD-16 361.48 – – 5.33 – 470g – 720g – – – 53
AOI-987 324.35 – 220 1.66 61930i 650i – 670i – 41i – 49
THK-265 350.37 – 97 �0.29 (1.8) 96198c – 627c 644c 650 38.5c 3.6f, 6h 54
CRANAD-2 410.26 – 38.7 5.56 (3.0) – – 640g 805g 715 0.6d,40e,f 70c 50
CRANAD-3 420.55 – – 5.13 – – – 700g 640g – – 55
CRANAD-58 439.31 – – 5.67 (1.94) – – �630 �750 �700f – – 56
CRANAD-17 456.25 – – 5.11 – – – �600 �560f – – 56
BODIPY7 530.18 108 – 9.08 (2.2) – 606 – 613 – 36 – 57
BAP-1 351.20 – 44.1 5.47 – 604j 614j 648j – 46.8j – 58
BAP-2 357.23 – 54.6 5.24 – 651j 650j 708j – 11.4j – 59
BAP-3 341.16 – 149 4.65 – 665j 663j 705j – 4.5j – 59
BAP-4 433.32 – 26.8 7.24 – 623j 636j 704j – 9.3j – 59
BAP-5 417.26 – 18.1 6.75 – 639j 649j 723j – 4.3j – 59
DANIR 2c 249.31 37 27 2.81 50119k 519k 597g 665g 625h 4.09k 12h 60
MAAD-3 327.37 354 – 4.28 – – – 704g 674 g,h 4.71 d,k 0.048d,g 15h 61
DMDAD-3 323.43 645 – 4.36 – – – 725g 694 g,h 2.68 d,k 0.033d,g 7h 61
MCAAD-3 282.34 106 – 3.16 – – – 685g 654 g,h 1.23d,k 0.250d,g 26h 61
DMMAD-3 315.36 652 – 3.53 – – – 687g 642 g,h 0.10 d,k 0.068d,g 8h 61

aCalculated using ChemBioDraw 12.0 software.
bExperimental value.
cMeasured in methanol.
dQuantum yield before binding.
eQuantum yield after binding to Aβ fibrils/aggregates.
fFor Aβ40 fibrils/aggregates.
gMeasured in PBS.
hFor Aβ42 fibrils/aggregates.
iMeasured in serum.
jMeasured in chloroform.
kMeasured in dichloromethane.
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Figure 1 Structures of NIR fluorescence probes covered in this review (donor and acceptor groups were labeled in blue and red, respectively).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3. NIRF Aβ probes

Compared with a vast number of PET/SPECT probes for Aβ
plaques in the literature, there have been relatively few reports on
the development of NIRF probes. This is no doubt due to the many
challenges discussed in the previous section62. In this section, we
cover six different kinds of NIRF Aβ imaging probes in
chronological order according to their publication dates. Their
structures are shown in Fig. 1. Most of them are highly conjugated
molecules containing the donor-acceptor or donor-acceptor-donor
architecture. Their structural features are characterized by an
electron-donating group linked to an electron-withdrawing group
by an highly polarized conjugated π-electron chain, leading to non-
linear optical properties, such as fluorescence intensity change in
response to environmental change63. Such architecture is particu-
larly useful in the design of NIRF Aβ probes, since the recognition
process often involves surrounding environmental changes of the
probe48. Moreover, physical, optical, and binding properties can be
rationally tailored by varying the conjugated π-chain, the donor,
and the acceptor groups48,60,61.
3.1. NIAD-4 and its analogs (NIAD-4, NIAD-11, and NIAD-16)

In 2005, Swager et al.48 rationally designed the fluorescent probe
NIAD-4 based upon the donor-π-bridge-acceptor architecture, which
utilizes a highly polarizable bisthiophene to link the donor group
(p-hydroxyphenyl) and the acceptor group (dicyanomethlyene). NIAD-
4 showed excellent binding affinity (Ki¼10 nmol/L) for Aβ aggregates
and a dramatic enhancement of the fluorescence intensity (about 400-
fold) when mixing with Aβ aggregates. The increased fluorescence
intensity was caused by reduced free rotation of aromatic rings in the
excited state. In vivo two-photon imaging experiments in transgenic
mice demonstrated NIAD-4 readily crossed the BBB after intravenous
injection and labeled Aβ plaques in brain and cerebrovascular amyloid
angiopathy on blood vessels (Fig. 2)48. In a separate study, NIAD-4
showed a broader pH tolerance than Thioflavin T in monitoring
amyloid formation process, especially under acidic condition64. NIAD-4
presented the first example of the rational design of Aβ specific
probes to achieve emission wavelength over 600 nm upon binding
with Aβ aggregates. However, the maximum emission wavelength
of the probe NIAD-4 is only 603 nm, not in the optimal range of



Figure 2 (a) In vitro staining of Aβ deposits with NIAD-4 in a coronal section of a transgenic mouse brain. Scale bar, 1 mm. (b) In vivo two-
photon fluorescent image of Aβ plaques and cerebrovascular amyloid angiopathy. Scale bar, 30 μm. (Adapted with permission from Ref.48.
Copyright 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Figure 3 (a) In vitro staining of Aβ plaques with AOI-987 in a transgenic mouse brain section [scale bars, 1 mm (large panel) and 100 μm
(lower panels)]. (b) In vivo images of female 17-month-old APP23 transgenic (top row) and wild-type (middle row) mice at different time points
(30, 60, 120, 240 min) after injected i.v. with 0.1 mg/kg AOI-987, and corresponding images of a female 17-month-old transgenic APP23 mouse
treated with 0.9% saline (bottom row) (scale bar, 1 cm; color scale bars in arbitrary units). (c) Ex vivo NIRF image of a brain section (20 μm
thickness) of 16-month-old female transgenic mouse administrated with 0.1 mg/kg AOI-987 (scale bar, 100 μmol/L). (Adapted with permission
from Ref.49. Copyright 2005 Macmillan Publishers Ltd.: Nature Biotechnology.)
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650�900 nm. Studies with this probe required the use of the
invasive cranial window technique to perform in vivo fluorescence
imaging, which is impractical for clinical diagnosis48. To achieve
longer emissions, the same group subsequently developed a series
of NIAD-4 analogs, including NIAD-11 and NIAD-1653,65.
NIAD-16 could distinguish vascular and nonvascular Aβ plaques
from background signal through fluorescence lifetime imaging53.
3.2. AOI-987

In the same year, Gremlich et al.49 at Novartis designed and
synthesized longer wavelength benzophenoxazine dyes, as NIRF
probes for Aβ plaques. They could monitor the progression of Aβ
deposition in APP23 transgenic mice, an animal model of AD.
Among them, AOI-987 offered the best in vivo results. Although
AOI-987 is a charged molecule and has only moderate affinity for
Aβ aggregates (Kd¼220 nmol/L), the probe was able to penetrate
the BBB and specifically label Aβ plaques as identified by ex vivo
fluorescence imaging examination of brain slides (Fig. 3c). In
addition, AOI-987 has an absorption and emission wavelength
within the NIR range (650 and 670 nm, respectively) and a high
quantum yield of 0.41. This fulfills the prerequisites for high
sensitivity in vivo applications. In vivo time-dependent NIRF
imaging experiments shown in Fig. 3b differentiated APP23 mice
from wild type mice in as early as 9 months old. However,
AOI-987 has the unfavorable properties of a small Stokes shift
(25 nm) and marginal fluorescence changes upon mixing with Aβ
aggregates. In addition, the clearance rate of AOI-987 in the brain
is low and extended washout time (4 h) is needed to clearly
differentiate specific and nonspecific binding in vivo49.
3.3. Curcumin derivatives (CRANAD-2, CRANAD-3,
CRANAD-58, CRANAD-17, etc.)

To improve detection signals with noticeable fluorescence inten-
sity alternation and a large Stokes shift, Moore and colleagues50

designed and synthesized a novel class of NIRF probes derived
from curcumin structure. In the structure, a difluoroboronate
moiety and two p-dimethyamino phenyl groups were integrated
into the curcumin scaffold to form a donor-acceptor-donor
architecture, significantly increasing the emission wavelength to
805 nm. In this series, CRANAD-2 showed high affinity



Figure 4 (a) In vitro staining of Aβ plaques with CRANAD-2 in a twelve old APP-PS1 transgenic mouse brain section (magnification: left, 2� ;
middle, 10� ; right, 40� ). (b) In vivo images of female 19-month-old wild type (top row) and Tg2576 (bottom row) mice at different time points
(30, 60, 120, 240 min) after injected i.v. with 5.0 mg/kg CRANAD-2. (Adapted with permission from Ref.50. Copyright 2009 American Chemical
Society.)
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(Kd¼38.7 nmol/L) and drastic fluorescence changes (70-fold
fluorescence intensity increase, 90 nm hypochromic shift) upon
binding to Aβ aggregates. Since bulky analogs CRANAD-6 and
CRANAD-23 (structures not shown) did not show significant
fluorescence change, it was assumed that the binding site of
CRANAD-2 is stereo-hindered, likely to be the hydrophobic site
containing the core fragment (KLVFF)56. In vitro staining experi-
ments revealed that CRANAD-2 was capable of selective detec-
tion of Aβ plaques in a brain section from a 12-month old
APP-PS1 transgenic mouse (Fig. 4a). Notably, CRANAD-2 could
differentiate Tg2576 mice from wild type at an early time point
(30 min) after injection by comparison of fluorescence intensities
in in vivo studies (Fig. 4b). CRANAD-2 meets most of the
requirements as a NIRF Aβ probe in vitro and in vivo. Compared
with PIB, a well-studied PET probe for Aβ plaques, CRANAD-2
has lower brain entrance/clearance rates50. In another study
reported by the same group, CRANAD-2 was used in combination
with CRANAD-5 as a non-conjugated FRET pair for differentiat-
ing Aβ monomers from higher aggregated Aβ species including
dimers66.

By replacing of benzene with pyridine and dimethylamino with
diethylamino groups in CRANAD-2, with subsequent removal of the
difluoroboron bridge, the same group reported another probe,
CRANAD-3, in 2012. CRANAD-3 displayed significant fluorescence
property changes upon binding to Aβ aggregates. What was different
from CRANAD-2 was that it also interacted with soluble Aβ
monomers and dimers, and displayed fluorescence signal change. In
vivo imaging studies using transgenic APP/PS1 mice exhibited that
CRANAD-3 could differentiate 2 month-old APP/PS1 mice from wild
type mice. Furthermore, notably, CRANAD-3 could separate specific
and nonspecific binding fluorescence signal of the probe in spectral
unmixing imaging studies55.

More recently, new CRANAD-2 analogs were designed and
synthesized aiming for NIRF imaging of soluble and insoluble Aβ
species and inhibition of copper-ion induced Aβ aggregation56.
Among them, CRANAD-58 showed different fluorescence
response towards soluble and insoluble Aβ species. Significant
fluorescence intensity increase (91.9-fold for Aβ40, 113.6-fold for
Aβ42) and high affinity (Kd¼105.8 nmol/L for Aβ40, 45.8 nmol/L
for Aβ42) for Aβ monomers was observed. Similar fluorescent
intensity changes were also seen with Aβ dimers, but to a lesser
extent. In vivo experiments revealed that CRANAD-58 was able to
detect soluble Aβ species in transgenic APP/PS1 mice at the age of
4 months. Another analog, CRANAD-17, containing two copper
coordinating imidazoles, could compete and interfere with copper
induced crosslinking of Aβ. CRANAD-17 induced 68% more of
Aβ monomers as compared with non-treated samples in in vitro
anti-crosslinking studies, indicating potential usage as theranostic
agent56.

3.4. BODIPY based probes (BODIPY7, BAP-1 to BAP-5)

The high quantum yield, biocompatibility, and high lipophilicity of
the BODIPY fluorophore render it attractive for the design of NIRF
probes. In this regard, inspired by NIAD-4, Ono and his team57

reported their first BODIPY-derived fluorescence/SPECT dual probe
BODIPY7. It contains a conjugated thiophene-phenyl chain similar to
NIAD-4. BODIPY7 has modest affinity (Ki¼108 nmol/L) for Aβ
aggregates and is able to detect Aβ plaques in in vitro staining
of brain slides from an animal model of AD. The low BBB
permeability, the short absorption/emission wavelength
(606/613 nm), and the narrow Stokes shift restricts in vivo imaging
applications57. Two years later, the same group developed a new
BODIPY-based Aβ imaging probe (BAP-1) with a "privileged”
p-dimethylamino phenyl group to improve in vivo properties.
BAP-1 showed high affinity (Kd¼44.1 nmol/L) and a significant
fluorescence intensity increase upon binding to Aβ aggregates. It
also has exceptional brain kinetic profiles and demonstrated
specific labeling of Aβ plaques based on in vitro and ex vivo
staining studies (Fig. 5). Nonetheless, it failed in in vivo imaging



Figure 6 (a) Ex vivo image of Aβ plaques in a Tg mouse brain
section treated with intravenous administration of 0.4 mg/kg DANIR
2c. (b) In vivo images of female 22-month-old wild type (top row) and
APPsw/PSEN1 transgenic (bottom row) mice at different time points
(2, 10, 30, 60 min) after injected with 0.4 mg/kg DANIR 2c. (Adapted
with permission from Ref.60. Copyright 2014 American Chemical
Society.)

Figure 5 (a) In vitro staining of Aβ plaques with BAP-1 in a Tg2576
mouse brain section versus a wild-type mouse brain section. (b)
Comparison of the ex vivo fluorescence intensity in the brain of a 25-
month-old Tg2576 and age-matched wild-type mice 1 h after intrave-
nous administration of BAP-1. (Adapted with permission from Ref.58.
Copyright 2012 American Chemical Society.)
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experiments using Tg2576 mice as the disease model, mainly due
to unfavorable nonspecific binding in the scalp. Furthermore, the
emission wavelength of BAP-1 (648 nm) was still short for in vivo
imaging58. In 2013, several BAP-1 analogs (BAP-2, BAP-3, BAP-
4, and BAP-5) with emission wavelength over 700 nm were
disclosed. Similar to BAP-1, they were able to selectively label
Aβ plaques in vitro and ex vivo. The probe, BAP-2, was selected
for in vivo imaging but failed due to the same problem of higher
accumulation in the scalp than in the brain, potentially related to
high lipophilicity of the BODIPY group59. These studies reveal the
issues associated with BODIPY-based probes, including narrow
Stokes shifts causing potential interference from Raman and
Rayleigh scattering, and high lipophilicity leading to nonspecific
binding and high background in lipid membranes.
3.5. THK-265

Inspired by the reported studies, Okamura and colleagues54

screened a collection of simple conjugated compounds, which
led to the new NIRF Aβ probe, THK-265. This probe possess an
emission wavelength around 650 nm combined with favorable
physical properties such as high quantum yield, high molar
absorption coefficients, and moderate logP value. A high binding
affinity (Kd¼97 nmol/L) and 6-fold fluorescence intensity increase
upon mixing with Aβ42 fibrils were observed, albeit no significant
change in emission wavelength. THK-265 was further evaluated
for its in vivo imaging performance using AβPP transgenic mice.
Such studies demonstrated that this probe crossed the BBB and
selectively labeled Aβ plaques in the brain following intravenous
administration. Compared with AOI-987 under the same experi-
mental conditions, THK-265 showed an earlier differentiation time
and better imaging contrast between transgenic mice and wild
type and higher sensitivity for plaque detection in vivo. Most
importantly, the fluorescence intensity of THK-265 correlated well
with Aβ plaque burden, indicating its potential in monitoring
progression of the Aβ aggregation in AD54. Subsequently, Schmidt
and Pahnke67 demonstrated that indeed THK-265 could be used
for direct monitoring and evaluating different cerebral Aβ aggre-
gation levels in different stage of AD progression in an animal
AD model.

3.6. DANIR 2c and its analogs (MAAD-3, DMDAD-3,
MCAAD-3,and DMMAD-3)

Earlier experiences from previous studies of the BODIPY series of
NIRF Aβ probes led to the design of improved ones. By
replacement of the undesired BODIPY with simple conjugated
systems, Ono and Cui et al.60 designed and synthesized a new
series of structurally simplified Aβ fluorescent probes DANIRs.
The p-dimethylamino phenyl moiety was used as the donor group
on one side of polymethine, with dicyanomethylene as the
acceptor on the other end. This design significantly reduced
molecular weights of the probes and improved brain kinetics.
The best probe in the series, DANIR 2c, was able to efficiently
cross the BBB and label Aβ plaques (Fig. 6a) with a fast washout
rate of the unbound probe. This probe differentiated between Tg
mice and wild type as early as 30 min after in vivo administration
of the probe (Fig. 6b), a significantly shorter time as compared
with that from AOI-987. DANIR 2c also has favorable optical
properties (emission wavelength at 665 nm), a 12-fold increase in
intensity upon mixing with Aβ aggregates, and excellent affinity
for Aβ aggregates (Ki¼37 nmol/L, Kd¼27 nmol/L). DANIR 2c
meets most of the requirements as an optimal probe for in vivo
imaging of Aβ plaques60. One shortcoming is the blue-shift of
this probe’s emission wavelength to only 625 nm (shorter than
650 nm) following binding to Aβ plaques.

Encouraged by the excellent performance of DANIR 2c, Cui
et al.61 then turned to its analogs for better NIRF probes with
longer emission wavelength. Four analogs MAAD-3, DMDAD-3,
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MCAAD-3, and DMMAD-3 were synthesized, by differing in the
donor group. These analogs showed extended emission wave-
length and significant reduced binding affinity to Aβ aggregates
compared with DANIR 2c. Docking simulations suggested that
these probes likely bind to the same binding site as IMPY, which
was a thin hydrophobic groove parallel to the fibrillar axis formed
by VAL 18 and PHE 20. Increased bulkiness of the acceptor group
within these analogs caused a reduced binding efficiency. One
analog, MCAAD-3, which had the highest affinity of 106 nmol/L
among the series, was selected for in vivo imaging studies. Similar
to DANIR 2c, MCAAD-3 exhibited good brain kinetics, including
rapid initial uptake and fast egress. Furthermore, the latter could
differentiate Tg from wild type mice at the earliest point of 30 min
after dosing as well. Overall, MCAAD-3 may be a better NIRF
probe for in vivo imaging than DANIR 2c, as the emission
wavelength was at 654 nm when bound to Aβ aggregates.
4. Conclusions

This review highlights the development of NIRF imaging probes
for in vivo detection of Aβ plaques in the past ten years. Six
structurally distinct NIRF fluorophore scaffolds of Aβ probes have
been developed. Most of these probes present high affinity for Aβ
in vitro. As for in vivo imaging applications, pharmacokinetics-
related properties are as vital as optical properties. Such pharma-
cokinetics considerations include in vivo stability, low-affinity for
serum albumin, and reasonable lipophilicity, all of which are
required for fast initial uptake into brain and fast washout to
reduce nonspecific binding. In addition, significant fluorescence
signal changes upon binding to Aβ are required. Other considera-
tions regarding optical properties include absorption/excitation/
emission in NIR region, high molar absorption coefficient, high
quantum yield, and longer Stokes shifts. The currently reported
probes fell short on one or several aspects of these required
properties. NIAD-4 and DANIR 2c display a short emission
wavelength, but charged AOI-987 is difficult to penetrate the
BBB. CRANAD-2 has a slow egress, and BODIPYs suffer from a
short Stokes shift and nonspecific binding in the scalp. Marginal
fluorescent signal changes are observed with THK-265 upon
binding to Aβ aggregates. MCAAD-3 has a relatively lower
binding affinity than that of NIAD-4 or DANIR 2c.

Despite these concerns, development of these probes demon-
strate the feasibility of NIRF imaging using Aβ specific fluores-
cence probes as a low-cost, convenient, readily available, and real-
time approach for early diagnosis of AD in mice AD models. We
believe that, in the future, the NIRF Aβ probes with enhanced
pharmacokinetics and optical properties will be great benefits to
human health through improved early AD diagnosis, evaluation of
disease progression and clinical therapeutic outcomes.
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