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Next-generation sequencing of tissue
A logical extension

In this issue of Neurology® Neuroimmunology & Neuro-
inflammation, Salzberg et al1 report on the results of
a small prospective study of the application of next-
generation sequencing (NGS) of RNA and DNA ex-
tracted from brain biopsy tissue specimens obtained
from 10 patients with suspected neuroinfectious disease
processes. In 3 patients, the NGS results, which
included JC virus, Epstein-Barr virus, and Mycobacte-
rium tuberculosis, were validated by other measures.
Standard diagnostic methods would have led to the
correct diagnosis in these patients; however, the NGS
results showed that the same conclusions could have
been drawn from a single assay that is able to detect
bacteria, fungi, parasites, and viruses simultaneously. In
2 patients, the NGS results were indeterminate, but
raised the possibility of infectious organisms that had
not been suspected clinically: possible Delftia acidovor-
ans in a 69-year-old man with Tolosa-Hunt syndrome
and pachymeningitis and Elizabethkingia spp. from the
brain mass of a 19-year-old man with Fanconi anemia.1

In 5 other cases, the investigators found NGS clinically
useful, such as ruling out the presence of an infection in
suspected cases of sarcoidosis or glial tumors,1 although
the actual negative predictive value of a negative NGS
result awaits definition in a larger prospective study.

The cost of performing NGS and analyzing the
data, which can be accomplished in as little as
48 hours,2 is currently estimated at $2,000–$5,000/
sample and will almost certainly continue to decline
with refinements in methodology and advances in
sequencing technology. NGS has broad potential ap-
plications, including the identification of pathogens,
improving tumor classification,3,4 identifying genetic
disorders in newborns,5 and a myriad of other poten-
tial applications. The use of NGS in identifying
difficult-to-diagnose infectious diseases of the nervous
system has included the identification of such patho-
gens as Leptospria spp.2 and Balamuthia mandrillaris6

in the CSF of patients with meningoencephalitis. A
novel astrovirus,7,8 variegated squirrel bornavirus,9

and M tuberculosis10 have also been identified in solid

tissue specimens, including brain biopsies. This series
adds to this small but growing literature.

Infectious diseases of the nervous system are often
difficult to diagnose. Although most meningitis re-
sults from an infectious pathogen, epidemiologic
studies suggest that the causative organism remains
undetected in between 15% and 60% of cases.11–13

Similarly, there are more than 100 infectious patho-
gens that have been associated with encephalitis,14 but
in only 40%–70% is an etiology established.15–17 The
relatively high number of patients in whom a patho-
gen cannot be identified has been attributed to sub-
optimal testing and a lack of tests for all the potential
pathogens.16 Frequently, empiric treatment is insti-
tuted despite the absence of an identified pathogen,
resulting in inadequate or inappropriate treatment
and potentially dangerous delays in diagnosis.

Despite the higher yield in recognizing infectious
pathogens from brain and spinal abscesses, even the
availability of tissue does not ensure a diagnosis.18

Some series state that stereotactic biopsy is nondiag-
nostic in 2%–15% of patients,19 but in one recent
series of 100 patients undergoing stereotactic biopsy,
24 specimens proved to be nondiagnostic.20 Smaller
lesions (,1 cm3) have lower diagnostic yields.21

Often the nondiagnostic biopsy is the consequence
of inadequate tissue sampling.

The application of NGS to these tissue specimens
will almost certainly increase the ability to detect an
offending microorganism, but the 2 indeterminate
cases in this series also highlight the potential pitfalls
of such a broad brush, hypothesis-free assay. Bacterial
sequences are omnipresent in unbiased, metagenomic
NGS datasets as a result of sample and laboratory
contamination.22,23 Indeed, Delftia acidovorans was
present in the NGS results of a number of the other
subjects in this case series, but in those cases, it was
considered to be a contaminant. In addition, Eliza-
bethkingia spp. frequently appears as a contaminant in
metagenomic NGS datasets as well. Without a nega-
tive control like a water sample accompanying each
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sequencing run, it can be very difficult to discriminate
between infection and contamination.

For metagenomic NGS to move from the research
laboratory to the clinical laboratory, the field as a whole
needs to develop rigorous criteria for determining
whether a microbe present in theNGS data was an infec-
tion. The Food and Drug Administration recently issued
guidance on this issue (http://www.fda.gov/downloads/
MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/UCM500441.pdf). Indeed, iden-
tifying sequences in a dataset that align to a particular
organism is only the start of the analysis. One must then
investigate the specificity with which those reads align to
that organism and not to any others. In addition, the
extent of genomic coverage must be evaluated. A 100- to
200-nucleotide sequence aligning to an organism is
much less convincing for infection than when one
can find sequences covering much of the organism’s
genome. Finally, NGS is semiquantitative, and a high
abundance of reads to an organism relative to the typical
background levels seen in other samples can also be
suggestive of a real infection vs contamination.24 Once
the analysis of the NGS data was complete, orthogonal
assays are critical for confirming the presence of a partic-
ular pathogen, including culture, 16s ribosomal RNA
PCR, immunohistochemistry, serology, and, if appro-
priate, electron microscopy. Finally, placing all the
results into the particular patient’s clinical context is also
crucial.

Because metagenomic NGS attempts to sequence
all of the nucleic acid in a sample by using random
hexamer primers, it may uncover totally unantici-
pated associations between diseases of unknown etiol-
ogy and a specific pathogen. Examples of the latter
that predate the NGS sequencing era include Whip-
ple disease, now recognized to be the consequence of
the bacterium Tropheryma whipplei,25 and tropical
spastic paraparesis, recognized to be the consequence
of a retrovirus, human T-lymphotropic virus (HTLV)
type I26 (and less often, type II), and currently referred
to as HTLV-associated myelopathy.

As the accessibility of NGS increases, there will
almost certainly be a large and growing contingent
of patients for whom NGS will be performed. The
preliminary studies on brain tissue reported in this
issue add to the existing literature and highlight the
need for larger studies to rigorously characterize the
performance characteristics of the assay across an
array of tissue types and organisms.
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