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Background: The prognosis of cervical cancer (CC) is poor and not accurately reflected
by the primary tumor node metastasis staging system. Our study aimed to develop a novel
survival-prediction model.

Methods: Hallmarks of CC were quantified using single-sample gene set enrichment
analysis and univariate Cox proportional hazards analysis. We linked gene expression,
hypoxia, and angiogenesis using weighted gene co-expression network analysis
(WGCNA). Univariate and multivariate Cox regression was combined with the random
forest algorithm to construct a prognostic model. We further evaluated the survival
predictive power of the gene signature using Kaplan-Meier analysis and receiver
operating characteristic (ROC) curves.

Results: Hypoxia and angiogenesis were the leading risk factors contributing to poor
overall survival (OS) of patients with CC. We identified 109 candidate genes using WGCNA
and univariate Cox regression. Our established prognostic model contained six genes
(MOCSI, PPP1R14A, ESM1, DES, ITGA5, and SERPINF1). Kaplan-Meier analysis
indicated that high-risk patients had worse OS (hazard ratio = 4.63, p < 0.001). Our
model had high predictive power according to the ROC curve. The C-index indicated that
the risk score was a better predictor of survival than other clinicopathological variables.
Additionally, univariate and multivariate Cox regressions indicated that the risk score was
the only independent risk factor for poor OS. The risk score was also an independent
predictor in the validation set (GSE52903). Bivariate survival prediction suggested that
patients exhibited poor prognosis if they had high z-scores for hypoxia or angiogenesis
and high risk scores.

Conclusions: We established a six-gene survival prediction model associated with
hypoxia and angiogenesis. This novel model accurately predicts survival and also
provides potential therapeutic targets.
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INTRODUCTION

Cervical cancer (CC) is a malignant tumor that seriously
threatens women’s health, ranking fourth in female-specific
cancers (Cohen et al., 2019). In 2018, diagnosed cases
reached over 560,000, and deaths numbered 300,000 (Bray
et al., 2018). Although progress has been made in CC
prevention, screening, and treatment (e.g., modern targeted
technology and immunotherapy), the therapeutic effect
remains insufficient (Li et al., 2016; Vu et al., 2018), even as
annual incidence and associated mortality increase. Relapse and
metastasis are major factors associated with CC-related deaths.
However, the current tumor node metastasis staging system is
ineffective in predicting patient prognosis. Therefore, a more
efficient prognostic model or new prognostic markers are
urgently needed to improve the clinical outcomes of patients
with CC.

Recent applications of precision medicine and the
advancement of second-generation sequencing have led to a
growing number of studies that construct genomic models for
cancer prognostic assessment (Cheng et al., 2019; Liu et al., 2021).
Although some studies have established a prognostic model for
CC, its limitations preclude widespread use in clinical practice
(Chen H. et al., 2020; Chen et al., 2020c).

Previous studies have suggested that hypoxia in many cancers,
including pancreatic cancer, neuroblastoma, gastric cancer, and
bladder cancer, is closely related to poor prognosis (Chen et al.,
2020b; Cangelosi et al., 2020; Jiang et al., 2021; Tao et al., 2021).
The hypoxia risk model of glioma may reflect the strength of
tumor immune response and independently predict prognosis. A
hypoxia-related lncRNA signature and nomogram accurately

predicted overall survival (OS) and disease-free survival of
patients with gastric cancer (Chen et al., 2020b). Additionally,
angiogenesis plays a critical role in tumor growth and metastasis,
with data indicating a close connection to poor prognosis in lung
adenocarcinoma, hepatocellular carcinoma, and breast cancer
(Kerbel, 2008; Chen Y. et al., 2019; Teleanu et al., 2019;
Korobeinikova et al., 2020; Yang et al., 2021). Angiogenesis-
related genetic markers can effectively predict the prognosis of
patients with gastric cancer, while angiogenesis-related gene-
based nomograms allow for more precise risk stratification
(Ren et al., 2020). However, the value of combining hypoxia-
and angiogenesis-related gene expression in CC prognosis has
rarely been investigated.

Therefore, our study aimed to establish a new prediction
model for hypoxia and angiogenesis. First, through statistical
analysis of data from The Cancer Genome Atlas (TCGA), we
identified hypoxia and angiogenesis as two critical risk factors
affecting the OS of patients with CC. We then established a gene
signature related to hypoxia and angiogenesis and confirmed its
predictive accuracy using a separate validation set from the Gene
Expression Omnibus (GEO). Furthermore, we explored
correlations between the risk model and immune infiltration.

MATERIALS AND METHODS

Dataset Preparation and Data Processing
Clinical and transcriptome data from 257 patients with CC were
collected from TCGA (http://cancergenome.nih.gov/) for use as
training sets. A prognostic model was established from these data.
The GSE52903 dataset from GEO (http://www.ncbi.nlm.nih.gov/

FIGURE 1 | Experimental flowchart. CC, cervical cancer; WGCNA, weighted gene co-expression network analysis; ssGSEA, single-sample gene set enrichment
analysis; OS, overall survival; ROC, receiver operating characteristic.
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geo/), containing transcriptome and clinical data of 54 patients
with CC, was used as the validation set. As all data were
downloaded from public databases, ethical approval was not
required for this study.

Candidate Gene Selection and Signature
Establishment
Hallmark gene sets were downloaded from the Molecular
Signatures Database (MSigDB) v.7.5.1 (https://www.gsea-

msigdb.org/gsea/msigdb). Cancer hallmarks were assessed using
single-sample gene set enrichment analysis (ssGSEA),
implemented with R package “gsva” (Barbie et al., 2009;
Liberzon et al., 2011). Hazard ratios (HR) of CC hallmarks
were calculated using univariate Cox proportional hazards
(Cox-PH) regression, implemented with R package “survival.”
Based on ssGSEA scores and transcriptome data, a scale-free
co-expression network was established using the weighted gene
co-expression network analysis (WGCNA) R package to identify
modules most related to hypoxia and angiogenesis (Langfelder and
Horvath, 2008). Gene significance (GS) was calculated from
correlations between individual genes and ssGSEA scores of
hypoxia and angiogenesis. Associations between gene expression
and module eigengenes were identified with module membership.
Using the selection criteria of p < 0.0001 for GS and p < 0.01 for
univariate Cox regression, 109 candidate genes were identified
from the module that had the strongest association with hypoxia
and angiogenesis. The importance of survival-related genes was
ranked using the random forest algorithm. A Monte Carlo
simulation with 100 iterations and 5 forward steps was
performed (Ishwaran et al., 2008). The risk score model was
established according to multivariate Cox regression using the
following formula: risk score = β1x1+ β2x2+β3x3 + /βNxN. Next,
the best gene combination was selected based on log-rank p values
obtained from Kaplan–Meier (KM) analysis.

Survival Analysis Based on the Risk Model
Relationships between the best combination of genes and CC
hallmarks were estimated using gene co-expression

FIGURE 2 |Hypoxia and angiogenesis were the key cancer hallmarks affecting OS in patients with CC. (A)Hypoxia and angiogenesis had a strong influence on OS,
according to the univariate Cox-PH regression. (B,C) Patients with CC who died during follow-up had significantly higher z-scores for hypoxia and angiogenesis. (D,E)
Patients with high hypoxia and angiogenesis z-scores had poorer OS, according to KM analysis. TGF, transforming growth factor; NFKB, nuclear factor kappa B; PI3k/
Akt, phosphatidylinositol-3- kinase/serine-threonine kinase; EMT, epithelial-mesenchymal transition; KM, Kaplan–Meier.

TABLE 1 | Clinical data from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO).

Characteristic TCGA GEO p

n 257 54
Status, n (%) 0.074
Alive 195 (62.7%) 34 (10.9%)
Dead 62 (19.9%) 20 (6.4%)

Stage, n (%) 0.141
Stage I 146 (46.9%) 27 (8.7%)
Stage II 56 (18%) 8 (2.6%)
Stage III 39 (12.5%) 15 (4.8%)
Stage IV 16 (5.1%) 4 (1.3%)

grade, n (%)
G1 18 (7%)
G2 127 (49.4%)
G3 112 (43.6%)

age, median (IQR) 46 (38, 56) 49 (41, 65.5) 0.220
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correlations (based on Pearson’s). Patients were classified into
high- and low-risk groups with their median risk scores.
Significant between-group differences in prognosis were
determined using KM analysis. Prediction accuracy of the
risk model was tested with a time-dependent receiver
operating characteristic (tROC) curve and the area under
the curve of the ROC (AUC) (Heagerty et al., 2000).
Univariate and multivariate Cox regression models were
used to evaluate the independent predictive values of each
prognostic factor. The predictive accuracy of the risk model
and individual prognostic factors was calculated using the
concordance index (C-index) (Pencina and D’Agostino,
2004). Risk scores and hypoxia/angiogenesis hallmarks were
combined for survival analyses and prognosis assessments in
the training set.

Correlation Analysis Between Risk Scores
and Tumor Immune Microenvironment
Correlations between immune cell infiltration and risk scores
were analyzed using the following analysis tools: TIMER,
CIBERSORT, CIBERSORT-ABS, quanTIseq, MCPCOUNTER,
EPIC, and xCELL. A heatmap was constructed to assess immune
infiltration levels in high- and low-risk groups.

Bioinformatics and Statistical Analysis
To identify CC-related genes, ssGSEA was performed using
hypoxia and angiogenesis genomes from MSigDB
(Subramanian et al., 2005). Data analysis and figure generation
were conducted using R (version 4.1.1; https://www.r-project.org/
). Both ssGSEA and risk scores were normalized using z-scores.
Survival probability was assessed using KM analyses, and
between-group differences in survival were determined using
log-rank tests. Univariate and multivariate Cox regressions
were performed to determine the effect of each factor on
progression-free survival (PFS) and OS. The predictive
capacity of risk models and cancer hallmarks were measured
using tROC and AUC analyses (Heagerty et al., 2000), while risk-
model prognostic accuracy was reflected in the C-index.

RESULTS

Research Design
Figure 1 depicts the research protocol to generate a survival
prediction model for patients with CC.We identified hypoxia and
angiogenesis as the two cancer hallmarks most associated with
OS. Next, we identified core hypoxia- and angiogenesis-related
genes for survival prediction using a combination of WCGNA,

FIGURE 3 | Establishment of hypoxia- and angiogenesis-related gene signatures. (A) Eight non-gray modules were confirmed using WGCNA. (B) The brown
module was most significantly related to hypoxia and angiogenesis (r > 0.5, p < 0.0001). (C) Module eigengene adjacency heatmap displaying correlations of co-
expressed modules. (D) Key genes from the brown module were screened. Univariate Cox regression was used to identify 109 candidate genes with prognostic
potential. (E) The random forest supervised classification algorithm selected 10 genes from the 109 candidate genes. (F) The six-gene risk model was ranked first in
KM analysis to identify optimal risk models.
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univariate/multivariate Cox regression, and the random forest
algorithm. We then used these core genes to build risk models for
OS prediction. Finally, we assessed and validated the prognostic
predictive power of the risk model in training and validation
cohorts. Table 1 summarizes patient-related data.

Hypoxia and Angiogenesis Were Key
Hallmarks Affecting OS
We calculated and ranked Cox coefficients in terms of cancer-
hallmark ssGSEA scores and the corresponding survival data of
the training cohort. Univariate Cox-PH regression revealed that
hypoxia and angiogenesis had a stronger influence on survival
than adipogenesis, protein secretion, TGF-beta signaling,
epithelial-mesenchymal transition, mitotic spindle, NOTCH
signaling, NFKB, MYC-targets, apoptosis, PI3K/AKT signaling,
pancreas-beta cells, or inflammatory response (Figure 2A).
Hypoxia and angiogenesis z-scores were significantly higher in
patients who died than in those who lived during the follow-up
period (p < 0.05; Figures 2B,C). Using median risk scores, we
assigned 257 patients with CC in the training cohort to high- and
low-risk groups. Survival analysis indicated that patients with
high hypoxia z-scores had poor OS (HR = 1.70, p = 0.023;

Figure 2D), as did patients with high angiogenesis z-scores
(HR = 2.49, p < 0.001; Figure 2E).

Establishment of Prognostic Gene
Signature Related to Hypoxia and
Angiogenesis
To identify highly connected modules of co-expressed
transcripts, we performed WGCNA using ssGSEA z-scores of
hypoxia and angiogenesis from the training set and genome-wide
microarray data (Figure 3A). Of the eight non-gray modules, the
brown one was the most significantly related to hypoxia and
angiogenesis (r > 0.5, p < 0.0001; Figure 3B). We displayed the
correlation of co-expressed modules as a module eigengene
adjacency heatmap (Figure 3C). We then used GS < 0.001 as
the criterion for selecting key genes from the brown module.
Univariate Cox regressions on these genes yielded 109 candidates
with prognostic potential (p < 0.05; Figure 3D). From these
candidate genes, the random forest supervised classification
algorithm then extracted the top 10 (EREG, ESM1, NAMPT,
SERPINF1, PPP1R14A, MOCS1, ITGA5, NRP1, SPRY4, and DES)
(Figure 3E), forming 1024 risk model combinations. Using KM
analysis and comparing -log10 Plog-rank values, we determined that

FIGURE 4 | The risk score was the only significant independent risk factor affecting OS in the training set. (A) Correlation of the gene signature with hypoxia and
angiogenesis. (B) The risk score was significantly higher in the mortality group during follow-up. (C) Patients with a high risk score had a poorer OS, according to KM
analysis. (D) The risk score was a good predictor of OS (AUC > 0.7). (E) Univariate and multivariate Cox regression for OS revealed that risk score was the only significant
independent risk factor among multiple clinicopathological variables. (F) The C-index indicated that the risk score had the best OS predictive ability among the
clinicopathological variables. AUC, area under the ROC curve; HR, hazard ratio.
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the optimal risk model was the one with six genes (MOCSI,
PPP1R14A, ESM1, DES, ITGA5, and SERPINF1). We considered
that a good model should contain as few genes as possible
(Figure 3F). The formula for establishing our model was as
follows: risk score = 0.160 × MOCSI + 0.370 × PPP1R14A +
0.223 × ESM1 + (-0.246) × DES + 0.323 × ITGA5 + (-0.248) ×
SERPINF1.

The Risk Score Is an Independent OS
Predictor in the Training Set
In the training set, all six genes were positively associated with
hypoxia and angiogenesis (Figure 4A). Risk scores were
significantly higher in the mortality group during follow-up
(Figure 4B). The results of KM analysis for OS revealed that
patients with high-risk scores had a poorer prognosis than those
with low-risk scores (HR = 4.63, p < 0.001; Figure 4C).
Additionally, the AUC-ROC analysis indicated that risk scores
successfully predicted the 0.5-, 1-, 2-, 3-, and 5-year OS (AUC >
0.7; Figure 4D). Univariate and multivariate Cox regression for
OS in the training set revealed that the risk score was the only

significant independent risk factor among all tested
clinicopathological variables (p < 0.001; Figure 4E). Moreover,
the C-index indicated that the risk score had the best OS
predictive ability (Figure 4F).

The Risk Score Is an Independent PFS
Predictor in the Training Set
The high-risk group had a greater proportion of patients with
disease progression, whereas the low-risk group had a greater
proportion of patients without progression (Figure 5A). During
follow-up, risk scores were significantly higher in the disease-
progression group than in the no-progression group (p < 0.01;
Figure 5B). Patients with high risk scores had a poorer prognosis
than those with low risk scores (KM analysis, HR = 2.85, p <
0.001; Figure 5C). The AUC-ROC analysis indicated that risk
scores predicted 0.5-, 1-, 2-, 3-, and 5-year PFS (AUC > 0.68;
Figure 5D). Like in OS, the risk score was the only significant
independent risk factor for PFS (univariate/multivariate Cox
regressions, p < 0.001; Figure 5E) and had the best predictive
ability (Figure 5F).

FIGURE 5 | The risk score was the only significant independent risk factor predicting PFS in the training set. (A) The high-risk group contained a greater proportion
of patients with disease progression. (B) Patients with disease progression had significantly higher risk scores. (C) Patients with high risk scores had a poorer prognosis,
according to KM analysis. (D) The risk score was a good predictor of PFS (AUC > 0.68). (E) Univariate and multivariate Cox regression for PFS revealed that risk score
was the only significant independent risk factor among included clinicopathological variables. (F) The C-index indicated that the risk score had the best PFS
predictive ability. PFS, progression-free survival; AUC, area under the ROC curve.
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In the training set, KM analysis of OS was conducted on
patients after they had been divided into clinicopathological
subgroups according to age, stage, and grade. Patients with
high risk scores had a worse prognosis than those with low
risk scores in all subgroups (Figures 6A–F).

Risk Model Verification in the Validation Set
We validated risk model performance using an independent CC
validation set. The high-risk group had a greater proportion of
patients who died, whereas the low-risk group had a greater
proportion of surviving patients (Figure 7A). Risk scores were
significantly higher in the mortality group during follow-up (p <
0.01; Figure 7B). Patients in stages III–IV had significantly higher
risk scores than those in stages I–II (p < 0.001; Figure 7C).
Patients with high-risk scores had a poorer prognosis in terms of
OS than those with low-risk scores (KM analysis, HR = 3.29, p =
0.008; Figure 7D). Risk scores predicted the 1-, 2-, 3-, and 5-year
OS in the validation set (AUC > 0.7; Figure 7E), while also being
the only significant independent risk factor (univariate/
multivariate Cox regressions, p < 0.001; Figure 7F).

Association and combined survival analysis of risk scores and
key cancer hallmarks in the training set.

Hypoxia and angiogenesis z-scores were significantly higher in
the high-risk group than in the low-risk group (Figure 8A).
Vascular endothelial growth factor A (VEGFA) is a major driver

of angiogenesis during tumor progression in various cancers
(Krock et al., 2011). Hypoxia-induced factor 1 alpha (HIF1A)
is a crucial protein in controlling hypoxia response (Li et al.,
2020). HIF1A and VEGFA levels were significantly higher in the
high-risk group than in the low-risk group (Figure 8B). When we
ran KM analysis on combined risk scores and cancer hallmarks or
hallmark-related genes, we found that OS prognosis was best with
low risk scores and low hypoxia or angiogenesis z-scores (Figures
8C,D). Similarly, the prognosis was best with low risk scores and
low HIF1A or VEGFA expression (Figures 8E,F).

Relative Immune Infiltration Levels in High-
and Low-Risk Groups
The heat map illustrates correlations between immune cell
infiltration and risk scores (Figure 9). The TIMER analysis
demonstrated that B cells and CD4+T cells were more
abundant in the low-risk group. Additionally, CIBERSORT
analysis showed that the low-risk group had more
CD8+T cells, activating NK cells, M1 macrophages, M2
macrophages, and myeloid dendritic cells. The CIBERSORT-
ABS analysis also found higher levels of CD8+T cells,
CD4+T cells, follicular helper T cells, regulatory T cells, M1
macrophages, M2 macrophages, myeloid dendritic cells, and
activated mast cells in the low-risk group. Both analyses

FIGURE 6 | The risk score was a better predictor of OS across multiple subgroups of the training set. (A–F) KM analysis of OS was conducted for various
clinicopathological subgroups, including age, stage, and grade. Patients with high risk scores had a worse prognosis.
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revealed that resting mast cell and M0 macrophage levels were
higher in the high-risk group. Furthermore, QuanTIseq analyses
indicated that the low-risk group had more B cells, M2
macrophages, and CD8+T cells, whereas the high-risk group
had more M1 macrophages and neutrophils. The low-risk
group had more T cells, B cells, and myeloid dendritic cells,
according to MCPCOUNTER analyses, whereas the high-risk
group had more monocytes, macrophages, and endothelial cells.
Along the same lines, EPIC analyses revealed that the numbers of
CD8+T cells, CD4+T cells, B cells, myeloid dendritic cells,
cancer-associated fibroblasts, and hematopoietic stem cells,
and immune, stromal, and microenvironment scores were
higher in the low-risk group. Finally, XCELL analyses
suggested that B cell levels were higher in the low-risk group,
while EPIC and XCELL analyses both found that endothelial cell
levels were higher in the high-risk group.

DISCUSSION

The poor prognosis of CC remains a serious threat to women’s
health, although human papillomavirus vaccination and
screening have significantly reduced incidence and mortality.

Early diagnosis and treatment are essential for improving CC
prognosis, but reliable diagnostic and prognostic biomarkers are
currently lacking.

Hypoxia and angiogenesis both predict poor prognosis in
patients with CC (Vaupel and Mayer, 2007; Ding et al., 2019).
Hypoxia involves insufficient oxygen supply to cells, tissues, or
organs. Multiple studies have established its role in cancer
tumorigenesis, development, invasion, metastasis, recurrence,
and drug resistance (Rezaeian et al., 2017; Jing et al., 2019;
Fico and Santamaria-Martinez, 2020). By promoting tumor
angiogenesis, hypoxia facilitates rapid tumor growth,
metastasis, and immune escape (Zhang, 2012; Dai et al., 2017).
Unsurprisingly, a hypoxic microenvironment is closely associated
with CC occurrence and development (Hockel et al., 1996). HIF-
1α is activated in the hypoxic tumor microenvironment and
modulates many transcription factors that allow cells to
survive in unfavorable conditions (Semenza, 2012).
Additionally, paclitaxel-resistant CC cells (HeLa-R cells)
exhibit upregulated HIF1-α expression, and downregulation of
HIF1-α re-sensitized HeLa-R cells to paclitaxel (Peng et al., 2014).
Hypoxia-related genes appear to have latent prognostic value. For
example, hCINAP (required for hypoxia-induced EMT and
apoptosis) may play a role in CC metastasis and is a potential

FIGURE 7 | Verification of the risk model in the GSE52903 dataset. (A) The high-risk group had higher mortality rates. (B) The risk score was significantly higher in
the mortality group during follow-up. (C) Patients in stages III–IV had significantly higher risk scores. (D) Patients with high risk scores had a poorer prognosis, according
to KM analysis for OS. (E) The ROC analysis revealed that risk scores accurately predicted OS. (F) Univariate and multivariate Cox regression for OS revealed that risk
score was the only significant independent risk factor among included clinicopathological variables.
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therapeutic target for CC (Zhang et al., 2021). Likewise, hypoxia-
induced ZEB1 promotes CC progression via CCL8-dependent
tumor-associated macrophage recruitment (Chen X.-J. et al.,
2019).

Angiogenesis is the process of new vessel formation and a
hallmark of solid tumors, including CC (Folkman, 1990).
Substantial evidence has shown that angiogenesis contributes
to CC development, progression, and metastasis (Kodama
et al., 1999). Angiogenesis is important not only in tumor
growth but also in hematogenous metastasis, as tumor blood
vessels can provide nutrients and oxygen, while disposing
metabolic waste. Angiogenesis is activated when the balance
between stimulatory and inhibitory elements shifts towards
pro-angiogenic factors (Hanahan and Folkman, 1996; Payen
et al., 2015). One of the most important angiogenesis
regulators is VEGF-A, a major proangiogenic cytokine in
tumor growth and progression (Kerbel, 2008). VEGF-A also
acts in CC (Cheng et al., 2000) and is associated with poor
prognosis (Jin et al., 2017; Kaddu-Mulindwa et al., 2021).

Accumulating evidence suggests that hypoxia is closely
associated with angiogenesis (Sui et al., 2017; Wen et al.,
2019). Previous studies have revealed that HIF-1α regulates
VEGFA expression via HIFα-dependent transcriptional activity
(Manalo et al., 2005). Furthermore, antiangiogenic drugs help
inhibit tumor growth and metastasis via the HIF-1α signaling
pathway (Rey et al., 2017). To date, hypoxia-related prognostic

gene signatures have been studied in prostate cancer (Yang et al.,
2018), lung adenocarcinoma (Mo et al., 2020), and hepatocellular
carcinoma (Zhang et al., 2020), whereas angiogenesis-related
prognostic gene signatures have been studied in gastric cancer
(Ren et al., 2020), renal clear cell carcinoma (Zheng et al., 2021),
and breast cancer (Bender and Mac Gabhann, 2013). These
findings revealed the prognostic value of hypoxia- and
angiogenesis-related genes, along with their potential as
therapeutic targets in CC.

However, these studies had certain flaws. First, hypoxia- or
angiogenesis-related gene signatures were constructed based on
considering individual genes reported in the literature, without
considering that both processes likely involve entire gene
networks. Second, such studies rarely investigated the
prognosis predictive capacity of combining hypoxia-related
gene signatures and angiogenesis-related gene signatures.

Therefore, our study established a new prognostic model
based on gene signatures that correlate with hypoxia and
angiogenesis. First, we applied ssGSEA and Cox-PH
regressions to identify hypoxia and angiogenesis as cancer
hallmarks most significantly associated with OS in patients
with CC. Because hypoxia can promote angiogenesis, the two
phenotypes are strongly correlated. Subsequently, we used
WGCNA to identify the gene module most strongly associated
with both processes. We then obtained prognostic hub genes
(including MOCS1, PPP1R14A, ESM1, DES, ITGA5, and

FIGURE 8 | Combined survival analysis of risk scores and key cancer hallmarks in the training set. (A) Hypoxia and angiogenesis z-scores were significantly higher
in the high-risk group. (B) HIF1A and VEGFA expression levels were significantly higher in the high-risk group. (C,D) The prognosis was worse in patients with high risk
scores and high hypoxia or angiogenesis z-scores, according to KM analysis for OS after combining risk scores and key cancer hallmarks. (E,F) The prognosis was
worse in patients with high risk scores and high HIF1A or VEGFA expression, based on KM analysis for OS after combining risk scores and genes related to key
cancer hallmarks.
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SERPINF1) after univariate Cox regression, random forest
algorithm, and KM analysis. This method allowed us to
comprehensively identify genes associated with both
phenotypes, given that the regulation of hypoxia and
angiogenesis occurs in a network. These analyses will enhance
our understanding of hypoxia and angiogenesis regulatory
mechanisms. Next, survival analysis of training and validation
sets demonstrated that our six-gene prognostic model
independently predicted OS in patients with CC. Finally,
immune cell infiltration analysis suggested that high-risk
patients had significantly lower infiltration levels.

Each of the six genes have been implicated in cancer.
PPP1R14A is involved in the pathogenesis of human
melanoma. It drives Ras activity and tumorigenesis by
activating the growth-promoting ERM family and inhibiting
the tumor suppressor merlin (Riecken et al., 2016). ESM1 has
been widely explored in various cancers, including prostate
cancer, hepatocellular carcinoma, and head and neck
squamous cell carcinoma; it also has prognostic value in

esophageal cancer (Calderaro et al., 2019; Xu et al., 2019; Cui
et al., 2021; Pan et al., 2021). ITGA6 is an oncogene in various
cancers (Raab-Westphal et al., 2017), including CC, where it is
overexpressed and associated with proliferation and invasion
(Yang J. et al., 2019). In contrast to these genes, MOCS1, DES,
and SERPINF1 are poorly understood. Thus, their potential
biological functions require further research.

Dysfunction of the antitumor immune system is closely related
to CC development and progression (Chen Z. et al., 2019; Liu
J. J. et al., 2020; Liu X. et al., 2020). High levels of activated
memory CD4+T cells predict a better prognosis in patients with
CC (Wang et al., 2019). The correlation between risk stratification
and immune cell infiltration further demonstrates the predictive
power of our six-gene prognostic model.

Previously, a nine-lncRNA signature was established to
predict the 1 year PFS in patients with CC; this model had an
AUC of 0.793, 0.780, and 0.742 in two GEO test sets and one
TCGA test set, respectively (Mao et al., 2019). A seven-gene
prognostic signature for CC had also been developed using GEO

FIGURE 9 | Correlation analysis of immune cell infiltration and risk scores. A Heatmap of seven different methods shows relative infiltration levels in high- and low-
risk groups.
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data, predicting 1-, 3-, and 5-year OS with AUC of 0.74, 0.76, and
0.81, respectively (An et al., 2022). Another study established
11 immune-related gene signatures to assess OS in patients with
CC, yielding 3- and 5-year AUC of 0.733 and 0.747 (Yang S. et al.,
2019). For our six-gene prognostic risk model, the AUC at 1, 2, 3,
and 5 years is 0.784, 0.803, 0.826, 0.818, and 0.797 in the training
set, and 0.778, 0.783, 0.747, and 0.767 in the validation set.
Compared to the previous models, ours showed better
predictive power.

Nevertheless, our study had some limitations. First, our
findings would be better supported with the inclusion of more
machine learning tools. The random forest algorithm is a mature
and widely used machine learning method, with relatively stable
results. However, new machine learning methods are available
that can benefit our investigation, including a novel tool for gene
selection and phenotype classification, as well as an efficient
algorithm for survival analysis and biomarker selection
(Huang et al., 2021; Huang et al., 2022). Using these more
advanced techniques should reduce errors from platforms or
samples. Another limitation was that we only used one GEO
dataset for verification and did not include normal transcript data
as a control. Therefore, future studies need to validate the
predictive value of our six-gene signature in more CC tissues
and adjacent normal tissues. Finally, we still know little about the
biological functions of the six hypoxia- and angiogenesis-related
genes, necessitating more experiments in the future.

CONCLUSION

In summary, we established a new six-gene signature for CC and
used it to develop a risk model that strengthens prognostic
predictions. The six-gene prognostic model should be an
effective tool for detecting high-risk patients, enabling early
treatment to maximally prevent CC advancement. While

possessing high predictive power, this model also has a small
number of genes, reducing the economic burden on patients.
Thus, it has great potential for clinical application and
transformation. The genes chosen for the model play a very
important role in tumor development, suggesting that they can be
potential therapeutic targets. Our model is not only useful for
predicting prognosis, but can also supplement the existing TNM
staging method. Once the model is verified in more clinical cases,
our data can be generalized to a larger population.
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