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Abstract

Background

Natural killer (NK) cells are the main effective component of the innate immune system that

responds to chronic hepatitis B (CHB) infection. Although numerous studies have reported

the immune profiles of NK cells in CHB patients, they are limited by inconsistent results.

Thus, we performed a meta-analysis to characterize reliably the immune profiles of NK cells

after CHB infection, specifically frequency, phenotype, and function.

Methods

A literature search of the computer databases MEDLINE, PUBMED, EMBASE, and

Cochrane Center Register of Controlled Trails was performed and 19 studies were selected.

The standard mean difference (SMD) and 95% confidence interval (CI) of each continuous

variable was estimated with a fixed effects model when I2 < 50% for the test for heterogene-

ity, or the random effects model otherwise. Publication bias was evaluated using Begg’s

and Egger’s tests.

Results

The meta-analysis of publications that reported frequency of peripheral NK cells showed

that NK cell levels in CHB patients were significantly lower compared with that of healthy

controls. A higher frequency of CD56bright NK subsets was found in CHB patients, but the

CD56dim NK subsets of CHB patients and healthy controls were similar. CHB patients

before and after antiviral therapy with nucleotide analogues (NUCs) showed no statistical

difference in NK frequency. The activating receptors were upregulated, whereas inhibitory

receptors were comparable in the peripheral NK cells of CHB individuals and healthy con-

trols. NK cells of CHB patients displayed higher cytotoxic potency as evidenced by CD107a
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protein levels and conserved potency to produce interferon-gamma (IFNγ), compared with

their healthy counterparts.

Conclusion

Our results revealed that CHB patients had a lower frequency of NK cells compared with

healthy individuals not treatable with antiviral NUC therapy. With an activating phenotype,

NK cells in CHB patients showed better cytotoxic potency and conserved IFNγ production.

Introduction
Hepatitis B virus (HBV) infection is an important health problem worldwide. About 2 billion
people have been infected with this virus as reported by the World Health Organization. Over
400 million patients infected with HBV eventually develop chronic hepatitis [1]. Most CHB
patients also suffer severe liver disease such as liver cirrhosis and hepatocellular carcinoma [2,
3]. The mechanism by which some HBV patients progress to chronic hepatitis has not yet been
fully elucidated [4–6]. The host immune response is considered an important factor for deter-
mining whether HBV infection is cleared or persists [7, 8].

NK cells are the main effective population of the innate immune system that responds to
viral infection (e.g., HBV) via cytotoxic effectors and cytokine production [9, 10]. NK cells con-
stitute approximately 40% to 60% of liver lymphocytes and 5–15% of total lymphocytes [11,
12]. Derived from hematopoietic progenitor cells in the bone marrow, these large granular
lymphocytes have been identified by flow cytometry from CD56 levels and lack of the T-cell
marker CD3 (that is, CD3−CD56+ NK cell status) [13]. CD3−CD56+ NK cells can be further
subdivided into CD56dim NK cells, which express CD16 (Fcγ-receptor) and KIR (killer-cell
immunoglobulin-like receptor), and CD56bright NK cells, which lack expression of the two
above markers [10, 13]. Although CD56dim NK cells are the largest population and CD56bright

NK cells are in the minority in the blood, this subdivision can be significantly changed by per-
sistent viral infection [14].

NK cells display at least two major effector functions to control viral infection: they can
directly attack infected cells through cell-to-cell contact, but they also secret a variety of antivi-
ral cytokines such as interferon-gamma (IFNγ) [10, 13, 15]. An increasing number of studies
have shown that during HBV infection, effective immune responses by NK cells may lead to
the initial control of the acute infection in the early phase and allow the efficient development
of an adaptive immune response [16, 17]. Since NK function is closely regulated by activating
receptors (NKP30, NKp44, NKp46, NKG2D, NKG2C) and inhibitory receptors (NKG2A,
CD158a, CD158b), interactions between NK cell receptors and their corresponding ligands
determine the fate of NK cells [15, 18]. Interestingly, in chronic viral infection such as with
HBV, NK cell function is impaired through changes in their receptors [15, 19].

The current therapy for CHB is based on the application of pegylated interferon-alpha
(Peg-IFNα) or NUCs [20, 21]. Recent studies have reported the effects of anti-viral therapy on
innate effectors such as NK cells [22–26]. It has been shown that inhibition of HBV replication
by antiviral therapeutic medicine such as NUCs helped to restore partially the function of NK
cells in the peripheral blood [22, 23]. However, little is known about the influence of antiviral
therapy on the proportion of NK cells.

A large number of studies have addressed the immune profiles of NK cells in CHB patients.
Nonetheless, these documented studies are limited by small sample size, differences in patient
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ethnicities and geographical locations, and, especially, inconsistent results. Therefore, we per-
formed a systematic review and meta-analysis of the currently relevant literature to investigate
the frequency, phenotypes, and functions of NK cells in CHB patients.

Materials and Methods

Literature search strategy
The study was performed in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses criteria (PRISMA) (S1 PRISMA Checklist). A search of the MED-
LINE, PUBMED, EMBASE, and Cochrane Center Register of Controlled Trails computer data-
bases (from 1980 to December 2015) was performed of manuscripts. The search strategy
involved selecting Medical Subject Headings (MeSH) and text words used in combination or
alone: “HBV”, “NK cell”, “hepatitis B virus”, “natural killer cells”. The scope of the search was
restricted to “human” and “English”. Emails were sent to corresponding authors of related arti-
cles in which enough data was not provided. We excluded the non-informative studies if the
authors did not reply. Independent searches were conducted by QFZ and JYS.

Selection criteria
Published studies in English were included when they met the following criteria: randomized
control, case-control, or cohort studies; reports of NK cell frequency, phenotypes, receptors, or
functions, in peripheral blood or liver tissue; treatment-naïve patients with chronic mono-
HBV infection (i.e., no patients taking antiviral therapy or immunosuppressive drugs within 6
months before the sampling); investigating the effect on NK cells of treatment with NUCs or
Peg-IFNα. Papers were excluded if they contained unclear or confusing data; or reports of NK
cells immune profiles of patients co-infected with hepatitis C virus, hepatitis D virus, or human
immunodeficiency virus. The names of the authors or journals of the articles did not influence
our selection decisions.

Data extraction
Two reviewers (QFZ and JYS) independently applied the inclusion criteria, selected the studies,
and extracted the data. The following data were extracted from each paper: number of patients
in the study; details of the study design; characteristics of patients; treatment regimen; and
results measured by flow cytometry. Studies were selected in a 2-stage process. Firstly, the titles
and the abstracts from the electronic searches were scrutinized by two reviewers independently
(QFZ and JYS) and the full manuscripts of all citations that were likely to meet the predefined
selection criteria were obtained. Secondly, final inclusion or exclusion decisions were made
upon examination of the full manuscripts. In case of duplicates, the most recent or the most
comprehensive publication with all the results was used.

Study quality
The methodological quality of the articles was assessed using the Newcastle-Ottawa Scale
(Wells et al. 2000) [27]. The quality score was calculated on the basis of 3 major components of
case-control studies: selection of study groups (0–4 stars), comparability of study groups (0–2
stars), and ascertainment of the outcome of interest (0–3 stars; S1 Table). The quality assess-
ment tool for the cohort study consisted of three domains, including selection of the exposed
and unexposed cohort (maximum: 4 stars), comparability of the two cohorts (maximum: 2
stars), and outcome assessment (maximum: 3 stars; S1 Table). A higher score indicated better
methodology. The quality of each study was independently assessed by the same two reviewers
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(QFZ and JYS). In case of disagreement between the 2 reviewers, a third party (DZZ) was
consulted.

Statistical analysis
Statistical analyses for continuous variables were conducted. Heterogeneity was measured
using the I2 test [28]. In these tests, I2 > 50% indicated significant heterogeneity; P< 0.05 was
also considered to indicate significant heterogeneity. In cases where significant heterogeneity
existed, a random effects model was used to quantify heterogeneity across studies. A fixed
effects model was used in the other cases [29]. Outcomes were expressed as SMD, with 95%CI.
If the value 0 was not included in the 95% CI, the point estimate of the SMD was considered to
have reached statistical significance (P< 0.05).

To explain heterogeneity among different studies, stratified analyses were performed of ala-
nine transaminase (ALT) levels, HBV-DNA, study location, patient ages, case sample size, and
publication year [30]. The ALT levels, immunity status, and NK subsets were further examined
in subgroup analyses. Publication bias was evaluated with Begg’s and Egger’s tests [31]. All
analyses were performed with STATA version 12.0 (Stata, College Station, TX) in accordance
with the recommendations of the manufacturer. P< 0.05 was considered significant.

Results

Search results and study characteristics
Using the strategy described above, 1237 studies were initially identified and screened for
retrieval (Fig 1). After reviewing the title or the abstract, 1205 studies were excluded and 37
were retrieved and subjected to detailed evaluation after removing duplicates and scanning
titles and abstracts. Of the 37 studies, one study was excluded because of language. By applying
the inclusion and exclusion criteria of the present study, 11 studies were eliminated. Due to
lack of data, four studies were excluded, and another two studies were excluded because the
author did not respond to requests for information. Finally, 19 studies [14, 22–24, 32–46] (S1
File) comprising 993 patients were included in the meta-analysis.

Of the 19 studies, three were cohort studies and 16 were case control studies. All these stud-
ies were published between 2006 and 2015. The basic characteristics of each study are listed in
Tables 1 and 2. Eleven of the studies were from China, three from the Netherlands, the one
each from Italy, United Kingdom, Ireland, Germany, and France. The sample size of each of
the studies ranged from 18 to 154 people. The mean ages ranged from 24.2 to 47.0 years. The
male-to-female ratios ranged from 0.7 to 8.0.

Peripheral NK cells in CHB patients compared with healthy controls
The meta-analysis of the 14 studies showed that peripheral NK cell levels in CHB patients
were significantly higher than in the healthy controls (SMD = –0.66, 95% CI: –1.07 to –0.25,
P = 0.002; Fig 2). There was evidence of high statistical heterogeneity among the studies
(I2 = 86.8%), and the randomized-effects model was applied. A meta-regression analysis was
conducted to examine the source of heterogeneity (S2 Table), and ALT levels had a potency
effect on NK percentage (P = 0.037).

Based on results from the meta-regression analysis, we subsequently performed a subgroup
analysis based on ALT levels (Table 3). Our findings diverged significantly due to the ALT lev-
els. In the subgroup with CHB patients (<80 IU/L), the frequency of NK cells did not change
significantly compared to healthy counterparts (SMD = 0.15, 95% CI: –0.16 to 0.46, P = 0.355,
I2 = 44.2%). In the other two subgroups, lower levels of NK cells were found for CHB patients
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compared with the healthy controls (80–300 IU/L: SMD = –1.46, 95% CI: –2.30 to –0.62,
P = 0.001, I2 = 88.7%) and (>300 IU/L: SMD = –0.76, 95% CI: –1.04 to –0.47, P = 0.000, I2 =
0.0%). Additionally, the I2 statistic (I2 = 88.7%) only showed high heterogeneity in the sub-
group that consisted of CHB patients with ALT levels 80–300 IU/L.

After further exclusion of studies that contained no relevant information, we performed two
subgroup analyses of immunity status (immune tolerant and immune active) and NK subsets
(CD56dim NK and CD56bright NK; Table 3). Interestingly, the analysis of studies of immune tol-
erant patients was non-significant (SMD = –0.53, 95% CI: –1.25 to 0.20, P = 0.153) whereas
patients in immune active phase showed significantly decreased NK frequency compared to
healthy controls (SMD = –0.97, 95% CI: –1.23 to –0.72, P = 0.000). Regarding the NK subsets,

Fig 1. The selection process for eligible studies.Of the 1237 studies initially identified from our electronic search, 19 met the inclusion criteria.

doi:10.1371/journal.pone.0160171.g001

Immune Profiles of NK Cells in CHB

PLOSONE | DOI:10.1371/journal.pone.0160171 August 11, 2016 5 / 16



the frequency of CD56dim NK cells were similar between the CHB patients and healthy controls
(SMD = 0.08, 95% CI: –0.17 to 0.33, P = 0.534), whereas CD56bright NK subsets displayed a
higher frequency in CHB patients compared to healthy controls (SMD = 0.33, 95% CI: 0.05 to
0.61, P = 0.021).

A meta-analysis was conducted of four studies that evaluated the NK frequency of CHB
patients in liver and peripheral blood (S1A Fig). In the liver, the NK cell populations were
larger compared with that in the peripheral blood. When a meta-analysis was performed that
excluded these two studies as sources of heterogeneity (S1B Fig) identified by Galbraith’s plots
[33, 45], the heterogeneity disappeared (S1C Fig). We also analyzed the role of treatment with
NUCs on the frequency of peripheral NK cells (S2 Fig). No significant difference was found in
CHB patients before and after treatment.

NK cell receptors between CHB patients and healthy controls
We also analyzed NK cell receptor expression between CHB patients and healthy controls,
including the activating receptors NKp44, NKp46, NKp30, NKG2D and NKG2C, and the

Table 1. Characteristics of the 18 studies included in the analysis.

First author, Year Location Study type Immune State Age, y a Gender, M/F

HBV HC HBV HC

Bonorino, 2009 French Case-control NA 38 (17–63) b NA 1.11 NA

Conroy, 2014 Irish Case-control NA 34.3 (18–60) b NA 1 NA

Gu, 2009 Chinese Case-control IA 35.50 ± 6.21 35.18 ± 7.01 2.57 2.75

Li, 2012 Chinese Case-control NA 34 c 29 c 2.32 1.33

Li, 2014 Chinese Case-control IT 28.27 ± 34.59 25.35 ± 40.94 0.88 0.80

Chinese Case-control IA 30.82 ± 68.57 25.35 ± 40.94 4.25 0.80

Li, 2015 Chinese Case-control IT 32.8 ± 8.9 42.1 ± 10.9 2.0 1.9

Chinese Case-control IA 38.1± 11.6 42.1 ± 10.9 2.1 1.9

Chinese Case-control IN 32.2 ± 7.4 42.1 ± 10.9 6.3 1.9

Lunemann, 2014 German Case-control NA 41 (22–59) b 48 (21–65) b 0.70 1.00

Lv, 2012 Chinese Cohort IA 34.4 ± 20.9 35.9 ± 35.0 2.43 5.00

Oliviero, 2009 Italian Case-control NA 48 (20–72) b NA 1.44 NA

Peppa, 2010 English Case-control NA 37.2±11.9 30.0 ± 8.5 1.13 1.12

Sprengers, 2006 Dutch Case-control NA 36.29±9.84 NA 2.36 NA

Sun, 2012 Chinese Case-control NA 33.4± 2.6 34.1 ± 1.8 1.23 1.06

Tjwa, 2011 Dutch Case-control NA 38.1 ± 10.1 36.9 ± 8.0 2.08 1.27

Dutch Cohort IA 43.1 ± 12.78 36.9 ± 8.0 2.81 1.27

Tjwa, 2014 Dutch Case-control NA 37.15 ± 7.43 0 1.24 NA

Yan, 2006 Chinese Case control NA 39.23 ± 18.92 38.17 ± 15.77 1.16 1.80

Zhang, 2011 Chinese Case-control IT 24 (16–44) b 27 (20–35) b 1.70 1.89

Chinese Case-control IA 27 (16–46) b 27 (20–35) b 2.79 1.89

Zhao J, 2012 Chinese Case-control IA 38 (22–65) b 30 (25–45) b 3.75 3.00

Zhao P, 2012 Chinese Cohort NA 27.5 (19–43) b 29 (23–50) b 8.00 3.67

Zheng, 2015 Chinese Case-control IT 34 (20–55) b 30 (25–38) b 2.60 1.50

Chinese Case-control IA 31 (17–46) b 30 (25–38) b 1.83 1.50

a Median ± SD, unless noted otherwise;
b median (range);
c median

Abbreviations: ALT, alanine transaminase; IA, immune active; IN, immune inactive; IT, immune tolerant; NA, not available

doi:10.1371/journal.pone.0160171.t001
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inhibitory receptors NKG2A, CD158a, and CD158b (Table 4). Activating receptors NKp46,
NKp30, NKG2D and NKG2C were increased, whereas inhibitory receptors NKG2A, CD158a,
and CD158b were comparable in the peripheral blood of CHB patients, compared with that of
healthy controls. Thus, NK cells displayed an activating phenotype during CHB infection.

Production of CD107a and IFNγ in CHB patients compared with healthy
controls
We evaluated the cytotoxicity of NK cells and IFNγ production to evaluate the function of NK
cells in CHB patients relative to that of the healthy controls. A CD107a degranulation assay
was performed as an indirect reflection of cytotoxicity, because it is now widely used to assess
the cytotoxic potency of CD8 T-cells and NK cells [47, 48]. Seven studies reported CD107a
degranulation of peripheral NK cells stimulated by major histocompatibility complex-devoid
K562 target cells, cytokines, or mitogenic phorbol myristate acetate (PMA)/ionomycin. These

Table 2. Characteristics of the 18 studies included in the analysis.

First author, Year Immue state ALT, IU/L a HBV-DNA a, b Blood, n Liver, n

HBV HBV HBV HC HBV HC

Bonorino, 2009 NA 42.7 ± 27.8 45 ± 1.9 c 19 18 6 0

Conroy, 2014 NA 33.8 (8–143) d 2.92 (0.85–8.65) d 66 62 0 0

Gu, 2009 IA 403.72 ± 258.06 5.85 ± 1.08 100 30 0 0

Li, 2012 NA 81 e 5.27 (3–8.48) d 73 35 0 0

Li, 2014 IT 22.22 ± 27.58 7.58 ± 0.81 15 18 0 0

IA 199.85 ± 1250 6.62 ± 1.17 42 18 0 0

Li, 2015 IT <50 7.0 ± 1.8 24 20 0 0

IA 198.8 ± 113.4 6.2 ± 1.9 40 20 0 0

IN <50 <3 22 20 0 0

Lunemann, 2014 NA 30 (14–166) d 3.47 (2.53–7.52) c,d 17 30 0 0

Lv, 2012 IA 124.5±211.4 7.6 ± 3.2 c 24 12 0 0

Oliviero, 2009 NA 50.5 (13–291) d 5.17 (2.23–8.14) c,d 22 30 0 0

Peppa, 2010 NA 69.3 ± 99.4 4.4 ± 2.2 c 64 31 8 0

Sprengers, 2006 NA 153.85 ± 189.84 5.67 ± 1.66 47 0 47 0

Sun, 2012 NA 98 ± 117 >3.30 c 154 95 0 0

Tjwa, 2011 NA 60 ± 82.22 6.5 ± 1.9 40 25 0 0

IA 75 ± 13 7.7 ± 2.3 15 25 0 0

Tjwa, 2014 NA 85.05 ± 64.86 6.0 ± 2.2 c 56 0 56 0

Yan, 2006 NA 369.26 ± 238.87 NA 54 14 0 0

Zhang, 2011 IT 23 (12–26) d 8.43 (7.15–8.81) c,d 27 26 15 12

IA 196 (41–1298) d 8.29 (4.40–9.29) c,d 51 26 29 12

Zhao J, 2012 IA 242 (42–1298) d 7.2 (2.7–8.6) c,d 19 16 0 0

Zhao P, 2012 NA 165 (12–914) d 4.3 (1.86–9.3) d 18 14 0 0

Zheng, 2015 IT 28 (14–46) d 5.32 (3.00–7.88) d 36 10 0 0

IA 149 (52–1733) d 5.61 (4.10–8.58) c,d 34 10 24 0

a Median ± SD, unless noted otherwise;
b log10 copies/mL, unless noted otherwise;
c log10 IU/mL;
d median (range);
e median

Abbreviations: ALT, alanine transaminase; IA, Immune active; IN, Immune inactive; IT, Immune tolerant; NA, not available

doi:10.1371/journal.pone.0160171.t002
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studies included 400 CHB patients and 159 healthy controls. The total degranulation ability of
NK cells was higher in CHB patients compared with the healthy controls (SMD = 0.33, 95%
CI: 0.13 to 0.52, P = 0.001, I2 = 41.0%) and the fixed-effects model was applied (Fig 3A).
This difference was more pronounced for peripheral NK cells stimulated by K562 cells
(SMD = 0.71, 95% CI: 0.39 to 1.03, P = 0.000, I2 = 38.8%). However, the differences with

Fig 2. Pooled comparison of peripheral NK cells in CHB patients and healthy controls.

doi:10.1371/journal.pone.0160171.g002

Table 3. Results of subgroup analysis evaluating the difference in NK cells between CHB patients and healthy controls.

NK cells in PBMC, % Subsgroup CHB/HC, n Study no. SMD I2 95% CI P

Total 616/328 14 –0.66 86.8% –1.07 to –0.25 0.002

ALT, IU/L <80 174/158 5 0.15 44.2% –0.16 to 0.46 0.355

80–300 298/143 5 –1.46 88.7% –2.30 to –0.62 0.001

>300 191/74 4 –0.76 0.0% –1.04 to –0.47 0.000

Immune state Immune tolerant 76/54 3 –0.53 72.4% –1.25 to 0.20 0.153

Immune active 253/96 5 –0.97 85.5% –1.23 to –0.72 0.000

NK subsets CD56 dim 117/130 4 0.08 0.0% –0.17 to 0.33 0.534

CD56 bright 119/95 4 0.33 48.4% 0.05 to 0.61 0.021

doi:10.1371/journal.pone.0160171.t003
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healthy controls were not significant when NK cells were stimulated either with cytokines
(SMD = 0.05, 95% CI: –0.31 to 0.41, P = 0.781, I2 = 0.0%) or PMA/ionomycin (SMD = 0.15,
95% CI: –0.20 to 0.49, P = 0.406, I2 = 0.0%). Seven studies, which included 480 CHB patients
and 204 healthy controls, reported IFNγ production of peripheral NK cells stimulated by cyto-
kines or PMA/ionomycin. Our data revealed that IFNγ production of NK cells was comparable
in CHB patients compared with that in healthy controls (SMD = –0.15, 95% CI: –0.46 to 0.15,
P = 0.323, I2 = 65.0%; Fig 3B). In the subgroup in which NK cells produced IFNγ in response to
cytokines, NK cells in the CHB patients produced less IFNγ compared with the healthy con-
trols (SMD = –0.34, 95% CI: –0.65 to -0.03, P = 0.032, I2 = 55.2%). Between these groups, IFNγ
production was similar after simulation with PMA/ionomycin (SMD = –0.15, 95% CI: –0.12 to
0.71, P = 0.166, I2 = 25.2%). Taken together, our meta-analysis showed a functional dichotomy
in CHB patients as their cytotoxic potency appeared to be elevated, whereas IFNγ secretion, an
important non-cytolytic mechanism of virus control, was conserved.

Publication bias
Begg’s and Egger’s tests were performed to assess the publication bias of the literature, and no
evidence of publication bias was found (S3 Table).

Discussion
Our present work is the first attempt to review the literature and provide a comprehensive and
extensive estimate of abnormal immune profiles of NK cells in CHB patients. We demon-
strated that NK cells in CHB patients with a lower frequency displayed an active phenotype
and exhibited a functional dichotomy featured by an increased cytotoxicity and a conserved
cytokine production.

Concomitant with data reported in previous studies [36, 43], our meta-analysis suggests
that, among CHB patients, there is a higher proportion of NK cells in the liver than in the
peripheral blood. Zhang et al. [36] reported that decreased frequency of hepatic NK cells of
CHB patients in immune active phase displayed an activated phenotype, and skewed toward
cytolytic activity, but without a concomitant increase in IFNγ production, compared with
healthy subjects. Since there is little information in the literature regarding hepatic NK cells,
the differences in intrahepatic NK cells between CHB patients and healthy individuals has not
been established. Despite the differences in the proportion and functional characteristics of NK
cells in the liver and peripheral blood, persistent HBV infection can significantly influence
peripheral NK cells, which can mirror alterations in intrahepatic NK cells [49]. Thus, most
publications have assessed circulating NK cells, as these are more accessible and also easy to
evaluate.

Table 4. Results of meta-analyses of studies evaluating the difference in NK receptors between CHB patients and healthy controls.

NKR in NK cells, % CHB/HC, n Study no. SMD I2 95% CI P

NKp44 288/139 5 0.137 89.80% -0.58 to 0.85 0.707

NKp46 288/139 5 0.386 79.90% 0.18 to 0.60 0.000

NKp30 365/169 7 0.585 79.70% 0.13 to 1.04 0.011

NKG2D 172/95 5 0.465 59.70% 0.03 to 0.90 0.035

NKG2C 267/133 6 0.522 94.90% 0.29 to 0.76 0.000

NKG2A 376/174 8 0.002 12.90% –0.20 to 0.21 0.985

CD158a 208/103 5 -0.072 68.70% –0.53 to 0.38 0.756

CD158b 235/106 6 -0.079 40.50% –0.40 to 0.24 0.626

doi:10.1371/journal.pone.0160171.t004
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Fig 3. Comparison of CD107a and IFNγ production of peripheral NK cells of CHB patients and healthy
controls. (A) Comparison of CD107a production of peripheral NK cells of CHB patients and healthy controls.
(B) Comparison of IFNγ production of peripheral NK cells of CHB patients and healthy controls.

doi:10.1371/journal.pone.0160171.g003

Immune Profiles of NK Cells in CHB

PLOSONE | DOI:10.1371/journal.pone.0160171 August 11, 2016 10 / 16



Our meta-analysis revealed that the frequency of circulating NK cells was lower in CHB
patients compared with the healthy controls. Noticeably, the NK cell frequency in patients with
minimal or no inflammation (ALT< 80 IU/L) or in immune-tolerant phase was comparable
to that in healthy controls. This phenomenon might be a reflection of the time required to
develop an effective and accurate immune response, from innate to adaptive immunity. In the
early stage of HBV infection, the innate immune response is relatively strong. However, HBV-
specific immune response is inefficient with anergy, deletion, and altered maturation of HBV-
specific effector cells [50]. As a major component of the innate immune system, NK cells domi-
nate the immune effector cell population in this phase and the distribution of NK cells resem-
bles that seen in the normal liver [51]. With the development of adaptive immunity, the innate
immune response is reduced [42].

The number of intrahepatic NK cells in immune tolerant phase is putatively higher than
that during the immune active phase [33], further supporting the hypothesis above. Our data
also confirm a significant reduction in the NK cells of CHB patients in the immune active
phase, even though many of the eligible studies lacked the absolute number of NK cells
required to perform a meta-analysis. The main reasons for the reduction in NK cells may be
because, firstly, in HBV infections under proinflammatory conditions, NK cells are more sus-
ceptible to apoptosis [52]. In addition, the clear differences in NK cell frequencies strongly
support that HBV itself, like the hepatitis C virus, may be able to significantly suppress the pro-
liferation of NK cells [53–55]. Moreover, the reduced frequency of NK cells may result from
the expansion of other cells, such as an increased number of dendritic cells, regulatory T-cells,
and T helper 17 (Th17) cells [56–59].

As for NK subsets, increased frequency of CD56bright NK cells in CHB patients but no sig-
nificant difference was found in CD56dim NK subsets. It is tempting to speculate that persistent
HBV infection not only influences the frequency of peripheral NK cells but also modulates
these subsets.

The present guidelines support both NUCs and Peg-IFN-α as first-line treatment options
[20]. However, a satisfactory antiviral response has been achieved only in a minor population
of patients treated with Peg-IFN-α, and the off-treatment durability of response to NUCs is
generally low [20, 25, 26]. Since the immune response to CHB infection acts as a determinant
of disease prognosis, a better understanding of the immune effect of anti-viral therapy is
urgently needed. Despite the influence on the adaptive immune system, the effects of anti-viral
therapy on innate effectors such as NK cells remain a strong concern [22–26]. Our results
revealed that frequency of NK cells could not be adequately reversed by treatment with nucleo-
tide inhibitors, although some studies have reported functional changes in NK cells [8, 9, 22,
38]. It has been previously shown that Peg-IFN-α therapy could drive the proliferation and
expansion, in absolute numbers, of CD56bright NK cell numbers [26]. Tan et al. [25] reported
that combined treatment of Peg-IFN-α and oral NUCs has a synergistic effect on innate
parameters, such as NK cells, in CHB patients. To improve the therapeutic options for HBV,
we need to explore further the immune basis by which HBV impairs anti-viral immune
responses.

NK cells are essential effectors of the antiviral response in innate immunity, via the direct
killing of infected cells, and produce a variety of antiviral and immunoregulatory cytokines.
IFNγ is one of the main cytokines [10, 13, 15]. Furthermore, the functions of NK cells depend
on a fine balance between activator and inhibitory receptors [15, 18, 60, 61]. Studies exploring
the role of NK cells in persistent HBV infection in recent years have reported inconsistent
results. Our results show CHB patients with a predominantly activating phenotype, featuring a
higher percentage of NK cells expressing the activating receptors and a similar percentage of
NK cells expressing the inhibitory receptors, compared with healthy controls. Because
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functional changes do not necessarily reflect altered function [62, 63], we subsequently ana-
lyzed the cytolytic potency of NK cells and cytokine production in CHB patients. Unexpect-
edly, in the present study NK activation did not induce all the effector cytotoxic functions of
NK cells to an equal degree. NK function was characterized by enhanced cytolytic potency and
conserved cytokine production. The results differed according to the stimulation applied to the
NK cells. K562 was associated with increased levels, whereas cytokine or PMA/ionomycin
resulted in CD107a levels in CHB patients similar to that of the healthy controls. NK cells pro-
duced less IFNγ after stimulation with cytokines compared with healthy controls. However,
these results did not reach statistical significance when NK cells were stimulated with PMA/
ionomycin.

In summary, our results suggest the existence of a selective defect in NK function. It is likely
that the elevated NK cytolytic activity could contribute to liver injury, whereas concomitant
inefficient IFNγ production may favor viral persistence, further promoting the progression of
HBV infection. Such divergence of NK function is in accord with the recent finding that cyto-
kines are trafficked and secreted by completely different pathways to cytotoxic granules in NK
cells [64, 65]. And interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) might
participate in the pathways [22].

Nonetheless, one should be cautious when explaining these results due to the limitations of
the included studies. A limitation in this meta-analysis is the failure to collect enough data
regarding hepatic NK cells. We were unable to estimate the alteration of hepatic NK cells in
CHB patients relative to healthy individuals. In addition, the optimal way to evaluate the
immune profiles of NK cells in CHB patients is to compare CHB patients in each immune
phase with healthy controls. Unfortunately, many of the eligible studies in this meta-analysis
lacked the necessary information to perform these types of subgroup investigations. Thus, fur-
ther high-quality studies are still needed to confirm these results.

Conclusions
The present meta-analysis revealed a lower frequency of NK cells with an activating phenotype
in CHB patients. The functional dichotomy of NK cells was characterized by an enhanced cyto-
toxic potency and a conserved cytokine production, which may be an important mechanism
contributing to liver injury and HBV persistence. Our meta-analysis draws a more precise esti-
mation of the altered immune profiles of NK cells during CHB infection. This may further
understanding of the mechanism of HBV persistence, and provide an insight into the challenge
of our battle against hepatitis B infection for the future.
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