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The emergence of social media has provided people with the opportunity to express their feelings and
thoughts about everything and everything in their lives. There is a massive amount of textual stuff avail-
able, and approaches are required to make meaningful use of the information provided by isolating and
evaluating the different types of text. Sentimental Analysis is a method of obtaining a human being’s
point of view through mining his or her emotions. The entire world is sharing their thoughts on social
media on the Corona Pandemic that is now underway. This research presents an analysis of attitudes
in order to determine whether or not people are optimistic in the face of a difficult circumstance. The
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Polarity technique of polarity is employed by the paper in order to determine if an opinion is positive, negative,
Emotion or nonpartisan [1]. In order to determine the polarity, the following three major keywords are used:

“COVID”, “Corona virus,” and “COVID-19.”

Copyright © 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Corona virus caused an uncontrollable pandemic catastrophe
that spread around the world. It is an illness that has a signifi-
cant impact on the respiratory health of human beings. It was
originally identified in Wuhan, China, in December of this year,
and it has since spread throughout the world. The World Health
Organization labeled it a pandemic in March 2020. Because to
the widespread nature of the outbreak, practically all countries
have implemented lockdown [2]. No one is allowed to leave
their homes or interact with other people during a lockdown sit-
uation. During the months of March to May, practically the
entire world was under house arrest and working from home.
Some research has found that lockdown has a psychological
influence on human behavior, such as anxiety, despair, and frus-
tration, among other things. All of these actions have a negative
impact on a human being’s health [3]. Their social media com-
ments mirror how they use the platform in general. As a result,
we may determine positive, negative, or neutral human behavior
[1] by looking at social comments. Because of the aforemen-
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tioned, this study uses emotional analysis of Twitter comments
to determine how people feel about the Covid-19 vaccine.
Understanding one’s own point of view on the subject is a
time-consuming process due to the enormous amount of posts
on social media.

With the help of text analytics, Sentimental Analysis is a
method of analysing emotions, that analyses and categorises dif-
ferent emotions. As a result, sentiment analysis is being used in
this work. This research presents textual analysis of Twitter infor-
mation to understand public perceptions of fear, which is directly
associated to widespread Coronavirus sickness [4]. We also discuss
how textual analytics can be used to track the advancement of fear
in the media. The remainder of the paper is organised as follows:
The second section is devoted to the review of the literature. Sec-
tion 3 discusses the methodology that was used for the project.
Section 4 contains the results and analysis of Twitter comments,
followed by a conclusion in Section 5. Section 5 concludes the
discussion.

2. Literature review

People’s extensive use of social media to voice their thoughts
on a wide range of topics generates a large amount of informa-
tion on the internet. Analysis and analysis are continuously

Selection and peer-review under responsibility of the scientific committee of the International Conference on Advanced Materials for Innovation and Sustainability.
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dealing with this issue, attempting to figure out how to trans-
late the vast amount of information available on the internet
into valuable knowledge. Sentiment Analysis is one of the fields
that allows the analyzers to keep track of how people are feel-
ing about a given keyword [5]. A number of researchers are
engaged in this endeavor. Aliza and colleagues described the
construction of a sentiment mining system based on the extrac-
tion of a large number of tweets. They divided client feedback
received through tweets into categories such as positive and

Subjective
Classification
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negative [1] and categorized them further. Hamid and Johari
demonstrated the use of sentiment recognition to gather infor-
mation from Twitter. Their research looked into the impact of
sentiment mining on numerous themes ranging from politics
to humanity and came to the conclusion that sentiment mining
had a significant impact [6]. Jim and colleagues discovered user
sentiment related to the epidemic by analyzing Coronavirus-
specific tweets. They came to the conclusion that they had
gained insights into the progression of fear-sentiment through
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Fig. 1. Emotional Analysis.
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Fig. 2. Sentimental Analysis at Various Granularity Levels.
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time when the coronavirus neared high levels in the United
States of America [4]. Seniti Circles, a dictionary-based tech-
nique for sentiment recognition in social media content such
as Twitter tweets, was developed by Hassan et al. The tech-
nique took into account At both the entity and tweet levels,
they are aware of what they personally thought [7] [7a]. In
contrast to the traditional sentence-level and report-level emo-
tions studies, Xiao long et al. proposed the hashtag-level senti-
mental mining technique, which generates a broad emotional
analysis for a single hashtag across a specific time period. [8].
When it comes to forecasting, Rameshwer et al. discussed the
importance of notion inquiry [9]. As of right now, every human
being on the face of the planet is operating under the COVID-19
pandemic condition. As a result, assessing people’s perceptions
of the situation is beneficial for maintaining a pleasant environ-
ment [10]. For COVID-19 treatment, four distinct deep CNN
architectures are investigated on pictures of chest X-rays. As a
result, with this in mind, we are doing sentiment recognition
for the purpose of identifying the same. The model is trained
and tested using a collection of data sets of covid 19 X-ray ima-
geries and non-covid 19 X-ray imageries [21].

2.1. Sentimental analysis

The most important thing to remember while undertaking sen-
timental analysis is to detect whether a statement is subjective or
objective in nature. There are no further substantial activities
required if the supplied line is assigned as a goal, however if the
given line is delegated as subjective, it is necessary to determine
its polarity (i.e., whether it is positive, negative, or nonpartisan)
[11]. As demonstrated in Fig. 1, emotional analysis separates a sen-
tence into two types of separations: subjectivity and polarity
separations.

As illustrated in Fig. 2, client-generated content on the Internet
can be inspected at three astonishing granularity levels: documen-
tation level, sentence level, and feature level [12], with the docu-
mentation level being the most detailed.

Document Level: This level is used to categorise the entire doc-
ument into good, negative, and neutral categories, among others.
[12].

Sentence Level: It separates the document into sentences and
assigns a positive, negative, or neutral label to each one.

Feature Level: It just uses one feature and displays the results
in respect to the feature chosen. “The iPhone is fantastic, but they
still need to improve battery life and security issues,” for example,
considers three points: “iPhone” (positive), “battery life” (nega-
tive), and “security.”.

2.2. Emoji’s and how to handle them

In each tweet, the number of good and negative emoji’s used
is counted, and the following standards are applied [14]: The
term “positive” will ‘be used to describe a tweet that contains
at least one positive emoji and no negative emoji’s. The term
“negative” will be used to describe a tweet that contains at least
one negative emoji and no good emoji's. The tweet is regarded
as obscure if none of the other principles described above can
be applied to it [14].

3. Methodology

Fig. 3 displays the steps in the planned project. This section
walks you through the first three steps one by one.
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3.1. Proposed FrameWork

We provide a platform with several levels for sentiment analy-
sis (see Fig. 4). The initialization layer is responsible for data collec-
tion and message preprocessing. Positive, negative, and neurotic
layers comprise the evaluation layer.

3.2. Creating Twitter accounts and exploiting Twitter tweets

When accessing information from the Twitter website, it is nec-
essary to verify its legitimacy. As a result, the first step is to config-
ure your Twitter credentials in order to view the Twitter
comments. The Sentimental Analysis is mostly concerned with tex-
tual data, which necessitates a greater amount of text processing
[15]. We gathered data on testing for three search terms: “COVID,”
“Coronavirus,” and “Covid-19” as part of this research. This trio of
terms is frequently and mostly utilized by people on social media
platforms. As a result, the search phrase used in this work con-
tained all of these keywords.

3.3. Data set preparation and preparation

Pre-processing, also known as data cleaning, is required before
to doing categorization on any data collection. Pre-processing is
the process of cleaning data. Pre-processing is the act of removing
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material or content from a document that is not necessary for sen-
timental analysis, such as punctuation, photos, hyperlinks [16,15],
and other such items [16,15]. Fig. 4 shows an example of a snippet
for cleaning up the information.

Proposed Algorithm for Sentimental Analysis:
char.sentiment(text):

blob = TextBlob(text)

sentiment_polarity = blob.sentiment.polarity;
sentiment_subjectivity = blob.sentiment.subjectivity;
if (sentiment_polarity > 0)

sentiment_label = 'Positive’;

elseif (sentiment_polarity < 0)

sentiment_label = 'Negative’;

else
sentiment_label = 'Neutral’;
result = {

‘polarity’:sentiment_polarity,
‘subjectivity’:sentiment_subjectivity,
‘sentiment’:sentiment_label;

}

return result;

4. Observation and analysis of results

This section of the study presents the results or three key-
words: “COVID,” “CORONAVIRUS,” and “COVID-19,” as well as

Materials Today: Proceedings 64 (2022) 713-719

emotive analysis on Twitter comments [1,6,7 |.It also includes
a discussion of the implications of these findings. A Sentimen-
tal Analysis of the Keyword “COVID” is presented in Section A.
We created a Word Cloud to represent the number of times
the word “COVID” appeared in a Twitter dataset, as shown
in Fig. 4. As a result, we can see the frequency of the keyword
“COVID” [4,17 | by looking at the Word Cloud. Following that,
we calculated the relationship between subjectivity and polar-
ity for the same and displayed it with a scatter plot in Fig. 5.
When it comes to presenting the values for Cartesian coordi-
nates are utilized for two constants in the data set [18]. In this
case, subjectivity determines whether a word is subjective or

60000
50000
40000
30000
20000

10000

Twitter web App Twitter for Android Twitter for iPhone

Fig. 5. Top three on Sources of dataset.

Data Collection

Initialization Layer

Data preprocessing

URLsRemoval
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Stop Words Removal

Evaluation Layer

Classified Data(percent Positive, Negative, Neutral)

Fig. 4. Proposed Frame Work.
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objective. Polarity, on the other hand, teaches us about a per-
son’s positive and negative responses to a given keyword or
phrase. The zero point is represented by the point “zero” in
the polarity column [18,19 |. As a result, everything to the left
of zero denotes negative feedback, whereas everything to the
right of zero denotes positive feedback. The percentage of neu-
ral tweets is larger than the percentage of positive and nega-
tive tweets in the emotional analysis for all three terms,
which is not surprising. Even in these circumstances, People
are maintaining positive as well as neutral attitudes in the face
of chaotic illness spread scenarios [2,3], as evidenced by the
larger percentage of positive tweets compared to negative
tweets.

Fig. 5 show the sources on the dataset. The top three according
on the datasets are Twitter web app, Twitter for Android, Twitter
for iPhone. The Twitter Web App score is 56,891 and the Twitter
for Android score is 40179, the twitter for iPhone is 35472. These
are the top three sources on the dataset.

80000
70000
60000
50000
40000
30000
20000

10000

Negative Positive Neutral

Fig. 6. Sentimental Analysis.
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Different Applications Counts
Twitter web App 56,891
Twitter for Android 40,179
Twitter for iphone 35,472

Fig. 6 shows on the Sentimental Analysis. The comments on Nega-
tive, Positive, Neutral. The X-axis is the sentiment and Y-axis is
the count. The Negative score is 29918. The Positive score is
74590.The Neutral score is 77546, by using module sentimental
Analysis.

Comments Counts
Negative 30,000
Positive 72,000
Neutral 75,000

Fig. 7 Sentimental Analysis for Positive words and the x-axis are
words and y-axis are counts. The cases are 10780, new are 98954,
amp are 55493, positive are 4892 and soon by the according to
Diagram.

Fig. 8 Sentimental Analysis for Negative words and the x-axis
are words and y-axis are counts. The cases are 2580, amp are
1970, positive are 1805, the pandemic are 897 and soon by the
according to Diagram.

Fig. 9 shows the word cloud for positive words. The positive
words are in the word cloud are amp, pandemic, day, cases, help,
confirmed, case, people, read, going, government and soon

Fig. 10 shows the wordcloud for negative words. The positive
words are in the wordcloud are amp, COVID19, time, people, active
case, cases sooner, slow spread, help slow, risk cases, new, day,
today and soon.

Fig. 11 shows the word cloud for neutral words. The neutral
words are in the word cloud are amp, today, need, pandemic, cases
death, mask, trump, patient, test, know, help and soon.

8000

6000

scores

4000

2000

£ & & & & &
&F & & §§ éf * &

o & S A
é§9 dfgﬁ* ¢ ‘ﬁp L4

CENFLET o8 F&LeE &
&

&

words

Fig. 7. Sentiment Analysis for Positive Words.
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Fig. 9. Word Cloud for positive words.

Fig. 10. Word cloud for negative words.
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Fig. 11. Word cloud for neutral words.

5. Conclusion

Throughout the text, the importance of social network analysis
is discussed. Twitter is a popular social media platform where peo-
ple can express themselves and share their thoughts. This study
employed over 370 tweets from Twitter to do emotional analysis
for three key phrases connected to the COVID-19 pandemic
(COVID, CORONA VIRUS, and COVID - 19).” The results were pre-
sented in this research. Positive tweets account for approximately
31% of total tweets, whereas negative tweets account for approxi-
mately 19% of total tweets. This means that half of all neutral
tweets on Twitter, or half of all tweets based on these respective
terms, are neutral in their attitudes. In the COVID situation, neutral
sentiments outweighed both positive and non-positive sentiments,
according to the polarity analysis.
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