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Simple Summary: Obesity is recognized as a chronic progressive disease and risk factor for many
human diseases. The high and increasing number of obese people may underlie the expected increase
in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity
with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an
important role. This review discusses selected mechanisms that may accelerate pancreatic cancer
development in obesity.

Abstract: The prevalence of obesity in adults and children has dramatically increased over the past
decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number
of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical
evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms
linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue
inflammation play a central role. The current review discusses selected topics and mechanisms
that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic
cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue,
intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development.
Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore,
the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced
gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by
the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive
strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or
at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in
obese patients.

Keywords: obesity; pancreatic cancer; adipose tissue; intrapancreatic fat; inflammation; adipokine;
gut microbiome

1. Introduction

The prevalence of obesity in adults and children is increasing in the United States of
America and in many other countries as well. Obesity is a well-recognized risk factor for a
plethora of diseases, including pancreatic cancer. There are several potential mechanisms
by which obesity may lead to an increase in pancreatic cancer incidence. However, the
precise causal mechanism(s) are still poorly understood and may consist of a combination
of local and systemic perturbations induced by the obese state. A better understanding of
molecules and molecular signaling pathways driving pancreas cancer development and
growth are of utmost importance to develop targeted prevention/interception strategies.
The scope of the present review is not to provide a comprehensive, all-encompassing
summary of all studies published on obesity and pancreatic cancer. Rather, the authors
discuss selected mechanisms that in their opinion are of current interest and warrant
further investigation.
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2. Epidemiology of Obesity and Pancreatic Cancer

The global prevalence of obesity has almost tripled since 1975 [1]. In 2016, more
than 1.9 billion adults (39%) were overweight (body mass index (BMI) ≥ 25) with over
650 million (13%) of those being obese (BMI ≥ 30) [1]. Alarmingly, more than 340 million
children and adolescents (ages 5–19) were overweight or obese in 2016 and 39 million
children younger than 5 years of age were overweight or obese in 2020 [1]. In the United
States of America, the latest data brief from the National Center for Health Statistics reports
a prevalence of obesity in adults aged 20 years or older of 42.4% in 2017–2018, which is
a considerable increase from 33.7% in 2007–2008 [2]. There is no doubt that obesity is
an enormous burden on the individual’s health and on society as a whole. Obesity itself
is now declared a chronic progressive disease and in addition a risk factor for multiple
human diseases including several types of cancer [3–5].

Pancreatic ductal adenocarcinoma (PDAC), the most common histologic subtype of
cancers of the pancreas, continues to be a very aggressive and lethal type of cancer. The
American Cancer Society has reported an estimated 60,430 new cases (28,480 females and
31,950 males) of pancreatic cancers in the year 2021 [6]. In the same calendar year, an
estimated 22,950 female and 25,270 male patients will die of this disease, ranking pancreatic
cancer as the third leading cause of cancer mortality in women and men combined [6]. In
contrast, the estimates for pancreatic cancer prevalence in 2016 were 53,070 (25,400 females
and 27,670 males) [7], which calculates to an almost 13.9% increase (12.1% in females and
15.5% in males) in total estimated pancreatic cancer cases over the last 5 years. Indeed, the
mortality of pancreatic cancers is projected to surpass the deaths from colorectal cancer by
2030, catapulting pancreatic cancers to the second leading cause of cancer-related deaths in
the United States [8]. The rising prevalence of obesity over the past decades may thereby
be a significant contributing factor to the observed and expected increase in pancreatic
cancer cases and mortality.

A positive correlation between obesity and PDAC risk has been firmly established [3,9–14].
According to the National Institutes of Health 16.9% of all cases of PDAC in the United
States can be attributed to obesity (in contrast cigarette smoking is estimated to be the
causative factor in 10.2% of PDAC cases) [15]. In that context, the age of onset and duration
of obesity seems to be an important factor in conferring PDAC risk. The length of time
of being overweight was longer in patients with PDAC compared to controls, and the
highest odds ratio for obesity was found in 30–39 year old subjects without diabetes [16].
Importantly, the association between obesity and risk of PDAC was stronger in men than
in women [16]. Besides the importance of early adulthood, growing evidence suggests that
adolescent and childhood obesity is also linked to an increased risk of developing PDAC
later in life [17–20]. Here, it is imperative to distinguish the effect of obesity during early
cancer development (risk factor for early tumor promotion) from its sometimes-paradoxical
effects in the late-stage, advanced disease, where obesity occasionally appears to be as-
sociated with improved outcome (obesity paradox) [21–23]. It has been suggested that
the lack of tumor cachexia (loss of muscle mass) in obese patients with advanced cancer
may underlie the obesity paradox [24]. Taken together, the available evidence from epi-
demiologic studies clearly points to obesity as a risk factor for (early) PDAC development.
Prevention of obesity, especially during childhood, adolescence, and early adulthood, is of
paramount importance to curtail the expected rise in PDAC cases and mortality. A more
detailed and comprehensive understanding of mechanisms that underlie the promotional
effects of obesity on PDAC is necessary to identify and exploit potential molecular targets
and to develop preventive and/or interceptive strategies.

3. Mouse Models of Obesity and Pancreatic Cancer

It is widely accepted that KRAS mutations are critical initiating drivers of PDAC [25,26].
Preclinical animal models are instrumental for the study of risk factor-promoted PDAC
development. Endogenous Kras models, which express mutated Kras conditionally from
its endogenous gene locus, are considered as state-of-art models for PDAC and are widely
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used [27,28]. This model faithfully recapitulates human PDAC histopathologically and
genetically, including the development of pancreatic intraepithelial neoplasias (PanIN-1
to -3), recognized precursor lesions of PDAC, and the presence of a desmoplastic reaction.
For the conditional Kras mouse model of PDAC development LSL-KrasG12D, mice are
normally crossed with either ptf1a (p48)-Cre or pdx-Cre mice (KC). Offspring with successful
recombination will develop PanINs with complete penetrance [29]. About 5–10% of the
animals will develop PDAC at about 9–12 months [29]. The KC mouse model has been
crossed into various gene-deficient or mutated backgrounds, e.g., p53 (murine Trp53), most
of which greatly accelerate the development of PDAC and shorten survival [30,31]. Since
the transcription factors p48 or pdx are expressed in pancreatic progenitor cells during
early pancreas development, all adult pancreas lineages, which include acinar, ductal, and
endocrine lineages, harbor the mutated Kras. Studies have shown that KC mice do not
accumulate additional changes in genes that are the most commonly mutated in human
PDAC (e.g., p16Ink4a, Trp53, and Smad4) during PanIN development [32]. Besides the
mouse model described above, in which oncogenic Kras is expressed during pancreatic
embryological development, transgenic mouse models have been developed that allow
for inducible and reversible expression of the oncogenic KrasG12D in the pancreas [33–35].
These inducible models are very valuable to study the temporal efficacy of oncogenic Kras
to drive and maintain pancreatic carcinogenesis. Furthermore, using elastase-cre or CK19-cre
(or Sox9-cre) strains, the expression of oncogenic Kras can be targeted to pancreatic acinar
or ductal cells, respectively [36–41].

Preclinical studies employing the aforementioned mouse models have convincingly
demonstrated that obesity accelerates PDAC development, thus providing an invaluable
platform to study the obesity–PDAC link. Although oncogenic Kras mutations are thought
of initiating factors for PDAC (see below), obesity is thought to be a tumor-promoting
factor, especially during early neoplastic development. We and others have reported that
(high-fat) diet-induced obesity (DIO) hastens the formation of PanINs and the progres-
sion to PDAC [37,42–44]. This is generally accompanied by weight gain and metabolic
disturbances, e.g., hyperinsulinemia and hyperleptinemia, which are also seen in human
obesity. In addition, DIO is accompanied by a strong fibro-inflammatory reaction in the
pancreas of KC mice with elevated tissue levels of several pro-inflammatory cytokines,
chemokines, and growth factors [42,43]. The importance of inflammation and the efficacy
of anti-inflammatory drugs on PDAC development in KC mice has been reported previ-
ously [45]. Besides mouse models with DIO, a recent study showed that KC mice with
genetic obesity (Pdx1-Cre;LSL-KrasG12D/+ mice crossed with leptin-deficient [ob/ob] mice)
also developed PDAC faster and succumbed to the disease earlier [46]. Taken together,
there is unambiguous evidence from preclinical mouse models that obesity (DIO or genetic)
promotes PDAC.

4. Mechanisms Linking Obesity and Pancreatic Cancer

Several mechanisms are usually discussed by which obesity may promote (pancreatic)
cancer development and progression, including systemic chronic inflammation, adipokines,
sex hormones, hyperinsulinemia, and gut microbiome [47–51]. Although certainly not
exhaustive, selected potential mechanisms are discussed below.

4.1. Influence of Obesity on Kras Activity

Oncogenic mutations in KRAS are thought to be an initiating event in human PDAC,
which is strongly supported by preclinical mouse models. It is well documented that the
vast majority of human PDACs contain a KRAS mutation (most commonly G12D), which
can be found also in early-stage PanINs [52]. Recent exome sequencing studies confirmed
that KRAS is the most frequently mutated gene found in PDAC (~95%) [53,54]. However,
data from mouse models have clearly shown that Kras mutant cells do not readily form
early PanIN-1 lesions, despite the expression of mutant Kras in every pancreatic epithelial
cell [29,55]. It seems that mutated Kras alone is rather insufficient to drive pancreatic
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neoplasia, but additional genetic, epigenetic, and/or microenvironmental changes may be
required [55]. Non-genetic perturbations in the pancreatic microenvironment, as putatively
induced in the obese state, may thereby be especially critical in the early stages of pancreatic
neoplastic development [26,55].

Considering the importance of oncogenic Kras and the known promoting effects of obe-
sity in PDAC, it is conceivable to consider a direct effect of obesity and/or the obesogenic
diet on Kras activity. Based on the observation that only a small percentage of mutated
Kras is occupied with guanosine triphosphate (GTP) and thus cannot be considered consti-
tutively active [56], Logsdon and colleagues postulated a Ras/Inflammation Feed Forward
model, in which oncogenic Kras requires activation by external/inflammatory factors, e.g.,
as found in obesity, to drive pancreatic neoplasia [57,58]. Once the activity of oncogenic
Kras has exceeded a certain threshold, it can generate its own inflammatory mediators,
which in turn feed-back to further stimulate Kras activity [57,58], thereby driving cancer
development. These external/inflammatory mediators can comprise a variety of factors,
including inflammatory cytokines, eicosanoids, and other ligands of receptor tyrosine
kinases and G protein-coupled receptors (GPCRs) [57]. Based on this paradigm, the pan-
creas from LSL-Kras/Ela-CreERT mice, which were fed high-fat diets, had elevated Kras
activity, elevated phospho ERK, increased pancreatic inflammation, fibrosis, and neoplastic
lesions [37]. However, these considerations were based on pull down assays of Kras-GTP
that do not take into account the effect of Kras tyrosine phosphorylation on the affinity for
the Ras-binding domain of RAF [59]. In our opinion, it will be important to reinvestigate
the activity of Kras in the setting of DIO using additional assays. In our own studies, we
have observed activation of signaling molecules that may be downstream of Kras, e.g.,
increased levels of phosphorylated mitogen-activated protein kinase (MEK), extracellular
signal-regulated kinases (ERK), and S6, in the pancreas of KC mice with DIO [60].

4.2. Adipose Tissue and Obesity-Associated Meta-Inflammation

Contrary to initial depictions as simply an energy storage tissue, adipose tissue (AT)
is now known to be a metabolically and hormonally highly active and dynamic organ
that is capable of responding to a variety of internal and external stimuli and synthesizing
a large range of biologically active peptides. In turn, AT-derived mediators regulate
many physiological and pathophysiological processes, e.g., food intake, insulin sensitivity,
immunity, and inflammation [61,62]. These peptides include adipokines, e.g., leptin,
adiponectin, and lipocalin-2, which are mainly secreted by adipocytes, as well as AT-
derived factors, including IL-6 and TNF-α, which can be also be secreted by cells other
than or in addition to adipocytes, e.g., macrophages [62]. Generally, AT can influence
PDAC development systemically via soluble mediators that are released from distant
(visceral) fat depots and reach the pancreatic microenvironment through the systemic
circulation or via paracrine effects elicited by intrapancreatic adipocytes (see below) [63,64].
A mechanism that is receiving increasing attention is communication via extracellular
vesicles from adipocytes that can fuse with target cells in the pancreas [65–67]. It has been
shown recently that adipocytes experience strong energetic stress during obesity, which
resulted in the release of small extracellular vesicles harboring respiration-competent, but
oxidatively damaged, mitochondrial fragments, which access the systemic circulation
and are internalized by cardiomyocytes [68]. It is intriguing to think that during obesity,
adipocytes communicate with transformed and non-transformed pancreatic cells via
extracellular vesicles, thereby promoting tumor development. Specific studies would be
required to test this hypothesis.

4.2.1. Visceral Adipose Tissue

The defining characteristic of obesity is the enlargement and expansion of white
adipose tissue, which can occur via hyperplasia and/or hypertrophy. While adipocyte
hyperplasia, which is more often seen in subcutaneous AT, is usually associated with
low levels of AT inflammation and maintained insulin sensitivity, adipocyte hypertrophy
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predominates in visceral AT (VAT) and correlates with pro-inflammatory responses and
impaired insulin sensitivity [69]. Hypertrophic adipocytes can experience hypoxia and
undergo stress responses and cell death, leading to the secretion of pro-inflammatory
factors, an increase in pro-inflammatory immune cell infiltration, and the deposition of
lipid molecules ectopically in other organs. This is particularly important as the VAT
(omental, mesenteric, and other intra-abdominal fat pads), and VAT inflammation is the
main source of the systemic and local chronic inflammation in the obese state [70] and
is more strongly associated with metabolic dysfunction and cancer than subcutaneous
fat [12,71–73]. VAT (but not subcutaneous fat) is significantly correlated with the number
of PanINs [74]. In our own studies, more PDACs developed in obese male KC mice [42],
which displayed a preferential expansion of VAT, as compared to obese female mice that
favored subcutaneous fat gain [75].

4.2.2. Adipose Tissue Inflammation

VAT has been shown to be the predominant source of the systemic, low-grade, chronic
inflammation seen in obesity (also called meta-inflammation [76]) and most important for
the development of type 2 diabetes mellitus (T2DM) [77,78]. VAT contains a great variety
of immune cells, the composition of which is significantly altered in the obese state [78]. An
important early step in the development of obesity-induced VAT inflammation is the switch
of anti-inflammatory M2 macrophages to a pro-inflammatory M1-like phenotype [78,79].
These M1-like macrophages are thought to be the main source of systemic pro-inflammatory
cytokines in obese and/or diabetic subjects [78]. Obesity-associated AT inflammation is
characterized by the generation and secretion of multiple inflammatory cytokines and
chemokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor-α
(TNF-α), IL-1β, IL-18, and monocyte chemoattractant protein-1 (MCP-1) [78]. It is con-
ceivable that the systemic elevation of these inflammatory mediators, secreted from the
VAT in obese subjects, may bind to their cognate receptors on transformed pancreatic
epithelial cells, thereby conferring a proliferative and pro-survival benefit. Our studies
(unpublished) showed that the cell culture supernatant of the VAT stromal vascular frac-
tion (all cellular components except mature adipocytes) and of direct VAT explants of
obese KC mice robustly stimulated DNA synthesis and oncogenic signaling pathways in
murine PanIN cells (Figure 1). These results indicate that soluble factors from the VAT, in
particular mesenteric fat, have direct proliferative effects on (pre)malignant pancreatic
epithelial cells.

Furthermore, the systemically elevated factors in the obese condition may also stim-
ulate neoplastic pancreatic epithelial cells and/or non-malignant cells in the pancreatic
stroma, e.g., cancer-associated fibroblasts, infiltrating/resident immune cells, and intrapan-
creatic adipocytes (see below), to generate locally inflammatory cytokines and chemokines.
Locally produced chemokines can further recruit immune cells, e.g., circulating monocytes,
into the pancreatic microenvironment, where they can contribute to and reinforce local
tissue inflammation and cancer cell growth [80]. The importance of paracrine signaling
in the pancreatic microenvironment to oncogenic Kras-driven metabolic reprogramming
and tumor growth has recently been reported [81]. We previously demonstrated elevated
pancreatic tissue levels of several cytokines and chemokines, e.g., IL-6, TNF-α, and MCP-1,
in obese KC mice that were fed a diet high in fat and calories [43]. Interestingly, while
lean KC mice (fed a control diet) also had elevated pancreatic tissue levels of these cy-
tokines/chemokines compared to wild-type mice (lean and obese), obese KC had even
significantly higher levels [43], suggesting a positive reinforcement between oncogenic
Kras and obesity/high-fat diet.
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Figure 1. Soluble factors released from adipose tissue stimulate pro-oncogenic signaling pathways in
pancreatic cancer cells. (A) Mesenteric adipose tissue from obese KC mice was harvested and cultured
in vitro. Murine pancreatic cancer cells were incubated with the culture supernatant (undiluted
(1×) or diluted (1/3×) for 15, 30, and 60 min and phosphorylation of pro-oncogenic signaling
molecules detected by Western blotting. Total forms of the signaling molecules or glyceraldehyde
3-phosphate dehydrogenase (GAPDH) were used as loading controls. Serum-free culture medium
(−) or complete culture medium with 10% fetal bovine serum (CM) served as negative and positive
controls, respectively. (B) Mesenteric (MF) and retroperitoneal (RF) adipose tissues from obese (high
fat: HF) or lean (control diet: CD) KC mice (n = 2 in each group) were harvested and cultured
in vitro. Murine pancreatic cancer cells were incubated with the culture supernatant for 30 min and
phosphorylation of S6 was measured by Western blotting. Total S6 served as a loading control. Data
are authors’ own unpublished results.

4.2.3. Leptin

The first adipokine identified in 1994, leptin, is a 16 kDa hormone encoded by
the ob gene, the murine homologue of the human LEP gene [82]. It binds to leptin re-
ceptors (Ob-R), members of the class I cytokine receptor family, and activates mainly
the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling
pathway [83–85]. Leptin is secreted mainly by adipocytes and its primary function is to
decrease food intake and increase energy expenditure (anorexigenic) mainly through its
actions in the hypothalamus [86,87]. As leptin expression correlates to adipose mass, obese
subjects display elevated plasma leptin levels [88,89]. Since elevated leptin levels in obese
patients do not lead to decreased food intake and increased energy expenditure, the obesity-
associated hyperleptinemia is thought to reflect leptin resistance [90]. The role of leptin
in PDAC development and growth is still controversial. In a pooled, nested case-control
study, increased leptin concentrations correlated with pancreatic cancer, but only after a
long follow-up of 10 or more years [91]. In another prospective, nested case-control study,
higher leptin levels correlated with an increased risk of pancreatic cancer in men, but not
women [92]. Results from a large Mendelian randomization study did not support a causal
effect of plasma leptin levels on pancreatic cancer development [93]. In preclinical animal
studies, KC mice with DIO developed hyperleptinemia [42,43], suggesting a relationship
between leptin and PDAC. Caloric restriction in KC mice was associated with decreased
leptin levels and a delay in PDAC development [94]. However, KC mice with genetic
obesity (Pdx1-Cre;LSL-KrasG12D/+ mice crossed with ob/ob mice) that are leptin deficient
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also developed PDAC faster, arguing against a causative role of leptin in PDAC [46,95].
Furthermore, KC mice with genetic deficiency in hormone-sensitive lipase had decreased
plasma leptin levels but accelerated PDAC development [96]. In vitro studies have demon-
strated that PDAC cells express functional leptin receptors (Ob-Rb) and exposure to leptin
stimulates migration, invasion, and proliferation of PDAC cells [97–99]. These effects
were mediated by activation of several signaling pathways, including the phosphoinosi-
tide 3-kinase/protein kinase B (PI3K/Akt) and JAK2/STAT3 pathways. In addition, the
leptin–Notch axis seems to play a role in proliferation and chemoresistance in PDAC cell
cultures [100–102]. Taken together, although in vitro experiments clearly demonstrated
functional leptin receptor expression and various direct effects of leptin in PDAC cells,
the cumulative data from preclinical animal and epidemiologic studies at least question a
causative role of leptin in obesity-promoted PDAC.

4.2.4. Adiponectin

First described in 1995 [103], adiponectin is a ~30 kDa protein secreted mostly by
the white adipose tissue and possesses anti-diabetic, anti-inflammatory, anti-atherogenic,
and anti-angiogenic properties [104,105]. Adiponectin binds to AdipoR1 and AdipoR2 re-
ceptors, which, contrary to all known G protein-coupled receptors (GPCRs), are seven
transmembrane domains containing membrane proteins that have their amino terminus
intracellularly and their carboxy terminus extracellularly [105]. Binding of adiponectin
to its receptors leads to hydrolysis of ceramide to sphingosine. Sphingosine kinases can
then phosphorylate sphingosine to sphingosine-1-phosphate (S1P) [104], which activates
S1P receptors, a class of GPCRs. Further downstream of ceramide hydrolysis and sphingo-
sine formation, but also through ceramide-independent pathways, AdipoR can activate
PI3K, Akt, adenosine monophosphate-activated protein kinase (AMPK), and calcium
(Ca2+) release [104,106]. Despite its secretion by adipocytes, adiponectin plasma levels
are paradoxically decreased in obesity [104,107,108]. The currently available evidence of
an association of adiponectin levels and PDAC risk is conflicting. Higher adiponectin
concentrations were found to be inversely associated with PDAC in male smokers, which
was significant among cases diagnosed 5 or more years after blood collection [109]. An-
alyzing 468 PDAC cases and 1080 matched controls from five prospective US cohorts,
plasma adiponectin was inversely associated with PDAC risk [110]. A case-control study
showed no association of adiponectin with PDAC risk overall; however, higher adiponectin
levels were associated with a reduction in PDAC risk among never smokers [111]. An
influence of smoking on the risk of adiponectin on PDAC risk has been reported [112].
However, a Mendelian randomization study did not find an association of adiponectin
with PDAC risk [93]. Furthermore, other studies reported higher adiponectin levels in
patients PDAC [113–115]. However, in these studies, adiponectin levels were measured at
the time of diagnosis or treatment of PDAC and the true effect of adiponectin on PDAC
risk may have been obscured. In preclinical murine studies, an AdipoR agonist (AdipoRon)
decreased the growth of PDAC xenografts [116,117]. Conversely, deficiency or knock-
down of adiponectin receptors markedly promoted PDAC xenograft growth [118,119].
Interestingly, a recent xenograft study showed that AdipoRon failed to suppress PDAC
growth in mice with DIO, while it suppressed tumor growth in lean mice [120]. Taken
together, a link between adiponectin and PDAC risk is not conclusively demonstrated by
available epidemiologic studies. Preclinical evidence provides a stronger support of a role
of adiponectin in PDAC therapy. Further, carefully designed studies are clearly needed
to answer the question whether low adiponectin levels as seen in obese subjects causally
increase the risk of developing PDAC.

4.2.5. Lipocalin-2

Another interesting molecule that may provide a link between obesity and PDAC
is lipocalin-2 (LCN2). LCN2, also known as neutrophil gelatinase-associated lipocalin
(NGAL), is a 25 kDa protein expressed and secreted by various cell types, which belongs to
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a large group of small extracellular proteins with a variety of biological functions, includ-
ing iron homeostasis, inflammation, innate immunity, and energy metabolism [121–124].
LCN2 is also considered an adipokine. It is secreted from adipocytes and its production is
highly regulated by metabolic stress, inflammatory cytokines, and nutrient signals [124].
Elevated LCN2 levels are typically found in obese humans and mouse models of obe-
sity [125,126]. LCN2 has been implicated in the pathogenesis of various pancreatic diseases,
including PDAC, acute and chronic pancreatitis, and T2DM [127]. LCN2 is upregulated in
PDAC mouse models, correlates to decreased food intake, and its absence protects from
tumor cachexia, presumably via a type 4 melanocortin receptor-mediated mechanism [128].
Increased LCN2 expression has been found in human PanINs and PDAC [129–131]. How-
ever, preclinical studies reported contradictory, pro- and anti-tumor functions of LCN2 in
PDAC [132–134]. Using KrasG12D;Ela-CreERT;Lcn2−/− mice (whole body deletion of LCN2)
Cruz-Monserrate and colleagues showed that lack of LCN2 prevents weight gain and
obesity when fed a high-fat diet [135]. This was associated with reduced pancreatic fibro-
inflammation, PanIN formation, and prolonged survival, indicating a tumor-promoting
role of LCN2 in PDAC [135]. However, it is not clear whether the reduced tumor growth
in KrasG12D;Ela-CreERT;Lcn2−/− mice was directly due to the lack of LCN2 effects on the
pancreas or indirectly to the reduced weight gain (anti-obesity effects). Further ortho-
topic syngeneic studies showed that lack of LCN2 in the host significantly diminished
pancreatic fibrosis and inflammation and attenuated growth of (LCN2 expressing) PDAC
cells [135], pointing to the importance of paracrine LCN2 (rather than autocrine) effects
in PDAC. Taken together, it is conceivable that elevated LCN2 during obesity is a driver
of PDAC development and progression, although further studies are clearly needed to
cement that hypothesis.

4.2.6. FGF21

As a novel fibroblast growth factor (FGF) family member identified in 2000 [136],
FGF21, has emerged as an important regulator and orchestrator of glucose and lipid
metabolism and energy homeostasis [137,138] with the potential to treat obesity, T2DM,
and meta-inflammation [139–142]. FGF21 is considered a “master sensitizer” of metabolic
hormonal signals [143]. Circulating FGF21 levels are elevated in diabetic and obese sub-
jects [144] and administration of FGF21 has been shown to enhance insulin sensitivity and
reverses obesity by increasing energy expenditure [145,146]. On target cells, FGF21 binds to
and activates a receptor complex of FGF receptor 1c (FGFR1c) and its co-receptor β-Klotho
(KLB); however, little is known about the downstream intracellular signaling events [143].
Exciting recent studies implicate FGF21 in obesity-promoted PDAC [147–149]. Lu and
colleagues reported that FGF21, its target receptor FGF receptor 1 (FGFR1), and its co-
receptor β-Klotho (KLB) were expressed in normal pancreatic acinar cells and showed
that FGF21 levels were decreased downstream of oncogenic Kras [147]. Administration
of recombinant human FGF21 to KrasG12D;Ela-CreERT mice fed a high-fat diet attenuated
pancreatic and systemic inflammation, suppressed PanIN formation and PDAC develop-
ment, and prolonged the survival of KrasG12D/+ mice [147]. The authors concluded that
downregulation of pancreatic FGF21 by oncogenic Kras renders the pancreas vulnerable to
an obesogenic high-fat diet, leading to enhanced inflammation and the development of
PDAC. It is relevant that acute and chronic pancreatitis, a condition that increases PDAC
incidence in preclinical models and human patients, has been also associated with a marked
decrease of FGF21 in the pancreas [150].

4.2.7. Wnt5a

Recent studies have demonstrated that the pro-inflammatory adipokine wingless-type
mouse mammary tumor virus integration site family member 5A (Wnt5a), together with
the anti-inflammatory secreted frizzled-related protein 5 (Sfrp5), which both signal via
the non-canonical Wnt pathway, play a key role in the pathogenesis of obesity and its
metabolic complications [151,152]. The circulating levels of Wnt5a and its expression in VAT
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are increased in obesity [152,153], contributing to systemic and local inflammation [154].
Furthermore, overexpression of Wnt5a has been reported in human PDAC [155] and has
a profound impact on the PDAC microenvironment [156]. The link between adipose
tissue, Wnt5a, and PDAC has gained enormous significance, as Wnt5a has been shown
to positively correlate with Yes-associated protein (YAP) activity (see below) in human
PDAC [157]. Wnt5a leads to YAP activation, which drives the aggressive squamous subtype
of PDAC, which is YAP dependent but Kras independent [157]. We postulate that elevated
levels of Wnt5a during obesity (released from the VAT) may promote the development and
growth of the aggressive squamous subtype of PDAC through YAP-mediated mechanisms,
although further studies are needed to confirm this model.

4.2.8. Intrapancreatic Fat

While the link between general and visceral adiposity to PDAC is well established,
studies on the functional significance of intrapancreatic fat on pancreatic carcinogenesis and
cancer promotion are very scarce and just recently have attracted increased attention. While
the presence of fat in the pancreas has been first described almost a century ago [158] and
thought of as a bystander of several underlying diseases, there is now increased recognition
that intrapancreatic fat deposition, variably also called pancreatic steatosis or fatty pancreas
disease, has a role in T2DM, pancreatitis, and pancreatic cancer [159–162]. While several
histological studies have demonstrated a small amount of intrapancreatic fat in the majority
of normal pancreata [163,164], excess intrapancreatic fat is now discussed to be important
in the development of endocrine and exocrine pancreatic diseases. Excess intrapancreatic
fat can originate from the formation and expansion of intra- and/or interlobular fat [165],
which are not exclusive but can be present simultaneously in the same organ. Intracellular
fat droplets (positive for adipose differentiation–related protein (ADFP)) have been found
in pancreatic endocrine cells [166,167] and acinar cells after high-fat diets [168,169]. Intra-
and interlobular perilipin-positive adipocytes have been detected in the human and mouse
pancreas, which was increased in mice after a high-fat diet [80,169]. The source of these
adipocytes may be mesenchymal stem cells in the pancreatic stroma, which can differen-
tiate into adipocytes [170]. AT-derived stem or progenitor cells have been reported to be
able to home to the tumor stroma promoting cancer progression [171,172]. During obesity,
AT-derived progenitor cells, which are elevated and mobilized in obesity, may differenti-
ate into adipocytes in the pancreatic microenvironment. The importance of the visceral
mesothelium, which also covers the pancreas, in pancreatic cancer biology and as a source
of adipocytes has been reported [173–176]. However, a recent study refutes mesothelial
cells as a source of adipocytes in mice [177]. In addition, it has been reported that an acinar-
to-adipocyte transdifferentiation program exists, possibly driven by inflammation [178].
Finally, pancreatic stellate cells have been shown in vitro to be able to transdifferentiate
into adipocyte-like cells [179]. Our knowledge of the importance of intrapancreatic fat for
the development and progression of pancreatic cancer is still in its infancy, and preclinical
studies are necessary to illuminate its functional significance. It is conceivable that the
formation and expansion of intrapancreatic fat (intra- and/or interlobular) that may be seen
during obesity has a profound paracrine metabolic and proliferative effect on transformed
pancreatic epithelial cells via local secretion of adipokines and other adipose-derived in-
flammatory cytokines. In addition, intrapancreatic adipocytes may also be an important
source of free fatty acids, which can be used by malignant cells as fuel and for membrane
synthesis [180] as well as paracrine signals.

4.3. Insulin and Insulin-Like Growth Factor-1

Patients with long-standing T2DM have an increased risk of PDAC [13,14,181,182].
In addition, T2DM is often associated with obesity, which by itself also promotes PDAC
development (see above). Patients with T2DM and obesity are often characterized by
long periods of elevated intrapancreatic insulin levels caused by the pancreatic β-cells
trying to overcome the insulin resistance present in T2DM and obesity to maintain glucose
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homeostasis. Elevated levels of insulin, particularly intrapancreatic, can reach pancreatic
acinar and ductal cells adjacent to pancreatic islets via the intrapancreatic portal circulation,
activate insulin and IGF-1 receptors present on these cells, and may thus conceivably
contribute to the PDAC growth [182]. The importance of insulin is underscored by mouse
models of PDAC. For example, KC mice subjected to DIO consistently developed hyper-
insulinemia and elevated levels of IGF-1 [42–44,94]. Furthermore, the anti-diabetic drug
metformin significantly suppressed PDAC development in KC mice with DIO, which
was associated with a normalization of the hyperinsulinemia [60]. In vitro experiments
have clearly demonstrated the proliferative action of insulin on PDAC cells [183–188].
A crosstalk between insulin/IGF-1 receptors and G protein-coupled receptor signaling
systems has been identified that converges on the mechanistic target of rapamycin (mTOR),
which is inhibited by metformin [184–187,189]. Furthermore, the crosstalk between the
insulin receptor and GPCRs has been shown to potently stimulate YAP through PI3K and
protein kinase D in PDAC cells [183]. YAP and its paralogue transcriptional co-activator
with PDZ-binding motif (TAZ), as major downstream effectors of the Hippo pathway,
have recently gained enormous interest as critical molecules in PDAC formation and
progression [157,190–197]. Interestingly, the expression of YAP and TAZ in the pancreas
is increased in KC mice with DIO, which is downregulated by metformin [60]. Taken
together, it has been conclusively shown that insulin receptor and GPCRs signaling path-
ways stimulate PDAC cell proliferation by converging on mTOR. In obesity, elevated
levels of insulin/IGF-1 and gastrointestinal peptides that act via their cognate GPCRs, e.g.,
neurotensin [198], enhance the crosstalk between insulin receptor and GPCR signaling
pathways, leading to increased cellular proliferation. Targeting this insulin receptor/GPCR
crosstalk with the antidiabetic drug metformin may have potent beneficial effects on PDAC
development [199]. In addition to the importance of hyperinsulinemia, elevated glucose
levels and advanced glycation end products (AGE) may also play an important role. In
this context, the receptor for AGEs (RAGE) has been shown to be a tumor promoting factor
in PDAC and to orchestrate the interplay between metabolic diseases, inflammation, and
cancer [200–202].

4.4. Gut Microbiome

Human studies and animal models have demonstrated that the gut microbiota is
altered in obesity [203–205]. Generally, the microbial diversity as seen in healthy individ-
uals is decreased in obese subjects. In particular, an abundance of Firmicutes (increase
in the Firmicutes:Bacteroidetes ratio) was found in mice with diet-induced and genetic
obesity [206–208]. Additionally, animal studies provide evidence that changes in the gut
microflora are causally linked to the development of obesity and T2DM [205,209,210].
Furthermore, there is strong evidence that altered gut microbiota are critical for the de-
velopment of colorectal cancer [211]. In another study, dietary or genetic obesity induced
changes in the gut microbiota, which facilitated the development of hepatocellular car-
cinoma in mice through an increase of deoxycholic acid [212]. The gut microbiome has
been implicated in PDAC as well [213–215]. Importantly, the presence and significance
of an intrapancreatic, intratumoral microbiome that crosstalks with the gut microbiome
has been reported [216–218]. In addition to the microbiome, the fungal mycobiome has
recently been shown to promote pancreatic carcinogenesis [219]. Our own studies have
shown that oral administration of metformin to KC mice fed an obesogenic high-fat diet
normalized the high diet-induced gut dysbiosis [220]. We found that oral administration of
metformin to obese KC mice lowered the abundance of the genus Clostridium sensu stricto
and significantly increased the levels of Akkermansia [220]. Akkermansia muciniphila, an
intestinal symbiotic bacterium, plays an important role in maintaining a functioning gut
barrier [221–223]. Data from human studies confirmed that the abundance of Akkermansia
muciniphila correlates to a lower incidence of obesity and other metabolic diseases [224,225].

Changes in the gut microbiome, caused by genetic, environmental, or nutritional
factors, are thought to influence the development of metabolic diseases and cancer by
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several mechanisms. These include microbiota-derived metabolites, e.g., short-chain fatty
acids (mainly acetate, propionate, and butyrate), activation of intestinal GPCRs, or translo-
cation of bacteria or bacterial components, e.g., lipopolysaccharide (LPS), enabled by an
increase in gut permeability, leading to a systemic pro-inflammatory state [205]. It is well
known that obesity is associated with elevated circulating LPS levels (metabolic endotox-
emia) [226–228]. Animal models showed that obesity-associated metabolic endotoxemia
induced AT inflammation through an LPS/toll-like receptor 4 (TLR4)-mediated mecha-
nism [207,228,229]. Microbial alterations in PDAC featured an increase of certain pathogens
and LPS-producing bacteria [230]. Although, to our knowledge, no studies have been
published that directly measured LPS levels in the pancreas of obese subjects with PDAC,
other reports using obese rats with deficiency in TLR4 have implicated an important role
of LPS for the pancreatic β-cell function in [231]. Furthermore, exogenous administration
of LPS to mice with oncogenic Kras expression in pancreatic acinar cells led to chronic
pancreatitis and neoplastic PanIN formation [58]. In addition, besides direct action of
LPS on PDAC cells [232], elevated LPS levels during obesity can also induce a shift of
intrapancreatic resident macrophages and/or recruited monocytes into pro-inflammatory
M1-like macrophages, which may promote PanIN development [80].

5. Conclusions

Human and preclinical mouse studies have convincingly demonstrated that obesity
increases the risk of developing PDAC and promotes PDAC growth. Several mechanisms
are generally discussed that underlie the obesity–PDAC connection. A central role is clearly
played by adipose tissue and obesity-associated adipose tissue inflammation (Figure 2).

Soluble adipokines and other inflammatory mediators secreted by the adipose tissue
(visceral and/or intrapancreatic) can reach the pancreas systemically and/or via paracrine
mechanisms. These mediators can affect metabolism and growth of transformed pancreatic
epithelial cells and shape the pancreatic microenvironment. Furthermore, neoplastic
pancreatic cells themselves generate pro-tumorigenic factors downstream of oncogenic
Kras, which may be augmented and positively reinforced by systemic and paracrine effects
of the adipose tissue. Obesity-associated adipose tissue inflammation also plays a major
role in creating insulin resistance with ensuing hyperinsulinemia. Elevated insulin levels,
systemically and locally, are known as potent growth stimulating factors for transformed
pancreatic epithelial cells. Obesity-associated gut dysbiosis may lead to the perturbation
of the pancreatic microbiome, which may induce and exacerbate pancreatic inflammation
and neoplastic development. In addition, gut dysbiosis as seen in obesity also leads
to an impaired gut barrier function and subsequent metabolic endotoxemia, which is
thought to be a critical factor in inducing adipose tissue inflammation. Given the central
role of adipose tissue in linking obesity with PDAC risk and growth, strategies to target
the adipose tissue seem to be of paramount importance to curtail the PDAC promoting
actions of obesity. This may be achieved by interventions aimed at inhibiting or reducing
obesity-associated adipose tissue inflammation in general or by targeting specific factors
that mechanistically initiate and sustain the link between adipose tissue and pancreatic
neoplastic cells.
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Figure 2. Schematic overview of the mechanisms linking obesity, adipose tissue, and pancreatic cancer as discussed in the
main text. During obesity, inflamed (visceral) adipose tissue (adipocytes and resident/recruited immune cells) releases
a variety of adipokines (e.g., increase in leptin, lipocalin 2, Wnt5a, and decrease in adiponectin) and adipose-derived
inflammatory cytokines (e.g., IL-6 and TNF-α) that may promote proliferation of transformed pancreatic epithelial cells.
Obesity-associated gut dysbiosis may lead to metabolic endotoxemia (elevated LPS) that plays a role in adipose tissue
inflammation and has direct effects on pancreatic cells. Obesity-associated changes of the gut microbiome may also induce
or alter the pancreatic microbiome, which promotes cancer growth. Obesity-associated systemic hyperinsulinemia (and
elevated IGF-1) as well as elevated intrapancreatic insulin levels (from pancreatic β-cells) can act as potent growth stimula-
tory factors for transformed (pre-)neoplastic pancreatic cells. Intrapancreatic adipocytes, either through differentiation of
adipose-derived stem cells and/or transdifferentiation of acinar (or pancreatic stellate) cells, may also have a robust impact
on pancreatic cancer cell proliferation and changes of the tumor microenvironment. Downstream of oncogenic Kras, the
decrease in FGF21 (in transformed pancreatic cells) may render the pancreas susceptible to the pro-tumorigenic effects
of obesity. Blue and purple cells within the adipose tissue illustrate various immune cells (e.g., neutrophils (purple) and
macrophages (blue)). Yellow circles within the adipose tissue represent adipocytes. Partly created with Servier Medical Art.
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