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A B S T R A C T   

In this article, a mid-infrared all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on a 
hollow-core anti-resonant fiber (HC-ARF) was reported for the first time. The HC-ARF was applied as a light 
transmission medium and gas chamber. The constructed all-fiber structure has merits of low loss, easy optical 
alignment, good system stability, reduced sensor size and cost. The mid-infrared transmission structure can be 
utilized to target the strongest gas absorption lines. The reversely-tapered SM1950 fiber and the HC-ARF were 
spatially butt-coupled with a V-shaped groove between the two fibers to facilitate gas entry. Carbon monoxide 
(CO) with an absorption line at 4291.50 cm− 1 (2.33 µm) was chosen as the target gas to verify the sensing 
performance. The experimental results showed that the all-fiber LITES sensor based on HC-ARF had an excellent 
linear response to CO concentration. Allan deviation analysis indicated that the system had excellent long-term 
stability. A minimum detection limit (MDL) of 3.85 ppm can be obtained when the average time was 100 s   

1. Introduction 

Gas sensing technology is widely used in industrial process control, 
medical diagnostics, combustion diagnostics and many other fields due 
to its ability to systematically monitor, analyze and track changes in gas 
content and composition [1–13]. Laser absorption spectroscopy (LAS) is 
based on the "fingerprint" absorption spectrum characteristics of gas 
molecules, which retrieves gas concentration by measuring parameters 
related to the spectral characteristics of the measured gas [14–18]. 
Consequently, it offers the benefits of strong selectivity, high sensitivity 
and on line measurement [19–22]. As early as 2002, a quartz tuning fork 
(QTF) was applied in LAS technology, which is called quartz enhanced 
photoacoustic spectroscopy (QEPAS) technology [23]. In QEPAS, a QTF 
is used instead of a microphone as an acoustic detection element. 
Compared to microphone, QTF has a very narrow response bandwidth, 
which means it can minimize the environmental noise [24–27]. 

Simultaneously, QTF has advantages such as low cost, small size, and 
high quality factor (Q-factor), which reduces the cost of the sensor and 
improves its detection performance [28–31]. However, QEPAS is a 
contact measurement method since the QTF must be put in a gas 
chamber [32,33]. As a result, it cannot be used to detect corrosive gasses 
such as hydrogen chloride (HCl) and hydrogen sulfide (H2S). The above 
limitation was overcome in 2018 by light-induced thermoelastic spec-
troscopy (LITES) [34]. In LITES, firstly the laser beam hit on a QTF’s 
surface after passing through a gas chamber containing the tested gas. 
The laser energy is absorbed by the QTF, which transforms the heat 
energy into mechanical motion. Lastly, mechanical energy is further 
transformed into electrical signals due to quartz’s piezoelectric effect 
[35–39]. Consequently, in LITES, there is no need to place the QTF in the 
gas chamber, so it is a non-contact measurement method. Meanwhile, 
LITES technology has the advantages of wide detection band, high 
sensitivity and strong noise immunity, and it is widely used in the gas 
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sensing field [40–43]. 
According to Beer-Lambert law, LITES signal value is positively 

correlated with the gas absorption path. In conventional LITES, a multi- 
pass cell (MPC) is typically applied to increase the gas absorption path 
[44,45]. Nevertheless, MPC has the disadvantages of large size, heavy 
weight and difficult to integrate, which makes it difficult to meet the 
needs of miniaturization and integration of sensors. To address the 
above challenges, an alternative solution is to use hollow-core fiber 
(HCF) for gas sensing. In 2020, Hu et al. built a near-infrared all fiber 
system using a hollow-core photonic crystal fiber (HC-PCF) [46]. The all 
fiber structure has advantages such as lower loss, easier optical align-
ment, reduced sensor size and cost [47]. But the detection performance 
of the system is limited by the internal mode interference of HC-PCF 
[48]. In 2022, Ma et al. constructed a near-infrared gas sensing system 
based on a lens set using a hollow-core anti-resonant fiber (HC-ARF) 
[49]. The special circular structure in HC-ARF has a good suppression 
effect on mode interference noise in fiber [50–52]. However, the use of 
lenses has negative effects such as increased system losses and size, and 
reduced system stability. Moreover, both of the above works investi-
gated the sensing performance of HCF in near-infrared. For most gas 
molecules, they have stronger absorption coefficients in the 
mid-infrared spectral region than in the near infrared region. Therefore, 
extending gas sensing research to the mid-infrared region is of great 
significance for improving the detection performance. 

In this manuscript, a mid-infrared all-fiber LITES sensor using a HC- 
ARF was reported for the first time. Instead of MPC, HC-ARF was 
adopted as a light transmission medium and gas chamber to improve the 
system stability and reduce system volume. Compared to the usually 
used HCF in all-fiber structure, the special circular structure in HC-ARF 
has a good suppression effect on mode interference noise in fiber. The 
laser that excites QTF vibration was guided directly from the end of the 
HC-ARF to the surface of the QTF, rather than focusing with a lens. The 
built all-fiber structure has many advantages such as low loss, easy op-
tical alignment, robust system stability, reduced sensor size and cost. 
The mid-infrared transmission structure can be utilized to target the 
strongest gas absorption lines due to the fact that the fundamental gas 
absorption band is located in the mid-infrared. The reversely-tapered 
SM1950 fiber and the HC-ARF were spatially butt-coupled with a V- 
shaped groove between the two fibers to facilitate gas entry. Carbon 
monoxide (CO) with an absorption line at 4291.50 cm− 1 (2.33 µm) was 
chosen as the target gas to verify the sensing characteristics. A contin-
uous wave (CW) distributed feedback (DFB) diode laser with an output 
wavelength of 2.3 µm was selected as the system excitation source. 

2. Experimental setup 

In this study, a HC-ARF with a length of 55 cm was used. Fig. 1(a) 
displays the cross-section image of the HC-ARF, as captured by the 
scanning electron microscope (SEM). The HC-ARF has an air core 
structure, with six sets of discrete capillaries or nested capillaries 
forming a negative curvature core wall. This double-layer structure can 
reduce the transmission loss of fiber. The wall’s thickness of the cladding 
capillary decides the order of wavelength, which can effectively sup-
press the coupling between the core mode and the cladding mode, and 
thus restricts most of the light to propagate in the air core. This feature 
greatly overcomes the influence of the substrate material, and signifi-
cantly reduces the material loss. The maximum distance between two 
capillaries is 33 µm. Fig. 1(b) shows the transmission spectrum of the 
used HC-ARF in the range of 1.5 µm to 2.5 µm, which is limited by the 
spectral analyzer. It can be seen that the fiber at the selected wavelength 
(2.33 µm) in this experiment has a loss of 9.4 dB. 

The configuration of all-fiber LITES sensor based on HC-ARF is 
shown in Fig. 2. Wavelength modulation spectroscopy (WMS) and 
second-harmonic (2f) demodulation technology were applied in the 
experiments. A low-frequency sawtooth wave generated by a signal 
generator to scan the CO absorption line and a high-frequency sine wave 
produced by a lock-in amplifier to modulate the laser wavelength were 
combined together to inject into the diode laser with an output wave-
length of 2.3 µm. The laser beam was coupled into a single-mode fiber 
(SM1950) through a flange plate. In order to ensure the laser beam and 
CO molecules enter the HC-ARF smoothly, the reversely-tapered 
SM1950 fiber [53,54] and the HC-ARF were spatially butt-coupled 
with a gap in the experiment. The coupling loss was 2.2 dB. The 
spatial coupling region was placed in a 3D-printed gas chamber. After 
the laser and CO molecules fully reacted in the HC-ARF, the laser was 
guided out from the HC-ARF tip directly to the root of QTF, where it had 
the maximum thermoelastic effect. The QTF absorbed optical energy 
and then produced thermoelastic deformation, which was further con-
verted into an electrical signal according to the piezoelectric effect of 
quartz. The electrical signal was demodulated by a lock-in amplifier 
whose integration time and detection bandwidth were 200 ms and 405.4 
mHz, respectively. Two mass flow controllers were used to control the 
flow rate of CO and pure nitrogen (N2) to obtain different concentrations 
of CO. The light spots at the tail fiber of the diode laser and at the end of 
the HC-ARF were captured using a beam quality analyzer, both of which 
exhibited a Gaussian distribution, indicating that HC-ARF had a good 
inhibitory effect on mode noise. 

Fig. 1. (a) Cross section image of the used HC-ARF captured by the scanning electron microscope; (b) Transmission spectrum of the used HC-ARF.  

W. Chen et al.                                                                                                                                                                                                                                   



Photoacoustics 36 (2024) 100594

3

3. Experimental results and discussion 

Firstly, we investigated the resonance characteristics of the used 
QTF. The obtained experimental data were normalized and fitted with 
the Lorentz function and the generated frequency response curve is 
shown in Fig. 3. It can be find that the resonance frequency (f0) and 
response bandwidth (Δf) were 32748.9 Hz and 3.03 Hz, respectively. 
Based on the formula for calculating the quality factor (Q) of QTF: Q=f0/ 
Δf, the calculated Q for used QTF in this study is 10808. This QTF has a 
high Q and narrow Δf, which means it has strong ability of energy 

accumulation and noise suppression. 
In this experiment, due to the use of WMS and second harmonic 

demodulation techniques, the 2f signal level was related to the sine wave 
modulation amplitude. Therefore, the modulation depth of the system 
needs to be optimized. The values of the 2f signal at different modulation 
amplitudes were measured to acquire the optimum modulation depth. 
The obtained results are shown in Fig. 4. It can be seen that the 2f signal 
reached the maximum when the modulating current was 31.16 mA 
(4.29 GHz). 

Fig. 2. The configuration of all-fiber LITES sensor based on HC-ARF.  

Fig. 3. Frequency response curve of the used QTF after normalisation and 
fitting with Lorentz function. 

Fig. 4. The relationship between 2f signal amplitude and depth of modula-
tion current. 
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The response speed of gas sensing system is determined by the filling 
time of the gas. The region of spatial coupling of SM1950 fiber and HC- 
ARF was placed in the gas chamber. In order to increase the pressure 
inside the gas chamber and facilitate the filling of the gas to be measured 
in the HC-ARF, the designed 3D-printed gas chamber was equipped with 
only an inlet port, and the end of the HC-ARF served as the outlet port. 
The air pressure level at the inlet was 780 Torr, and the air pressure at 
the fiber output end face was 760 Torr. Fig. 5 illustrates the curve of the 
2f signal after the gas was changed from pure N2 to 3% CO with a flow 
rate of of 120 mL/min. It can be seen that it took about 3 min for the gas 
to fill up the entire HC-ARF at this pressure, indicating a gas filling time 
of 3 min for this sensor. 

The QTF had the maximum elastic deformation when the laser was 
directed to the central position of the QTF root. After this positon was 
determined, the relationship between the distance Z and the 2f signal 
value was optimized, where Z was the distance between the HC-ARF tip 
and the QTF surface, as shown in Fig. 6. It can be seen that as the dis-
tance Z increased, the 2f signal value decreased. This is due to the fact 
that the beam diameter increases with Z, resulting in a decrease in the 
power density of the incident spot at the root of the QTF, thereby 
affecting the 2f signal amplitude. When the distance Z was 0, the 2f 
signal had a maximum value. However, in order to avoid damaging the 
HC-ARF tip during the position adjustment procedure, the distance Z 
was adjusted as small as 0.05 mm because the 2f signal here was 98% of 
the maximum value and had little impact on system performance. 

To verify the gas sensing performance of the all-fiber LITES sensor 
based on HC-ARF, different concentrations of CO was adopted. Fig. 7(a) 
demonstrates the 2f signals at different concentrations. The relationship 
between CO concentration and the 2f signal peak value is shown in Fig. 7 
(b). After linear fitting, the expression y = 0.0042x + 12.39 was ob-
tained, and the R-squared value was 0.99, indicating that the all-fiber 
LITES sensor based on HC-ARF had an excellent linear response to CO. 

Subsequently, in order to obtain the minimum detection limit (MDL), 
pure N2 was introduced into HC-ARF. The signal was continuously 
monitored for one minute, with a standard deviation (1σ) of 123.89 nV. 
By calculation, the MDL of the all-fiber LITES sensor based on HC-ARF 
was determined to be 27.53 ppm, resulting in a normalized noise 
equivalent absorption (NNEA) of 6.32 × 10− 8 cm− 1W⋅Hz− 1/2. 
Compared with the detection of CO using HC-ARF reported in reference 
[49], this work improved the MDL of CO by 61.9 times. In reference 
[44], fiber coupled multipass cell was used to detect CO, with an NNEA 
of 1.15 × 10− 7 cm− 1W⋅Hz− 1/2. It can be seen that by using an all-fiber 
structure instead of multipass cell, the detection performance of the 
system has been greatly improved. Finally, the long-term stability of the 
system was investigated. Pure N2 was passed through the HC-ARF when 
the laser wavelength was set at the CO absorption line. The signal was 

continuously monitored for more than 2.5 h, as shown in Fig. 8(a). Fig. 8 
(b) shows the performance of the sensor without the laser on, which 
exhibits white noise for 2.5 h. The obtained data in Fig. 8(a) were 
analyzed by Allan deviation and the results are shown in Fig. 8(c). It can 
be seen that the MDL can reach 3.85 ppm at an averaging time of 100 s, 
which indicates that the all-fiber LITES sensor based on HC-ARF had 
good stability. 

4. Conclusion 

In conclusion, in order to overcome the limitations of large system 
size, multiple optical components and poor system stability in tradi-
tional LITES technique, a mid-infrared all-fiber LITES sensor based on a 
HC-ARF was reported for the first time. The all-fiber structure has ad-
vantages of low loss, easy optical alignment, good system stability, 
reduced sensor size and cost. The special circular structure in HC-ARF 
has a good suppression effect on mode interference noise. CO with an 
absorption line at 4291.50 cm− 1 was chosen as the target gas to verify 
the sensing performance of the system in mid-infrared. The experi-
mental results showed that the sensor had a good linear response to CO 
concentration, with a R-squared value of 0.99. The MDL of the all-fiber 
LITES sensor based on HC-ARF was determined as 27.53 ppm. Finally, 
the Allan deviation analysis demonstrated that the MDL of the system 
can reach 3.85 ppm at an average time of 100 s, indicating that the 
system had good long-term stability. In order to improve the detection 
performance of this mid-infrared all-fiber structure LITES sensor, a 
longer HC-ARF can be used in the future to increase the absorption 
length, or a CO fundamental absorption line can be chosen. 
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